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Abstract

Rates of missing data often depend on record-
keeping policies and thus may change across
times and locations, even when the underlying
features are comparatively stable. In this paper,
we introduce the problem of Domain Adaptation
under Missingness Shift (DAMS). Here, (labeled)
source data and (unlabeled) target data would be
exchangeable but for different missing data mech-
anisms. We show that if missing data indicators
are available, DAMS reduces to covariate shift.
Addressing cases where such indicators are ab-
sent, we establish the following theoretical results
for underreporting completely at random: (i) co-
variate shift is violated (adaptation is required);
(ii) the optimal linear source predictor can per-
form arbitrarily worse on the target domain than
always predicting the mean; (iii) the optimal tar-
get predictor can be identified, even when the
missingness rates themselves are not; and (iv)
for linear models, a simple analytic adjustment
yields consistent estimates of the optimal target
parameters. In experiments on synthetic and semi-
synthetic data, we demonstrate the promise of
our methods when assumptions hold. Finally, we
discuss a rich family of future extensions.

1 INTRODUCTION

As of October 2021, following extensive awareness cam-
paigns and mass distribution efforts promoting COVID-19
vaccines, approximately 79.2% of the U.S. population over
age 18 had received at least one dose (CDC, 2022). And yet,
when collaborating with a regional healthcare provider, we
found only 40.5% of 121,329 adults tested for COVID-19
were tagged indicating positive vaccination status in the
electronic medical record (EMR). This was not a regional
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anomaly—cross referencing with vaccination data from the
CDC, between 75.7% and 90.3% of the adult population in
the region had actually received at least one dose. A more
plausible explanation is that many patients were vaccinated
outside of the hospital system (e.g., at a pharmacy or foot-
ball stadium) but that this information was never reported to
the hospital system and thus never captured in the EMR.

Now suppose that our collaborator decided to update their
intake form to include a question about vaccination status.
Overnight, the rate of patients being tagged in the EMR as
vaccinated would increase dramatically. Absent any shift
in the actual health status of patients, the distribution of
observed data would still shift, owing to this sudden change
in clerical practices. In real-world healthcare settings, such
changes in missingness rates are common. Furthermore,
as in our vaccination example, indicators disambiguating
which features are genuinely negative (vs. missing) cannot
be taken for granted. Faced with data from different time
periods or locations, each characterized by different patterns
of missing data, how should machine learning (ML) practi-
tioners leverage the available data to get the best possible
predictor on a target domain? While missing data and for-
mal models of distribution shift are both salient concerns of
the ML community, no work to date provides guidance on
how to adjust a predictor under such shocks.

In this work, we introduce missingness shift, where dis-
tributional shocks arise due to changes in the pattern of
missingness (Figure 1). In this setup, all domains share a
fixed underlying distribution P (X,Y ), and observed covari-
ates X̃ are produced by stochastically zeroing out a subset
of the underlying clean covariates, i.e., each X̃ = X ⊙ ξ
for some ξ ∈ {0, 1}d. We propose the Domain Adapta-
tion under Missingness Shift problem, where the learner
aspires to recover the optimal target predictor given labeled
data from the source distribution P s(X̃, Y ), and unlabeled
data from the target (deployment) distribution P t(X̃).

We focus primarily on a special DAMS setting where the
components of ξ’s (one per feature) are drawn from inde-
pendent Bernoullis with unknown constant probabilities.
First, we show that when missingness indicators (1− ξ) are
available, missingness shift is an instance of covariate shift.
However, absent indicators, missingness shift constitutes
neither covariate shift nor label shift. Thus, adaptation is
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required. We demonstrate that under DAMS, the optimal
source predictor may even exhibit arbitrarily higher MSE
than just guessing the label mean E[Y ]. One natural strategy
might be to relate the source and target distributions to the
underlying clean distribution, which we show is identified
when missingness rates are known. However, we show that
the missingness rates are not, in general, identifiable. Fortu-
nately, as we prove, the target distribution (and thus optimal
target predictor) is nevertheless identifiable, requiring only
that we estimate the (observable) relative proportions of
nonzero values for each covariate across domains. Using
these relative proportions, we derive a simple adjustment
formula that yields the optimal linear predictor on the target
domain. Additionally, we provide a non-parametric, model-
agnostic procedure which attempts to transform source data
into labeled data i.i.d. to the target distribution. Finally, we
confirm the validity of our approach and demonstrate empir-
ical gains in settings where our assumptions hold through
synthetic and semi-synthetic experiments.

2 RELATED WORK

There is a rich history of learning under various missing
data mechanisms when missing data indicators are available
(Rubin, 1976; Robins et al., 1994; Little and Rubin, 2019;
Gelman et al., 2020). Common practices for handling miss-
ing data include discarding all samples with missingness
(complete-case analysis) (Little and Rubin, 2019), imput-
ing with mean or last value carried forward, combining
inferences from multiple imputations (Rubin, 1996; Van Bu-
uren and Groothuis-Oudshoorn, 2011), matching-based al-
gorithms, iterative regression imputation (Stekhoven and
Bühlmann, 2012; Le Morvan et al., 2021), building missing-
ness indicators into model architecture (Le Morvan et al.,
2020a), and including missingness indicators as features
(Groenwold et al., 2012; Lipton et al., 2016; Little and Ru-
bin, 2019). However, these techniques require indicators for
whether each covariate is missing in the first place.

In single cell RNA sequencing, missing data indicators are
often absent in count data due to dropout, where a tiny
proportion of the transcripts in each cell are sequenced, so
expressed transcripts can go undetected and are instead as-
signed a zero value. This is often dealt with by leveraging
domain-specific knowledge to inform probabilistic models,
such as assuming a zero-inflated negative binomial distribu-
tion of counts (Risso et al., 2018), using a mixture model to
identify likely missing values before imputing with nonneg-
ative least squares regression (Li and Li, 2018), adopting
a Bayesian approach to estimate a posterior distribution of
gene expressions (Huang et al., 2018), or graph-based meth-
ods on a lower dimensional manifold derived from principal
component analysis (Van Dijk et al., 2018).

In survey data, underreporting (i.e. missingness without
indicators) arises in binary data when respondents give false

negative responses to questions. As noted in Sechidis et al.
(2017), this can be viewed as a form of misclassification bias.
In its simplest form, an underreported variable has specificity
p(x̃ = 0|x = 0) = 1 and sensitivity p(x̃ = 1|x = 1) < 1
(one minus the rate of missingness). If sensitivity is indepen-
dent of outcome Y , this is referred to as non-differential mis-
classification, which often, but not always biases measures
of association towards zero (Dosemeci et al., 1990; Brenner
and Loomis, 1994). Given knowledge of the specificities
and sensitivities, prior work has derived adjusted estimators
for the log-odds ratio (Chu et al., 2006) and relative-risk
(Rahardja and Young, 2021) under non-differential exposure
misclassification. Recent work has also provided conditions
under which the joint distribution p(y, ã|x) (outcome y, sin-
gle binary underreported exposure ã, and fully observed
covariates x) is identifiable (Adams et al., 2019).

In our setting, for binary covariates, estimating the missing-
ness rates takes the form of learning from positive and unla-
beled data (Elkan and Noto, 2008; Bekker and Davis, 2020).
Here, identification of the missingness rates hinges on the ex-
istence of a separable positive subdomain (Garg et al., 2021),
which may not hold in problems of interest. Many canonical
distribution shift problems address adaptation under differ-
ent forms of structure, including covariate shift (Shimodaira,
2000; Zadrozny, 2004; Huang et al., 2006; Sugiyama et al.,
2007; Gretton et al., 2009), label shift (Saerens et al., 2002;
Storkey, 2009; Zhang et al., 2013; Lipton et al., 2018; Garg
et al., 2020), and concept drift (Tsymbal, 2004; Gama et al.,
2014). We show that missingness shift with missing data
indicators can often be reinterpreted as a form of covari-
ate shift, but to our knowledge, missingness shift without
indicators does not fit neatly into any previous setting.

3 DAMS PROBLEM SETUP

First, we define notation for (1) missing data; (2) missing-
ness shift; and (3) the DAMS problem. Then, motivated by
the medical setting, we focus on a specific form of DAMS
(Figure 1) for the remainder of the paper.

Let us denote clean covariates X ∈ Rd and labels Y ∈ R.
Let Xj denote the jth covariate, for j ∈ {1, 2, ..., d}.

Missing Data In every environment e with missing data,
we do not directly observe X , but instead observe corrupted
covariates:

X̃ = X ⊙ ξ,

where ξ ∈ {0, 1}d and (X,Y, ξ) ∼ P e for distribution P e.
Note that mask ξ is the complement of missing data indica-
tors (1− ξ). In this paper, we assume no missingness in Y
in labeled data. An important assumption of missing data
problems is how ξ takes its value, e.g. independent of other
covariates, dependent on other covariates, etc. Furthermore,
ξ may or may not be observed.
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Figure 1: DAMS with UCAR. The source and target data
are drawn from the same P (X,Y ), but differ in how ξ

(and hence X̃) takes its value. Shaded nodes are observed.
Observed covariates are generated as X̃ = X ⊙ ξ. The
undirected edge between X and Y indicates that they can
have an arbitrary bidirectional relationship.

Definition 1 (Missingness Shift). Consider a source domain
s and target domain t in which X and Y are drawn from the
same underlying distribution, i.e. P (X,Y ) = P s(X,Y ) =
P t(X,Y ). Missingness shift occurs when the missing data
mechanism differs between s and t, i.e. P s(ξ|·) ̸= P t(ξ|·).

Domain Adaptation under Missingness Shift Suppose
missingness shift occurs between source domain s and target
domain t. Given observations of corrupted labeled source
data {(X̃s,i, Y s,i)}ns

i=1 where (X̃s,i, Y s,i) ∼ P s(X̃, Y ), as
well as corrupted unlabeled target data {X̃t,i}nt

i=1 where
X̃t,i ∼ P t(X̃), the goal of DAMS is to learn an optimal
predictor on the corrupted target domain data. In this paper,
we focus on regression-type tasks, where optimality is mea-
sured by the squared error on the corrupted target domain
data, and we seek the optimal predictor E(X̃t,Y )∼P t [Y |X̃t].

As we will show (in Section 4), DAMS is particularly chal-
lenging when missing data indicators are not available. This
setting without observing ξ is trickiest when there are a
substantial number of true 0 values that now become indis-
tinguishable from missing values. Without knowledge of
which data are missing versus true 0s, conventional tech-
niques for imputing missing entries do not apply. To make
this difficult setting tractable, we define the DAMS with un-
derreporting completely at random (UCAR) setting, which
we focus on in this paper.

DAMS with UCAR Assume that ξ (unobserved) is drawn
independently of other variables, and parameterized by con-
stant (but unknown) missingness rates ms ∈ [0, 1]d in
source and mt ∈ [0, 1]d in target. That is, ∀j ∈ {1, 2, ..., d},
we have independently drawn ξsj ∼ Bernoulli(1−ms

j) and
ξtj ∼ Bernoulli(1−mt

j), abbreviated as:

ξs ∼ Bernoulli(1−ms)

ξt ∼ Bernoulli(1−mt).

For binary data, this setting without missingness indicators
is known as underreporting. We thus refer to this setting as

underreporting completely at random, but note our results
are not limited to binary data.

4 COST OF NON-ADAPTIVITY

Here, we provide intuition on the cost of not adapting the
source predictor to the target domain in DAMS with UCAR.
Let us start with a simple motivating example. Define the
risk of an estimator ĥ to be r(ĥ) = E[(Y − ĥ(X))2].

Example 1 (Redundant Features). Let ms = [1− ϵ, ϵ] and
mt = [ϵ, 1− ϵ]. Consider the data generating process:

Z = uZ

X1 = Z

X2 = Z

Y = Z + uY

uZ ∼ N (0, σ2
z)

uY ∼ N (0, σ2
y)

where σz is a positive constant, Z is a latent variable, X1

and X2 are observed, and Y is the outcome of interest.

Remark 1. In Example 1, as ϵ → 0, the optimal linear
source and target predictors have coefficients βs

∗ → [0, 1]
and βt

∗ → [1, 0]. The risk on target data rt(βs
∗) → Var(Y ).

That is, failing to adapt to the target levels of missingness
results in performance no better than simply guessing the
label mean (proof in Appendix A). Now, let us consider a
slightly more complex example.

Example 2 (Confounded Features). Now, suppose that
ms = [0, 0] and mt = [1, 0]. For some constants a, b, c
consider the following data generating process:

X1 = ν1

X2 = aX1 + ν2

Y = bX1 + cX2 + νY

ν1 ∼ N (0, 1)

ν2 ∼ N (0, 1)

νY ∼ N (0, 1)

Remark 2. In Example 2, the optimal source and target
predictors are βs

∗ = [b, c] and βt
∗ = [0, ab

a2+1+c]. By setting
a = − b

c , we can show that for any τ > 1, there exists values
of a, b, c such that rt(βs

∗) > τVar(Y ).

Here, failing to adapt to target levels of missingness can
result in performance arbitrarily worse than predicting the
constant label mean (proof in Appendix A).

Observing ξ, Reduction to Covariate Shift In DAMS
with UCAR, missing data indicators are absent. By con-
trast, suppose we observed missingness indicators (1− ξ)
(and hence ξ). Then, we show that missingness shift is an
instance of covariate shift, where the optimal predictor does
not change across domains. This result holds not only when
ξ is drawn independently of other covariates, but also when
it is dependent on other completely observed covariates
(proof in Appendix B). Here, when ξ is “drawn indepen-
dently of other covariates,” as described in the DAMS with
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UCAR setup (Section 3), we have that ξ ∼ Bernoulli(1−m)
for some constant vector of missingness rates m ∈ [0, 1]d.
When ξ is drawn depending only on other completely ob-
served covariates, we have that some subset of covariates
Xc ⊆ X is completely observed (i.e. no missingness),
and the missingness of the other covariates Xm = X \Xc

depends on Xc. That is, ξ ∼ Bernoulli(f(Xc)) for some
function f : R|Xc| → [0, 1]|Xm|. Mohan and Pearl (2021)
classifies these missingness mechanisms as MCAR (missing
completely at random) and v-MAR (variant of the missing-
ness at random described by Rubin (1976)), respectively.
Proposition 1 (Reduction to Covariate Shift). Assume we
observe ξ. Consider augmented covariates x̃′ = (x̃, ξ).
When ξ is drawn independently of other covariates or de-
pending only on other completely observed covariates, miss-
ingness shift satisfies the covariate shift assumption, i.e,
P s(Y |X̃ ′ = x̃′) = P t(Y |X̃ ′ = x̃′).

Covariate shift problems are well-studied (Shimodaira,
2000; Zadrozny, 2004; Huang et al., 2006; Sugiyama et al.,
2007; Gretton et al., 2009). When source and target distribu-
tions have shared support, covariate shift only requires adap-
tation under model misspecification (Shimodaira, 2000),
where the most common approach is to re-weight examples
according to pt(x)/ps(x), rendering the (re-weighted) train-
ing and target data exchangeable. However, even given miss-
ingness indicators, DAMS may still require some care. For
example, in the augmented covariate space (with missing
data indicators), one might need more complex models than
in the original covariate space. When re-weighting is nec-
essary, the structure of the DAMS problem might be lever-
aged to estimate importance weights more efficiently, or to
identify the optimal target predictor in certain cases where
missingness introduces non-overlapping support. However,
because our work is primarily motivated by underreporting
in the medical setting, we focus our attention on the case
where missingness indicators are absent.

UCAR as Regularization While the optimal predic-
tor does not change across domains when ξ are observed
(as the covariate shift assumption holds), it is less obvious
how missingness without indicators impacts the optimal pre-
dictor. To build intuition on the effect of underreporting
completely at random, we note that applying mask ξ, which
zeros out covariates with some probability, resembles the
mechanism of dropout in neural networks. Using similar
theoretical arguments as in how dropout acts as a form of
regularization (Wager et al., 2013), we show that for linear
models, the phenomenon of UCAR in data with constant
missingness rate m translates into a form of regularization
on the resulting predictor (proof in Appendix C). First, we
show that for generalized linear models, UCAR results in
a regularization effect. Here, generalized linear models are
defined as pβ(y|x) = h(y) exp{yx · β −A(x · β)}, where
h(y) is a quantity independent of x and β, and A(·) is the
log partition function, and the negative log likelihood objec-

tive is lx,y(β) = − log pβ(y|x). Then, considering linear
regression, we show that the regularization penalty can be
viewed as a form of L2 regularization.

Theorem 4.1. Under UCAR with missingness rates m ∈
[0, 1)d, the minimizer β̂ of the negative log likelihood of the
corrupted training data X̃ scaled by 1

1−m is given by:

β̂ = arg min
β∈Rd

n∑
i=1

Eξ[lx̃(i),y(i)(β)]

= arg min
β∈Rd

n∑
i=1

lx(i),y(i)(β) +R(β),

where lx̃(i),y(i)(β) and lx(i),y(i)(β) are the negative log like-
lihoods of a corrupted sample and the corresponding clean
sample (respectively). For linear regression, the regulariza-
tion term R(β) is given by:

R(β) =
1

2

(
β∆̃diag

)⊤ (
β∆̃diag

)
,

where we define ∆̃diag = diag
(√

m
1−m

)
diag(I)1/2, where

diag
(√

m
1−m

)
refers to a diagonal matrix with

√
mj

1−mj
on

the diagonal, and diag(I)1/2 refers to the square root of the
diagonal of the Fisher information matrix.

Thus, for linear regression, applying missingness rates m to
data scaled by 1

1−m can be viewed as a form of L2 regular-
ization of β scaled by ∆̃diag.

5 IDENTIFICATION RESULTS

This section shows that in DAMS with UCAR, the clean
joint distribution p is identifiable from the corrupted joint
distribution p̃ with missingness rates m ∈ [0, 1)d when m
is known (Lemma 5.1). However, m is not in general identi-
fiable directly from the observed corrupted data (Remark 4).
Instead, we identify relative rates of non-missingness from
the corrupted data across domains (Remark 5), which can
in turn be used to identify the labeled target distribution p̃t

from the labeled source distribution p̃s (Theorem 5.2).

First, we define some notation useful for our identification
results. Consider vectors a ∈ Rd and b ∈ Rd. Let a ≺ b
denote that ∀j ∈ {1, 2, ..., d}, we have aj < bj . Similarly,
let a ⪰ b denote that ∀j ∈ {1, 2, ..., d}, aj ≥ bj .

To help clarify the relationship between corrupted and clean
distributions, we define the notion of m-reachability.

Definition 2 (m-reachable). We say b is m-reachable from
a (denoted a⇝ b) if ∃ξ ∈ {0, 1}d such that b = a⊙ ξ.

Remark 3 (Characteristics of m-reachability). If a ⇝ b,
then the dimensions of a that are 0 must be a subset of the
ones that are 0 in b. Additionally, any dimensions that are
nonzero in both a and b must match in value.
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For example, if we observe a data point b = [1, 1, 1], the
only data point a for which a ⇝ b is a = [1, 1, 1]. If
b = [1, 1, 0], then possible values of a are a = [1, 1, c] for
any value of c ∈ R. In binary data, a⇝ b ⇐⇒ a ⪰ b.

Let px,y = P (X = x, Y = y) denote the probability of
some set of covariates x ∈ Rd and label y ∈ R in the clean
distribution, and let p̃x,y = P (X̃ = x, Y = y) denote the
same in the corrupted distribution. Throughout the paper we
use notation for discrete X , but note that it is straightforward
to extend the results to continuous X (e.g. by replacing
summations with integrals, etc.). Summing over all possible
values of z ∈ Rd from which x is m-reachable, p̃ can be
expressed in terms of p and m:

p̃x,y =
∑

z:z⇝x

pz,y ·
d∏

j=1

(1−mj)
[xj ] ̸=0m

[zj ]̸=0−[xj ]̸=0

j (1)

where [x]̸=0
∆
= 1[x ̸= 0] is an indicator function for nonzero

values. While it is obvious that one can obtain p̃ from p, we
show, surprisingly, that the above system is in fact invertible.
Lemma 5.1. Given m, where m ≺ 1, the clean distribution
p is identifiable from the corrupted distribution p̃.

Roughly, the proof of Lemma 5.1 (in Appendix D) rear-
ranges equation (1) and uses Remark 3 to observe that any
entry p(x,y) can be expressed in terms of p̃, m, and entries of
p with fewer zeros. Using proof by induction on the number
of zeros (0 to d), one can show that p is identifiable from p̃.

Returning to the DAMS problem, given ms and mt, one
could in theory identify p from p̃s thru Lemma 5.1, and
then use equation (1) to derive p̃t. Unfortunately, however,
missingness rates are not in general identifiable from the
observed corrupted data.
Remark 4. Missingness rates are not in general identifi-
able directly from corrupted data. To see this, consider
the following simple counterexample. Consider two dis-
tinct possible source distributions A ∼ Bernoulli(0.5) and
B ∼ Bernoulli(0.25). Application of missingness with
rates mA = 0.5 to A and mB = 0 to B yields iden-
tical corrupted distributions Ã ∼ Bernoulli(0.25) and
B̃ ∼ Bernoulli(0.25). Thus, the rates are not identifiable.

While missingness rates are not in general identified given
corrupted data from a single domain, one might hope to
nevertheless relate the missingness rates between source
and target domains. For this, we leverage nonzero values.
Whereas observed zeros are a mixture of zeroed-out values
and true zeros, all observed nonzeros were nonzero in the
clean data. Thus, the relative proportions of nonzeros are
informative of relative non-missingness rates 1−m. For a
covariate Xj , where j ∈ {1, ..., d}, denote the true propor-
tion of nonzeros in the underlying data as qj = P (Xj ̸= 0).
Then, the proportion of observed nonzeros in the cor-
rupted data is P (X̃j ̸= 0) = (1 − mj)qj . Vectorized,
P (X̃ ̸= 0) = (1−m)⊙ q.

Remark 5. The ratio between non-missingness rates 1−mt

and 1−ms is given by:

1−mt

1−ms
=

(1−mt)⊙ q

(1−ms)⊙ q
=

P t(X̃ ̸= 0)

P s(X̃ ̸= 0)
≜ 1− rs→t,

(2)

where the divisions are element-wise. Note that the second-
to-last expression is estimable from observed data.

We refer to rs→t = 1 − 1−mt

1−ms = mt−ms

1−ms as the relative
missingness rates between s and t. Interestingly, while
identification of the clean distribution from a corrupted
distribution (Lemma 5.1) may be difficult due to unidenti-
fiability of ms and mt in general (Remark 4), we leverage
identifiability of rs→t to show that adapting from one cor-
rupted distribution to another corrupted distribution does
not require identification of the clean distribution.

Theorem 5.2. For source and target distributions p̃s and p̃t

with unknown missingness rates ms and mt (respectively),
where ms ≺ 1, p̃t is identifiable from p̃s given rs→t:

p̃tx,y =
∑

z:z⇝x

p̃sz,y ·
d∏

j=1

(1−rs→t
j )[xj ]̸=0(rs→t

j )[zj ]̸=0−[xj ]̸=0 .

(3)

That is, while the precise missingness rates ms and mt may
be unidentifiable in general from corrupted data, one can
identify relative missingness rates rs→t (Remark 5) and use
them to directly identify p̃t from p̃s (proof in Appendix
E), rather than explicitly using the clean distribution as an
intermediate step. Note that the form of (3) matches that of
(1), with missingness rates set to m = rs→t.

6 ESTIMATION RESULTS

We discuss estimation of optimal target predictors from la-
beled source data {(X̃s,i, Y s,i)}ns

i=1, drawn from P s(X̃, Y )

and unlabeled target data {X̃t,i}nt
i=1, drawn from P t(X̃).

Non-parametric adjustment procedure for nonnegative
relative missingness The parallels between equations (3)
and (1) suggest an intuitive non-parametric procedure when
ms ⪯ mt, so that rs→t ⪰ 0 (Algorithm 1). To obtain data
distributed identically to X̃t, one can sample masks ξs→t

with missingness rates rs→t and apply them to X̃s. Let us
define a missingness filter applied to each datapoint x ∈ Rd

as νs→t(x) = x⊙ξs→t, where ξs→t ∼ Bernoulli(1−rs→t).
When a missingness filter is applied to a dataset, ξs→t is
independently drawn for every data point. A proof showing
that labeled data {(νs→t(X̃

s,i), Y s,i)}ns
i=1 are drawn i.i.d.

to P t(X̃, Y ) is in Appendix G. For any desired model class,
we can now train a predictor on this labeled data. When
ms ⪯ mt, we call this adjustment a proper adjustment as it
yields a predictor trained on data i.i.d. to labeled target data.
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When ms ⪯̸ mt, i.e. rs→t ⪰̸ 0, it is less obvious what
the proper non-parametric adjustment procedure implied by
Theorem 5.2 might be. As a stopgap measure, we experi-
ment with using a missingness filter of rate max{rs→t, 0}
(Algorithm 1), but call this an improper adjustment as it
does not create data i.i.d to the target distribution.

Algorithm 1 Non-parametric adjustment procedure
(proper adjustment when ms ⪯ mt)

1: Compute q̂tj =
count(x̃t

j ̸=0)
nt

, q̂sj =
count(x̃s

j ̸=0)
ns

, and

r̂s→t = 1− q̂t

q̂s .
2: Compute r̃s→t = max{r̂s→t, 0} (element-wise max).

Note that if r̂s→t ⪰ 0, then r̂s→t = r̃s→t.
3: Apply a missingness filter with rate r̃s→t to source data

to get {(ν̃s→t(X̃
s,i), Y s,i)}ns

i=1.
4: Fit a predictor on data {(ν̃s→t(X̃

s,i), Y s,i)}ns
i=1.

Step 1 of Algorithm 1 estimates the relative missingness
rs→t from data. Using Hoeffding’s inequality, we show that
with high probability, the estimated r̂s→t is close to rs→t

(proof in Appendix F).
Theorem 6.1. With probability at least 1− δ,

∣∣r̂s→t − rs→t
∣∣ ≤ 1

q̂s

(√
log(4/δ)

2nt
+ (1− rs→t)

√
log(4/δ)

2ns

)
.

A proper non-parametric adjustment requires rs→t ⪰ 0.
Next, we derive a closed-form expression for the optimal
linear target predictor for any given relative missingness.

Closed-Form Solution for Optimal Linear Predictor
Define the optimal predictor as the one that minimizes mean
squared error. Given observations of source covariates X̃s

and their corresponding labels Y s, as well unlabeled tar-
get covariates X̃t, we seek the optimal linear predictor
f t
∗(x

t) = βt
∗x

t for the target domain. Indeed, βt
∗ can be

expressed in terms of quantities estimable from data (proof
in Appendix H.1).
Proposition 2. The optimal linear target predictor is given
by:

βt
∗ = E[X̃t⊤X̃t]−1

(
rs→t ⊙ E[X̃s⊤Y s]

)
. (4)

Thus, without knowing the levels of missingness, as long as
ms ≺ 1, the optimal linear predictor for the target domain is
nevertheless estimable, using target unlabeled data to derive
the covariance E[X̃t⊤X̃t]. As we show in Appendix H, it
is also possible to compute the entries of E[X̃t⊤X̃t] using
only source data and relative missingness.
Proposition 3. For i ̸= j, where i ∈ {1, 2, .., d}, j ∈
{1, 2, .., d}, we have

E[X̃t⊤X̃t]ij = (1− rs→t
i )(1− rs→t

j )E[X̃s⊤X̃s]ij (5)

E[X̃t⊤X̃t]ii = (1− rs→t
i )E[X̃s⊤X̃s]ii. (6)

Although E[X̃t⊤X̃t] could be estimated from either source
or target covariates, in practice with finite samples it might
be beneficial to utilize both. For example, to adjust for sam-
ple size of the source and target datasets, one could take
a weighted average of the estimates of E[X̃t⊤X̃t], where
the weights of the source-derived and target-derived esti-
mates are αs =

ns

ns+nt
and αt =

nt

ns+nt
, respectively. This

attempts to adjust for the variance of estimation error due
to the different sample sizes, however it does not account
for estimation error in the relative missingness rate. We
leave further exploration of these weightings to future work.
Algorithm 2 describes the estimation procedure for linear
models adjusted for the target domain.

Algorithm 2 Adjusted linear model learning procedure

1: Compute q̂tj =
count(x̃t

j ̸=0)
nt

, q̂sj =
count(x̃s

j ̸=0)
ns

, and

r̂s→t = 1− q̂t

q̂s for all j ∈ {1, 2, .., d}.

2: Estimate target-based M̂ t = Ê[X̃t⊤X̃t] from unla-
beled target samples.

3: Estimate source-based M̂s = Ê[X̃t⊤X̃t] by computing
for all i ̸= j, where i ∈ {1, 2, .., d}, j ∈ {1, 2, .., d}:

M̂s
ij = (1− r̂s→t

i )(1− r̂s→t
j )Ê[X̃s⊤X̃s]ij

M̂s
ii = (1− r̂s→t

i )Ê[X̃s⊤X̃s]ii

4: Construct a combined weighted estimate of Ê[X̃t⊤X̃t]:
M̂ = αsM̂

s + αtM̂
t

5: Estimate Ê[X̃s⊤Y s] from source samples, and compute

β̂t = M̂−1
(
r̂s→t ⊙ Ê[X̃s⊤Y s]

)
.

7 EXPERIMENTS

We apply our missingness shift procedures (Algorithms 1
and 2) to synthetic, semi-synthetic, and real data settings.
We compare the performance of four variations of predictors:
(1) the oracle predictor (Oracle), trained with target labeled
data and tested on a held-out target test set; (2) the source
predictor (Source), trained on source labeled data without
any adjustments; (3) the closed-form adjustment (Closed-
form Adj.) for linear predictors, given by Algorithm 2; and
(4) the non-parametric adjustment (Non-param. Adj.), given
by Algorithm 1. We also do MissForest imputation of both
source and target data, treating all zeros as missing values,
and train a source predictor to evaluate on target (Imputed).

In synthetic and semi-synthetic experiments, the data is split
4:1:4:1 to create source training, source test, target training,
and target test sets. Different levels of missingness are
applied completely at random to source and target datasets.
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(b) Target domain error of linear models as the L2-norm between ms and mt varies.
Best-fit line with 95% confidence intervals from bootstrapping.

Figure 2: MSE/Var(Y ) of linear models on (a) synthetic and (b) semisynthetic data across varying ms and mt.

Synthetic data experiments We draw 10,000 samples
from two simple data-generating processes:

Scenario 1: “Redundant
Features”

uy ∼ N (0, 1)

Z ∼ Bernoulli(0.5)
X1 = Z

X2 = Z

Y = Z + uy

Scenario 2: “Confounded
Features”

ux2 ∼ N (0, 1)

uy ∼ N (0, 1)

X1 ∼ Bernoulli(0.5)
X2 = expit(2X1 + ux2)

Y = X1 −X2 + uy

In both, we apply missingness with rates ms = [1 − ϵ, ϵ]
and mt = [ϵ, 1− ϵ] for varying ϵ between 0.05 and 0.95 in
increments of 0.05, with 20 runs for each ϵ, and evaluate the
performance of linear predictors (Figure 2a). At ϵ = 0.5,
the source and target domains are identically distributed, so
Oracle, Source, Closed-form Adj., and Non-param. Adj. all
attain the same mean squared error scaled by variance of
the label (MSE/Var(Y)). As ϵ approaches 0 or 1, however,
the error in the Source predictor grows rapidly whereas
the Oracle and Closed-form Adj. errors decrease. Since
ms ⪯̸ mt, as expected, Non-param. Adj. cannot fully match
the target distribution, and has intermediate performance.

For ϵ = 0.1, we compare linear regression, XGBoost, and
MLP (Table 1). In both Scenario 1 and 2, the linear closed-
form adjustment dramatically outperforms the source linear
predictor. However, in Scenario 1, source XGBoost and
MLP almost match the performance of their respective or-
acles, and source XGBoost outperforms the linear oracle.
On the other hand, in Scenario 2, the linear closed-form
adjustment outperforms source XGBoost and MLP.

Semi-synthetic data experiments Using the adult (n =
48842), bank (n = 48188), and thyroid binding protein
(n = 2800) UCI datasets (Dua and Graff, 2017), which
contain a mixture of categorical and numerical variables,
we construct semi-synthetic datasets by borrowing the co-
variates, but replacing the labels with synthetically gener-
ated labels that are linear functions of the clean covariates.
That is, we train using new labels ynew = βX , for ran-
domly sampled βj ∼ Uniform(0, 10),∀j ∈ {1, 2, ..., d},
and original covariates X . Source and target missingness
rates are sampled under two regimes: (1) To test the proper
non-parametric adjustment, where ms ⪯ mt, we sample
ms

j ∼ Uniform(0, 0.5) and mt
j ∼ ms

j + (1−ms
j)ϵ, where

ϵ ∼ Uniform(0, 0.5). (2) To simulate a more general form
of missingness shift, we sample ms

j ,m
t
j ∼ Uniform(0, 0.9),

abbreviated as ms ? mt. For additional experiment and data
preprocessing details, see Appendix I.

Overall, where adjusted models are applicable/proper, they
perform at least as well as (and often better than) source
unadjusted models when compared within each model class
(Table 1). Among linear models, the closed-form and non-
parametric adjustments consistently outperform the source
predictors. In nonlinear models, only the non-parametric
adjustment applies, and this adjustment is only proper if
ms ⪯ mt. Among nonlinear models, if ms ⪯ mt, either
Non-param. and Source tie, or Non-param. performs best.
When ms ? mt, Non-param. (improper adjustment) often
has the second-best or best performance (especially when
no other adjustments apply). Ignoring model class, the
best-performing model for each semi-synthetic dataset is an
adjusted model. Plotting the line of best fit for MSE/Var(Y)
of the linear models versus the L2 distance between ms
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Table 1: Target domain MSE/Var(Y ), averaged across various missingness levels on synthetic and semi-synthetic data.
Confidence intervals are provided in Appendix I. The first two columns are synthetic datasets (Redundant Features and
Confounded Features), and the last three columns are semi-synthetic UCI datasets.

Rednd. Confnd. Adult Bank Thyroid

ms ? mt ms ? mt ms ⪯ mt ms ? mt ms ⪯ mt ms ? mt ms ⪯ mt ms ? mt

Linear Regression Models

Oracle 0.178 0.206 0.420 0.362 0.338 0.433 0.298 0.251
Source 1.259 1.103 0.437 0.380 0.371 0.480 0.350 0.320
Imputed 1.002 0.918 0.490 0.483 0.501 0.592 0.306 0.358
Closed-form 0.186 0.209 0.422 0.363 0.339 0.442 0.316 0.291
Non-param. 0.473 0.492 0.420 0.373 0.338 0.459 0.293 0.291

XGBoost Models

Oracle 0.166 0.200 0.398 0.354 0.287 0.453 0.316 0.274
Source 0.166 0.475 0.399 0.379 0.305 0.500 0.310 0.352
Imputed 1.002 1.157 0.512 0.521 0.492 0.708 0.355 0.441
Non-param. 0.425 0.473 0.399 0.392 0.287 0.503 0.310 0.381

MLP Models

Oracle 0.166 0.201 0.389 0.343 0.295 0.458 0.279 0.230
Source 0.184 0.321 0.399 0.357 0.322 0.499 0.320 0.303
Imputed 1.003 0.924 0.480 0.468 0.484 0.668 0.304 0.345
Non-param. 0.436 0.470 0.389 0.355 0.294 0.487 0.278 0.272

Table 2: Target domain performance of linear models on eICU 48-hour mortality prediction, where source s and target t
can be Hospital 1 (H1) or Hospital 2 (H2). Here, underreporting occurs naturally in the data. Since all features are binary,
MissForest imputation of all zeros behaves poorly, leading to baseline performance. AUPRC refers to average precision.

Model Class s t MSE AUROC AUPRC

Oracle H1 H1 0.103 (0.088 – 0.117) 0.713 (0.652 – 0.775) 0.236 (0.156 – 0.317)
Source H2 H1 0.143 (0.135 – 0.151) 0.593 (0.563 – 0.623) 0.146 (0.122 – 0.170)
Imputed H2 H1 0.089 (0.081 – 0.097) 0.500 (0.500 – 0.500) 0.097 (0.088 – 0.106))
Closed-form Adj. H2 H1 0.439 (0.223 – 0.655) 0.540 (0.509 – 0.571) 0.123 (0.103 – 0.143)
Non-param. Adj. H2 H1 0.142 (0.133 – 0.150) 0.555 (0.537 – 0.573) 0.126 (0.108 – 0.144)

Oracle H2 H2 0.121 (0.100 – 0.142) 0.601 (0.528 – 0.675) 0.167 (0.103 – 0.230)
Source H1 H2 0.122 (0.113 – 0.131) 0.576 (0.545 – 0.608) 0.144 (0.120 – 0.169)
Imputed H1 H2 0.090 (0.082 – 0.098) 0.500 (0.500 – 0.500) 0.099 (0.089 – 0.109)
Closed-form Adj. H1 H2 0.373 (0.327 – 0.420) 0.556 (0.523 – 0.588) 0.122 (0.104 – 0.141)
Non-param. Adj. H1 H2 0.196 (0.182 – 0.210) 0.511 (0.503 – 0.520) 0.109 (0.095 – 0.123)

and mt, we note that the Source predictor tends to have the
stronger positive slope than the Oracle, Closed-form Adj.,
or Non-parametric Adj. models (Figure 2b).

Real data experiments To explore the applicability of our
methods to naturally-occurring missingness shifts, we use
the FIDDLE data pre-processing pipeline (Tang et al., 2020)
on the eICU Collaborative Research Database (Pollard et al.,
2018), which contains data from critical care units across
several hospitals. FIDDLE extracts binary feature vectors
capturing several patient characteristics, including demo-
graphics, physiological measurements, labs, medications,

etc. We extract the binary 48-hour mortality outcome for pa-
tients in two of the hospitals with the most data (n1 = 3006,
n2 = 2663), and verify that the prevalences of the covari-
ates are different across these two hospitals. Additional data
and experiment details are provided in Appendix I.

We train linear models to predict mortality, and evaluate
MSE, AUROC, and AUPRC. Since the preprocessed data
only contains binary features, MissForest imputation of all
zeros results in a dataset consisting entirely of ones, and
the linear model learns to simply predict the label mean
and only achieves baseline performance. Estimated relative
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missingness indicates that ms ⪯̸ mt (Appendix I), so the
non-parametric estimation procedure is not expected to pro-
duce labeled data i.i.d. to the target distribution. The source
predictor achieves the highest AUROC and AUPRC.

Note, however, that beyond missingness levels, there are
also several other aspects of the data distribution that likely
differ between these two hospitals. Different hospitals likely
have different underlying P (X,Y ), and in practice, missing-
ness could be dependent on other covariates (e.g. a doctor
may choose not to perform a test based on patient state).
Thus, fundamental assumptions of our adaptation methods
are likely violated in this dataset.

8 DISCUSSION

This work introduces the domain adaptation under missing-
ness shift (DAMS) problem, and explores DAMS under the
underreporting completely at random (UCAR) assumption.
Our synthetic and semi-synthetic experiments demonstrate
that when assumptions hold, the proposed methods (when
applicable/proper), tend to outperform or perform at least
as well as unadjusted source predictors in the same model
class (Table 1). In linear models, our proposed adjustments
(linear closed-form and non-param. adj.) consistently out-
perform the source predictors, and sometimes, the benefits
of adaptation can even outweigh the bias incurred by re-
stricting to linear models. For example, in the Confounded
Features, Bank ms ? mt, and Thyroid datasets, linear ad-
justed models outperform all Source models, regardless of
model class. Note that even if the underlying relationship
between clean unobserved covariates X and label Y is lin-
ear, after X is corrupted by missingness to create observed
corrupted covariates X̃ , the new relationship between X̃
and Y is often nonlinear (a phenomenon which has also
been noted by Le Morvan et al. (2020b)). Correspondingly,
the best MLP and XGBoost models tend to outperform the
best linear models (Table 1).

The best-performing model(s) in each of the synthetic and
semi-synthetic datasets, except for the synthetic Redundant
Features dataset, use a proposed adjustment (Table 1). Al-
though the adjustments perform best in the synthetic Redun-
dant Features dataset when restricted to the linear model
class, the best-performing model in this dataset overall is
a source XGBoost model, which matches the performance
of the oracle. In addition to the flexibility of the XGBoost
model, which improves the oracle XGBoost over the oracle
linear model, a likely reason for improvement of Source
XGBoost over Non-param. Adj. can be found in the par-
ticular setup of this scenario. Here, X1 = X2 = Z, and
Y = Z + uy, where uy ∼ N (0, 1), and so given knowl-
edge of either X1 or X2, prediction of Y is straightfor-
ward. The only applicable adjustment, Non-param. Adj. (im-
proper, since ms ⪯̸ mt), would zero out much of the
data to bring the missingness rate in X1 from 0.9 to 0.1,

thus making prediction harder. There are also multiple
settings in which Source XGBoost performs similarly to
Non-param. Adj. XGBoost (Confounded Features, Adult
ms ⪯ mt, Bank ms ? mt, and Thyroid ms ? mt). On the
other hand, for the MLP model class, the non-parametric
adjustment outperforms all source predictors in the semi-
synthetic datasets. Thus, depending on the model class,
non-parametric adjustment may not always have a consis-
tent effect on performance.

The generally worse performance of imputation in synthetic
and semi-synthetic experiments (Table 1) helps highlight
the difficulty of not having missing data indicators. Learn-
ing without missing data indicators is fundamentally more
difficult than learning with them, and methods which might
make sense when missing data indicators are present (e.g.
imputation) can be ill-defined when the indicators are absent.
In the eICU dataset, for example, all covariates were binary,
and so imputing all 0’s only left 1’s to train on. As a result,
MissForest learned to predict 1 for everything, rendering
these binary features useless. Nevertheless, we included a
comparison with imputation of all zeros in the other datasets,
as it could still be useful for continuous variables.

The experiments with real eICU data also help demonstrate
that it is important to clarify assumptions on whether one
is truly in a DAMS with UCAR setting, as failure to do so
could result in predictors that perform worse than if no adap-
tation had been done in the first place (Table 2). Ideally, in
real-world data, DAMS with UCAR might be useful around
a sudden change in clerical practices where the underly-
ing P (X,Y ) is similar before and after the change, and
underreporting is completely at random (e.g. determined
based a blanket policy independent of covariates). In the
absence of such data, however, we instead included syn-
thetic and semisynthetic data where the missingness shift
with UCAR assumptions hold, and also included a real crit-
ical care (eICU) dataset containing multiple hospitals for
thoroughness. While our proposed techniques for DAMS
with UCAR do not work particularly well on real eICU
data, we also note that we have no particular reason to be-
lieve that missingness shift is especially prominent between
the hospitals compared to factors such as selection bias
(very different cohort), label shift, or changes in prevalences
of disease, among others. Finding appropriate real world
empirical testbeds and analyzing sensitivity to assumption
violations are important directions for future work.

Beyond the UCAR setting, there are several open avenues
for further research in domain adaptation under missingness
shift. Allowing underreporting to depend on other covariates
would significantly broaden the set of applicable real-world
cases, as doctors often take certain measurements as needed
in their diagnostic process. Moreover, future works could ex-
plore other variations of graphical model structures (Figure
1) for expressing models of missingness shift.
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A MOTIVATING EXAMPLES

Example 1 (Redundant Features)

Let ms = [1− ϵ, ϵ] and mt = [ϵ, 1− ϵ]. Consider the following data generating process:

Z = uZ

X1 = Z

X2 = Z

Y = Z + uY

uZ ∼ N (0, σ2
Z)

uY ∼ N (0, σ2
Y )

where Z is a latent variable, X1 and X2 are observed covariates, and Y is the label we wish to predict.

We start by summarizing the findings, and then provide the full algebraic justification. The optimal (risk-minimizing) linear
predictor on the source data is given by:

βs
∗ =

[
ϵ

1− ϵ+ ϵ2
,

1− ϵ

1− ϵ+ ϵ2

]
And for the target data:

βt
∗ =

[
1− ϵ

1− ϵ+ ϵ2
,

ϵ

1− ϵ+ ϵ2

]
The excess risk of the source predictor on the target data is given by:

rt(βs
∗)− rt(βt

∗) = (βs
∗ − βt

∗)
⊤E[X̃t⊤X̃t](βs

∗ − βt
∗)

= σ2
Z · (1− 2ϵ)2(1− 2ϵ+ 2ϵ2)

(1− ϵ+ ϵ2)2

As ϵ → 0, we have:

βs
∗ → [0, 1]

βt
∗ → [1, 0]

rt(βs
∗)− rt(βt

∗) → σ2
Z

rt([0, 0])− rt(βt
∗) → σ2

Z

that is, the source classifier performs no better than simply predicting 0 (the mean of Y ). Thus, rt(βs
∗) → σ2

Z+σ2
Y = Var(Y )

Proof. In the example, we have:

E[XTX] =

[
σ2
Z σ2

Z

σ2
Z σ2

Z

]
E[XTY ] =

[
σ2
Z

σ2
Z

]
We apply the expressions for E[X̃T X̃] and E[X̃⊤Y ] derived in Appendix H:

E[X̃⊤X̃] = (1−m)(1−m)⊤ ⊙ E
[
X⊤X

]
+ diag

(
m(1−m⊤)

)
diag

(
E
[
X⊤X

])
=

[
1−m1 (1−m1)(1−m2)

(1−m1)(1−m2) 1−m2

]
⊙ E

[
X⊤X

]
E[X̃⊤Y ] = (1−m)⊙ E[X⊤Y ]

to get:

E[X̃t⊤X̃t] =

[
1− ϵ ϵ(1− ϵ)

ϵ(1− ϵ) ϵ

]
· σ2

Z
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E[X̃t⊤X̃t]−1 =
1

σ2
Zϵ(1− ϵ)(1− ϵ+ ϵ2)

[
ϵ −ϵ(1− ϵ)

−ϵ(1− ϵ) 1− ϵ

]
E[X̃t⊤Y ] = σ2

Z

[
1− ϵ
ϵ

]
βt
∗ = E[X̃t⊤X̃t]−1E[X̃t⊤Y ]

=
1

ϵ(1− ϵ)(1− ϵ+ ϵ2)

[
ϵ(1− ϵ) +−ϵ2(1− ϵ)
−ϵ(1− ϵ)2 + ϵ(1− ϵ)

]
=

1

ϵ(1− ϵ)(1− ϵ+ ϵ2)

[
ϵ(1− ϵ)(1− ϵ)

ϵ(1− ϵ)(−(1− ϵ) + 1)

]
=

1

1− ϵ+ ϵ2

[
1− ϵ
ϵ

]
.

Similarly,

βs
∗ =

1

1− ϵ+ ϵ2

[
ϵ

1− ϵ

]
,

so we can compute

βs
∗ − βt

∗ =
1

1− ϵ+ ϵ2

[
2ϵ− 1
−2ϵ+ 1

]
=

1− 2ϵ

1− ϵ+ ϵ2

[
−1
1

]

Now, excess risk is computed as follows:

rt(βs
∗)− rt(βt

∗) = (βs
∗ − βt

∗)
⊤E[X̃t⊤X̃t](βs

∗ − βt
∗)

=
(1− 2ϵ)2

(1− ϵ+ ϵ2)2

[
−1
1

]⊤ [
1− ϵ ϵ(1− ϵ)

ϵ(1− ϵ) ϵ

]
· σ2

Z ·
[
−1
1

]
=

σ2
Z(1− 2ϵ)2(1− 2ϵ+ 2ϵ2)

(1− ϵ+ ϵ2)2

As ϵ → 0, we can see that rt(βs
∗)− rt(βt

∗) → σ2
Z .

Additionally, we can compute the excess risk of the constant zero classifier:

rt([0, 0])− rt(βt
∗) = βt⊤

∗ E[X̃t⊤X̃t]βt
∗

=
1

(1− ϵ+ ϵ2)2

[
1− ϵ
ϵ

]⊤ [
1− ϵ ϵ(1− ϵ)

ϵ(1− ϵ) ϵ

]
· σ2

Z ·
[
1− ϵ
ϵ

]
=

σ2
Z

(1− ϵ+ ϵ2)2

[
(1− ϵ)2 + ϵ2(1− ϵ)

ϵ(1− ϵ)2 + ϵ2

]⊤ [
1− ϵ
ϵ

]
=

σ2
Z(1− ϵ+ ϵ2)

(1− ϵ+ ϵ2)2

[
(1− ϵ)

ϵ

]⊤ [
1− ϵ
ϵ

]
=

σ2
Z(1− ϵ+ ϵ2)

(1− ϵ+ ϵ2)2
[
(1− ϵ)2 + ϵ2

]
=

σ2
Z(1− 2ϵ+ 2ϵ2)

1− ϵ+ ϵ2

As ϵ → 0, we can see that rt([0, 0])− rt(βt
∗) → σ2

Z .
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Example 2 (Confounded Features)

Now, suppose that ms = [0, 0] and mt = [1, 0]. For some constants a, b, c consider the following data generating process:

X1 = ν1

X2 = aX1 + ν2

Y = bX1 + cX2 + νY

ν1 ∼ N (0, 1)

ν2 ∼ N (0, 1)

νY ∼ N (0, 1).

We will show that the optimal source and target predictors are βs
∗ = [b, c] and βt

∗ = [0, ab
a2+1 + c]. By setting a = − b

c , we
will show that for any τ > 1, there exists values of a, b, c such that rt(βs

∗) > τVar(Y ).

Proof. First, we compute βs
∗ (where ms = [0, 0]):

E[X̃s⊤X̃s] = E
[
X⊤X

]
=

[
1 a
a a2 + 1

]
E[X̃s⊤X̃s]−1 =

[
a2 + 1 −a
−a 1

]
E[X̃s⊤Y ] = E[X⊤Y ]

=

[
b+ ac

ab+ a2c+ c

]
βs
∗ = E[X̃s⊤X̃s]−1E[X̃s⊤Y ]

=

[
a2 + 1 −a
−a 1

]
·
[

b+ ac
ab+ a2c+ c

]
=

[
b
c

]
.

Thus, βs
∗ = [b, c].

Now, let us compute βt
∗ (where mt = [1, 0]). Since X1 is entirely missing and X2 is completely observed, we only regress

on X2:

E[X̃t⊤
2 X̃t

2] = E[X⊤
2 X2]

= (a2 + 1)

E[X̃t⊤
2 X̃t

2]
−1 =

1

a2 + 1

E[X̃t⊤
2 Y ] = ab+ a2c+ c

E[X̃t⊤
2 X̃t

2]
−1E[X̃t⊤

2 Y ] =
ab+ a2c+ c

a2 + 1

=
ab

a2 + 1
+ c.

Thus, βt
∗ =

[
0, ab

a2+1 + c
]
.

Now, let us compute Var(Y ). Note that E[Y ] = 0, so Var(Y ) = E[Y 2]. Also, note that ν1, ν2, νY are independent:

Var(Y ) = Var(bX1 + cX2 + νY )

= E[(bν1 + c(aν1 + ν2) + νY )
2]

= (b+ ac)2 + c2 + 1

= b2 + 2abc+ a2c2 + c2 + 1.

Thus, Var(Y ) = b2 + 2abc+ a2c2 + c2 + 1.
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Now, let us compute rt(βs
∗). Let [βs

∗]2 denote the second dimension of βs
∗. We have:

rt(βs
∗) = E[(Y − X̃t

2[β
s
∗]2)

2]

= E[Y 2]− 2E[X̃t
2[β

s
∗]2Y ] + E[(X̃t

2[β
s
∗]2)

2]

= Var[Y 2]− 2E[X2[β
s
∗]2Y ] + E[(X2[β

s
∗]2)

2]

= Var[Y 2]− 2E[(aν1 + ν2)c(bν1 + c(aν1 + ν2) + νY )] + E[((aν1 + ν2)c)
2]

= b2 + 2abc+ a2c2 + c2 + 1− 2[ac(b+ ac) + c2] + [a2c2 + c2]

= b2 + 1.

Thus, we have rt(βs
∗)

Var(Y ) =
b2+1

b2+2abc+a2c2+c2+1 . If we set a = − b
c , then we have:

rt(βs
∗)

Var(Y )
=

b2 + 1

b2 + 2abc+ a2c2 + c2 + 1

=
b2 + 1

b2 − 2b2 + b2 + c2 + 1

=
b2 + 1

c2 + 1
.

Now suppose that for some τ > 1, we would like rt(βs
∗) > τVar(Y ). Then, it is easy to see that we can simply choose b

large enough, c small enough, and a = − b
c , such that b2+1

c2+1 > τ .
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B DAMS WITH INDICATORS AS AN INSTANCE OF COVARIATE SHIFT

This section contains a proof of Proposition 1: Assume we observe ξ. Let us consider an augmented set of covariates
x̃′ = (x̃, ξ). When ξ is drawn independently of other covariates or depending only on other completely observed covariates,
we will show that missingness shift satisfies the covariate shift assumption, i.e, P s(Y |X̃ ′ = x̃′) = P t(Y |X̃ ′ = x̃′).

First, let us formalize what it means for ξ to be drawn independently of other covariates or depending only on other
completely observed covariates:

(a) Independent of other covariates When ξ is drawn independently of other covariates, as described in the DAMS with
UCAR setup (Section 3), we have that ξ ∼ Bernoulli(1−m) for some constant vector of missingness rates m ∈ [0, 1]d.

(b) Depending only on other completely observed covariates Now, suppose that some subset of covariates Xc ⊆ X is
completely observed (i.e. no missingness), and the missingness of the other covariates Xm = X \Xc depends on Xc.
That is, ξ ∼ Bernoulli(f(Xc)) for some function f : R|Xc| → [0, 1]|Xm|.

Since (b) is more general than (a), we adopt notation from (b) throughout our proof, and then argue why it also holds for (a).

Proof. Consider some augmented set of covariates taking values x̃′ = (x̃m, ξ, xc). To prove that the covariate shift
assumption holds, let us start by considering the left-hand side of the equation. Applying Bayes’ Rule, we have:

P s(Y |X̃ ′ = x̃′) = P s(Y |X̃s
m = x̃m, ξs = ξ,Xc = xc) =

P s(Y, X̃s
m = x̃m, ξs = ξ,Xc = xc)∑

y P
s(Y = y, X̃s

m = x̃m, ξs = ξ,Xc = xc)

We can rewrite the numerator as follows:

P s(Y, X̃s
m = x̃m, ξs = ξ,Xc = xc) =

∑
xm:xm⊙ξ=x̃m

P (Y, X̃s
m = x̃m, ξs = ξ,Xm = xm, Xc = xc)

=
∑

xm:xm⊙ξ=x̃m

P (Y, ξs = ξ,Xm = xm, Xc = xc)

=
∑

xm:xm⊙ξ=x̃m

P (ξs = ξ|Y,Xm = xm, Xc = xc) · P (Y,Xm = xm, Xc = xc)

=
∑

xm:xm⊙ξ=x̃m

P (ξs = ξ|Xc = xc) · P (Y,Xm = xm, Xc = xc)

= P (ξs = ξ|Xc = xc)
∑

xm:xm⊙ξ=x̃m

P (Y,Xm = xm, Xc = xc),

where the first line follows from marginalizing over all possible values of Xm, the second line comes from the fact that x̃m

is determined given xm and ξ, the third line comes from Bayes’ Rule, the fourth line comes the fact that ξ only depends on
Xc, and the last line comes from pulling the first term out of the summation.

Plugging back into the expression for P s(Y |X̃ ′ = x̃′), we have:

P s(Y |X̃ ′ = x̃′) =
P s(Y, X̃s

m = x̃m, ξs = ξ,Xc = xc)∑
y P

s(Y = y, X̃s
m = x̃m, ξs = ξ,Xc = xc)

=
P (ξs = ξ|Xc = xc)

∑
xm:xm⊙ξ=x̃m

P (Y,Xm = xm, Xc = xc)∑
y P (ξs = ξ|Xc = xc)

∑
xm:xm⊙ξ=x̃m

P (Y = y,Xm = xm, Xc = xc)

=

∑
xm:xm⊙ξ=x̃m

P (Y,Xm = xm, Xc = xc)∑
xm:xm⊙ξ=x̃m

P (Y = y,Xm = xm, Xc = xc)
,

which does not contain source-specific quantities (everything is in terms of the underlying distribution). By the same logic,

P t(Y |X̃ ′ = x̃′) =

∑
xm:xm⊙ξ=x̃m

P (Y,Xm = xm, Xc = xc)∑
xm:xm⊙ξ=x̃m

P (Y = y,Xm = xm, Xc = xc)
.
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Thus, P s(Y |X̃ ′ = x̃′) = P t(Y |X̃ ′ = x̃′) as desired. When ξ is instead drawn independently of other covariates, as in (a)
above, we note that all of the steps of the proof follow through simply by removing Xc. Additionally, while all of the above
expressions apply to discrete X , extension to continuous X is straightforward (e.g. replace summations with integrals, and
constants with sets or intervals).

C CONSTANT MISSINGNESS AS L2 REGULARIZATION

This section contains a proof of Theorem 4.1. This proof is based off of that presented in Wager et al. (2013)’s work showing
dropout to be a form of adaptive regularization. Instead of assuming a single constant dropout rate across all covariates,
however, our proof extends to varying rates of missingness (i.e. different constant dropout rates) for different covariates.

Proof. Assume we know the constant missingness rates m. For mathematical convenience, we preprocess x̃ by multiplying
each dimension by the corresponding 1

1−mj
. For the remainder of this derivation, this preprocessed data is referred to as x̃.

Similar to Wager et al. (2013), we start with an analysis of generalized linear models and then consider the case of
linear regression. Minimizing the expected negative log likelihood lx̃(i),y(i)(β) of a generalized linear model pβ(y|x) =
h(y) exp{yx · β −A(x · β)}, we have:

β̂ = arg min
β∈Rd

n∑
i=1

Eξ[lx̃(i),y(i)(β)]

n∑
i=1

Eξ[lx̃(i),y(i)(β)] =

n∑
i=1

Eξ[− log pβ(y
(i)|x̃(i))]

=

n∑
i=1

Eξ[−(log h(y(i)) + y(i)x̃(i)β −A(x̃(i) · β))]

=

n∑
i=1

− log h(y(i))− y(i)Eξ[x̃
(i)]β + Eξ[A(x̃(i) · β)]

=

n∑
i=1

− log h(y(i))− y(i)
(
x(i) ⊙ 1−m

1−m

)
β + Eξ[A(x̃(i) · β)]

=

n∑
i=1

−(log h(y(i)) + y(i)x(i)β −A(x(i)β))−A(x(i)β) + Eξ[A(x̃(i) · β)]

=

n∑
i=1

lx(i),y(i)(β) + Eξ[A(x̃(i) · β)]−A(x(i)β)

=
n∑

i=1

lx(i),y(i)(β) +R(β)

where R(β) ≜
∑n

i=1 Eξ[A(x̃(i) · β)]−A(x(i)β). How do we interpret R(β)?

First, we do a second order Taylor expansion of A around xβ. Note that linear regression has a second order log partition
function. Thus, for linear regression this expansion is exact:

A(y) ≈ A(xβ) +A′(xβ)(y − xβ) +
1

2
A′′(xβ)(y − xβ)2

A(x̃β) ≈ A(xβ) +A′(xβ)(x̃β − xβ) +
1

2
A′′(xβ)(x̃β − xβ)2

= A(xβ) +A′(xβ)(x̃− x)β +
1

2
A′′(xβ)(x̃β − xβ)2

Now, we can compute the first term of R(β):

Eξ[A(x̃ · β)] ≈ Eξ[A(xβ)] + Eξ[A
′(xβ)(x̃− x)β] + Eξ[

1

2
A′′(xβ)(x̃β − xβ)2]
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= A(xβ) + 0 +
1

2
A′′(xβ)Eξ[(x̃β − xβ)2]

= A(xβ) +
1

2
A′′(xβ)Varξ(x̃β)

where the second step follows because Eξ[x̃] = x. Thus, R(β) is given by:

R(β) =

n∑
i=1

Eξ[A(x̃(i) · β)]−A(x(i)β)

≈
n∑

i=1

A(x(i)β) +
1

2
A′′(x(i)β)Varξ(x̃(i)β)−A(x(i)β)

=

n∑
i=1

1

2
A′′(x(i)β)Varξ(x̃(i)β)

≜ Rq(β).

Note that the first term corresponds to variance of y(i), and the second term corresponds to the variance of the estimated
GLM parameter due to noising, or in the linear case, Var(y(i)). Additionally, note that for linear regression R(β) = Rq(β)
since the approximate equality comes from the Taylor series approximation.

Analyzing Varξ(x̃(i)β),

Varξ(x̃(i)β) =

d∑
j=1

Varξ(x̃
(i)
j βj)

=

d∑
j=1

Varξ

(
x
(i)
j

1−mj
· bj · βj

)

=

d∑
j=1

(
x
(i)
j

1−mj

)2

β2
j (1−mj)(mj)

=

d∑
j=1

mj

1−mj

(
x
(i)
j

)2
β2
j

where bj ∼ Bernoulli(1−mj). Thus, Rq(β) is given by:

Rq(β) =
1

2

n∑
i=1

A′′(x(i)β)

d∑
j=1

mj

1−mj

(
x
(i)
j

)2
β2
j .

Let V (β) ∈ Rn×n be diagonal with entries A′′(x(i)β), and X ∈ Rn×d be the design matrix with rows x(i). For linear
regression, V (β) is given by the identity matrix. Then, we can rewrite Rq(β) as:

Rq(β) =
1

2

(
β ⊙

√
m

1−m

)⊤

diag(X⊤V (β)X)

(
β ⊙

√
m

1−m

)
Rq(β) =

1

2

(
β ⊙ m

1−m

)⊤

diag(I)
(
β ⊙ m

1−m

)
=

1

2

(
diag(I)1/2β ⊙ m

1−m

)⊤(
diag(I)1/2β ⊙ m

1−m

)
=

1

2

(
β∆̃diag

)⊤ (
β∆̃diag

)
where ∆̃diag = diag

(√
m

1−m

)
diag(I)1/2, where diag

(√
m

1−m

)
refers to a diagonal matrix with the vector quantities on the

diagonal, and diag(I)1/2 refers to the square root of the diagonal of the Fisher information matrix. Thus, for linear regression,
applying missingness rates m ∈ [0, 1]d to data scaled by 1

1−m can be viewed as an attempt to apply L2 regularization of β
scaled by ∆̃diag.
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D IDENTIFICATION OF CLEAN DISTRIBUTION FROM CORRUPTED DISTRIBUTION

This section proves Lemma 5.1, which states that the clean distribution p is identified from the corrupted distribution p̃ given
missingness rates m, and m ≺ 1.

Proof. Let Ak denote the set of possible values of x where at most k of the dimensions of x are 0. We would like to show
that ∀k ∈ {0, 1, ..., d}, ∀a ∈ Ak, the clean distribution pa,y is identifiable (and hence px,y is identifiable) for all values of x
and y. We proceed with a proof by induction on k.

• Base case (k = 0):

Consider A0, the set of possible values of x where none of the dimensions of x are 0. For any subset a ⊆ A0, we can
write:

p̃a,y =

d∏
j=1

(1−mj)pa,y

which can be rearranged to recover pa from p̃a and m, which are both known:

pa,y =

d∏
j=1

1

1−mj
p̃a,y.

Thus pa,y is identified for a ⊆ A0.

• Inductive Step: Assume pa,y is identified for a ⊆ Ak. Consider some a′ ⊆ Ak+1. Using equation (1), we have:

p̃a′,y =
∑

b:b⇝a′

pb,y ·
d∏

j=1

(1−mj)
[a′

j ] ̸=0m
[bj ] ̸=0−[a′

j ] ̸=0

j

= pa′,y ·
d∏

j=1

(1−mj)
[a′

j ]̸=0 +
∑

b:b⇝a′,
b ̸=a′

pb,y ·
d∏

j=1

(1−mj)
[a′

j ]̸=0m
[bj ]̸=0−[a′

j ]̸=0

j

Recall from Remark 3 that if b⇝ a′, then the dimensions of b that are 0 must be a subset of the ones that are 0 in a′.
Additionally, any dimensions that are nonzero in both b and a′ must match in value. This implies that if there are the
same number of zeros in b and a′, then b = a′. The remaining b where b⇝ a′ have at least one less zero than a′. Thus,
the set of {b : b⇝ a′, b ̸= a′} ∈ Ak, and by our inductive hypothesis, pb,y are identified when b ∈ Ak. As a result, we
can identify the second term in the equation above (the summation over b’s), and rearranging the equation, we can
identify pa′,y as p̃ and m are known.

Thus, by the principle of mathematical induction, pa is identified for a ∈ Ak, ∀k ∈ {0, 1, ..., d}. Therefore, given m, we
have identified the clean distribution from the corrupted distribution. Additionally, while all of the above expressions apply
to discrete X , extension to continuous X is straightforward (e.g. replace summations with integrals, and constants with sets
or intervals).
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E IDENTIFICATION OF LABELED TARGET DISTRIBUTION FROM THE LABELED
SOURCE DISTRIBUTION

Here we prove Theorem 5.2, which states that:

p̃tx,y =
∑

z:z⇝x

p̃sz,y ·
d∏

j=1

(1− rs→t
j )[xj ]̸=0(rs→t

j )[zj ]̸=0−[xj ] ̸=0

Proof. Applying equation (1), the corrupted source and target distributions can be written as:

p̃sa,y =
∑

b:b⇝a

pb,y ·
d∏

j=1

(1−msj)
[aj ] ̸=0m

[bj ]̸=0−[aj ]̸=0

sj

p̃ta,y =
∑

c:c⇝a

pc,y ·
d∏

j=1

(1−mtj)
[aj ] ̸=0m

[cj ]̸=0−[aj ]̸=0

tj

We apply relative missingness r = rs→t = mt−ms

1−ms
to source distribution p̃s, denoting this new distribution as p̃s→t:

p̃s→t
a,y =

∑
b:b⇝a

p̃sb,y ·
d∏

j=1

(1− rj)
[aj ]̸=0r

[bj ]̸=0−[aj ]̸=0

j

=
∑

b:b⇝a

∑
c:c⇝b

pc,y ·
d∏

j=1

(1−msj)
[bj ] ̸=0m

[cj ]̸=0−[bj ]̸=0

sj ·
d∏

j=1

(1− rj)
[aj ]̸=0r

[bj ] ̸=0−[aj ] ̸=0

j

=
∑
c:c⇝b

pc,y
∑

b:b⇝a

·
d∏

j=1

(1−msj)
[bj ] ̸=0m

[cj ] ̸=0−[bj ] ̸=0

sj ·
d∏

j=1

(1− rj)
[aj ]̸=0r

[bj ]̸=0−[aj ]̸=0

j

=
∑
c:c⇝b

pc,y
∑

b:b⇝a

·
d∏

j=1

(1−msj)
[bj ] ̸=0m

[cj ] ̸=0−[bj ] ̸=0

sj ·
d∏

j=1

(
1−mtj

1−msj

)[aj ]̸=0
(
mtj −msj

1−msj

)[bj ] ̸=0−[aj ] ̸=0

=
∑
c:c⇝b

pc,y
∑

b:b⇝a

d∏
j=1

(1−msj)
1{[cj ]̸=0=[bj ]̸=0=1,[aj ]̸=0=0}+1{[cj ] ̸=0=[bj ] ̸=0=[aj ]̸=0=1}

·m1{[cj ]̸=0=1,[bj ] ̸=0=[aj ] ̸=0=0}
sj

·
(
1−mtj

1−msj

)1{[cj ]̸=0=[bj ]̸=0=[aj ] ̸=0=1}

·
(
mtj −msj

1−msj

)1{[cj ]̸=0=[bj ] ̸=0=1,[aj ]̸=0=0}

=
∑
c:c⇝b

pc,y
∑

b:b⇝a

d∏
j=1

m
1{[cj ] ̸=0=1,[bj ] ̸=0=[aj ] ̸=0=0}
sj

· (1−mtj)
1{[cj ] ̸=0=[bj ]̸=0=[aj ]̸=0=1}

· (mtj −msj)
1{[cj ] ̸=0=[bj ]̸=0=1,[aj ] ̸=0=0}

=
∑

c:c⇝a

pc,y ·

 ∏
j:[cj ] ̸=0=[aj ] ̸=0=1

1−mtj

 ·

 ∏
j:[cj ]̸=0=[aj ]̸=0=0

1


·
∑

b:b⇝a

 ∏
j:[cj ] ̸=0=1,[aj ]̸=0=0

m
1−[bj ]̸=0

sj (mtj −msj)
[bj ]̸=0


=
∑

c:c⇝a

pc,y ·

 ∏
j:[cj ] ̸=0=[aj ] ̸=0=1

1−mtj

 ·

 ∏
j:[cj ]̸=0=[aj ]̸=0=0

1
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·
∑

[b]̸=0∈{0,1}d

 ∏
j:[cj ]̸=0=1,[aj ]̸=0=0

m
1−[bj ]̸=0

sj (mtj −msj)
[bj ]̸=0


=
∑

c:c⇝a

pc,y ·

 ∏
j:[cj ]̸=0=[aj ] ̸=0=1

1−mtj

 ·

 ∏
j:[cj ]̸=0=[aj ]̸=0=0

1

 ·

 ∏
j:[cj ]̸=0=1,[aj ] ̸=0=0

mtj


=
∑

c:c⇝a

pc,y

d∏
j=1

(1−mtj)
[aj ] ̸=0m

[cj ]̸=0−[aj ]̸=0

tj

= p̃ta,y

as desired. The steps are explained in words below:

• Plug in equation for corrupted source distribution.

• Switch summation order and factor out pc,y .

• Plug in for r.

• Note that [cj ] ̸=0 − [bj ]̸=0 = 1 only if [cj ]̸=0 = 1 and [bj ]̸=0 = 0. Use similar reasoning for the remaining, keeping in
mind that [c] ̸=0 ⪰ [b] ̸=0 ⪰ [a] ̸=0. Simplify.

• Let the indicator function for nonzero values [x]̸=0
∆
= 1[x ̸= 0] apply element-wise. Since all elements of the sum have

1{[c]̸=0 ⪰ [b]̸=0 ⪰ [a]̸=0}, it is also true that 1{[c]̸=0 ⪰ [a] ̸=0}.

• If [ai] ̸=0 = [ci] ̸=0 = 1, then [bi ]̸=0 = 1 necessarily.

• Note that if c⇝ b⇝ a and [ci ]̸=0 = 1, [ai] ̸=0 = 0, then ∀i, bi ∈ {0, ci}. We can then perform a change of variables in
the summation, now summing over [b]̸=0 ∈ {0, 1}d instead.

• We use the following identity for arbitrary d-dimensional vectors a and b:∑
u∈{0,1}d

∏
j

a
uj

j b
1−uj

j =
∏
j

(aj + bj)

To gain intuition for why this is the case, let’s start with d = 2:

LHS =
∑

u∈{0,1}d

∏
j

a
uj

j b
1−uj

j

=
∑

u∈{0,1}2

au1
1 b1−u1

1 au2
2 b

(1−u2)
2

=
∑

u∈[(1,1),(1,0),(0,1),(0,0)]

au1
1 b1−u1

1 au2
2 b

(1−u2)
2

= a1a2 + a1b2 + b1a2 + b1b2

RHS =
∏
j

(aj + bj)

= (a1 + b1)(a2 + b2) = a1a2 + a1b2 + b1a2 + b1b2

Notice that the right-hand side is a product of sums (aj + bj), of which there are d terms. When expanding this product
of sums into a sum of products, each term in the sum of products will include either aj or bj for all j ∈ 1, 2, ..., d.
Summing over all possible choices of either aj or bj for all j is then equivalent to summing over all possible values of
a binary d-dimensional vector u. Thus, we get the left-hand side of the identity.

• The remaining steps are straightforward simplifications to get a form matching equation (3).

• Note that while all of the above expressions apply to discrete X , extension to continuous X is straightforward (e.g.
replace summations with integrals, and constants with sets or intervals).
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F ERROR BOUND FOR ESTIMATING NON-MISSING PROPORTIONS

This is a proof of Theorem 6.1. To estimate the non-missingness proportion q = P (X̃ = 1) within ϵ of the true non-
missingness proportion with probability at least 1− δ, we use Hoeffding’s bound to show:

P (|q̂ − q| ≥ ϵ) ≤ 2 exp(−2ne2) = δ

=⇒ −2nϵ2 = log(δ/2)

=⇒ n =
log(2/δ)

2ϵ2

=⇒ |q̂ − q| =
√

log(2/δ)

2n
.

Now, we show that with high probability, the estimate for 1− rs→t = qt
qs

is close to the true value. This part of the derivation
is similar to that used in Garg et al. (2021). Using triangle inequality,∣∣∣∣ q̂tq̂s − qt

qs

∣∣∣∣ = ∣∣∣∣qsq̂t − q̂sqt
q̂sqs

∣∣∣∣
=

1

q̂sqs
|qsq̂t − qsqt + qsqt − q̂sqt|

≤ 1

q̂sqs
|qsq̂t − qsqt|+

1

q̂sqs
|qsqt − q̂sqt|

≤ 1

q̂s
|q̂t − qt|+

qt
q̂sqs

|qs − q̂s| .

On the right hand side, we use the union bound and plug in δ/2 for δ in Hoeffding’s bound. Plugging in, we then have that
with probability at least 1− δ,

∣∣∣∣ q̂tq̂s − qt
qs

∣∣∣∣ ≤ 1

q̂s

√ log(4/δ)

2nt
+

qt
qs

√
log(4/δ)

2ns


=⇒

∣∣r̂s→t − rs→t
∣∣ ≤ 1

P̂ s(x̃ = 1)

√ log(4/δ)

2nt
+ (1− rs→t)

√
log(4/δ)

2ns

 .
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G JUSTIFICATION FOR THE NON-PARAMETRIC PROCEDURE WITH
NON-NEGATIVE RELATIVE MISSINGNESS

Simple Justification Since (3) matches the form of (1) except with m = rs→t, applying missingness with rate rs→t to
the source distribution will yield samples independent and identically distributed to the target distribution. That is, plugging
in p̃s for p and rs→t for m, we have:

p̃x,y =
∑

z:z⇝x

pz,y ·
d∏

j=1

(1−mj)
[xj ] ̸=0m

[zj ]̸=0−[xj ] ̸=0

j

=
∑

z:z⇝x

p̃sz,y ·
d∏

j=1

(1− rs→t
j )[xj ]̸=0(rs→t

j )[zj ]̸=0−[xj ] ̸=0

= p̃tx,y

where the first line is (1) and the third line follows from (3).

Alternative Justification Suppose that mt ⪰ ms, where ⪰ denotes whether all elements of mt are greater than or equal
to all corresponding elements of ms, that is, mt

j ≥ ms
j for j = 1, 2, ..., d. Below, we show that the data generating process

for the target data is equivalent to applying a missingness filter with relative missingness rate rs→t applied to the source
data. To draw a point from the source, target, and transformed distribution, respectively, one first draws a clean data point
(x, y) ∼ P (X,Y ), where x ∈ Rd, y ∈ R, and then applies the respective missingness filter to the clean covariates:

x̃s = νs(x) = x⊙ ξs

x̃t = νt(x) = x⊙ ξt

x̃s→t = νs→t(νs(x)) = x⊙ ξs ⊙ ξs→t

where ξt ∼ Bernoulli(1 −mt), ξs ∼ Bernoulli(1 −ms), and ξs→t ∼ Bernoulli(1 − rs→t). Combining Bernoullis, we
have:

ξs ⊙ ξs→t =

{
1 w.p.

(
1− mt−ms

1−ms

)
· (1−ms)

0 otherwise

=

{
1 w.p. (1−mt)
0 otherwise

= ξt

Thus, for true relative missing rates rs→t, we have νt(x) = νs→t(νs(x)). Since the data generating process after applying
νs→t to source data is now identical to the data generating process of the target dataset, we have {(νs→t(X̃

s,i), Y s,i)}ns
i=1

drawn independent and identically distributed to P t(X̃, Y ).



Domain Adaptation under Missingness Shift

H OPTIMAL LINEAR PREDICTORS

H.1 Optimal linear target predictor, derived from target covariances

For each dimension j, the covariance between corrupted data X̃j with missingness rate m and its labels Y is Cov(X̃j , Y ) =
Cov(Xj · ξj , Y ) = (1−mj)Cov (Xj , Y ). Thus,

Cov(X,Y ) =
1

1−m
⊙ Cov(X̃, Y )

E[X⊤Y ] = Cov (X,Y ) + E[X]⊤E[Y ]

=
1

1−m
⊙ Cov

(
X̃, Y

)
+

1

1−m
⊙ E[X̃]⊤E[Y ]

=
1

1−m
⊙ E[X̃⊤Y ].

Plugging into the ordinary least squares regression solution,

βt
∗ = E[X̃t⊤X̃t]−1E[X̃t⊤Y t]

= E[X̃t⊤X̃t]−1
(
(1−mt)⊙ E[X⊤Y ]

)
= E[X̃t⊤X̃t]−1

(
1−mt

1−ms
⊙ E[X̃s⊤Y s]

)
= E[X̃t⊤X̃t]−1

(
rs→t ⊙ E[X̃s⊤Y s]

)
.

The remainder of this section derives the optimal linear target predictor, where the corrupted target covariance is derived
from the corrupted source covariance.

H.2 Means, Variances, and Covariances

This section begins by deriving the relationships between the means, covariances, and variances of the corrupted and clean
data. Then, it derives the relationships between corrupted and clean E[X⊤X]. Finally, the derived first and second moments
are summarized in Table 3.

Recall that for any covariate xj , we have:

x̃j =

{
0 w.p. mj

xj w.p. 1−mj

= bjxj

where bj ∼ Bernoulli(1−mj). The mean of the corrupted data is given by:

E[X̃] = (1−m)⊙ E [X]

To derive the covariance matrix of the corrupted data, consider the covariance between two arbitrary distinct covariate
dimensions x̃1 and x̃2. Let A = b1, B = x1, C = b2, and D = x2. Note that A and C are independent of all other variables.
Thus,

Cov(x̃1, x̃2) = Cov(AB,CD)

= E[ABCD]− E[AB]E[CD]

= E[ABCD]− E[A]E[B]E[C]E[D]

= E[A]E[C](E[BD]− E[B]E[D])

= E[A]E[C]Cov(B,D)

= (1−m1)(1−m2)Cov (x1, x2)
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=⇒ Cov(x1, x2) =
1

(1−m1)(1−m2)
Cov(x̃1, x̃2)

And similarly,

Cov(x̃1, y) = (1−m1)Cov (x1, y)

=⇒ Cov (x1, y) =
1

1−m1
Cov(x̃1, y)

The variance (entries along the diagonal of the covariance matrix) is given by:

Var(x̃1) = Var (b1x1)

= Var(AB)

= (σ2
A + µ2

A)(σ
2
B + µ2

B)− µ2
Aµ

2
B

= (m1(1−m1) + (1−m1)
2)
(
Var(x1) + E[x1]

2
)
− (1−m1)

2E[x1]
2

= (1−m1)
(
Var(x1) + E[x1]

2
)
− (1−m1)

2E[x1]
2

= (1−m1)
(
Var(x1) + E[x1]

2 − (1−m1)E[x1]
2
)

= (1−m1)
(
Var(x1) + E[x1]

2 − E[x1]
2 +m1E[x1]

2
)

= (1−m1)
(
Var(x1) +m1E[x1]

2
)

= (1−m1)Var(x1) +m1(1−m1)E[x1]
2

Var(x1) =
Var(x̃1)

1−m1
−m1E[x1]

2

=
Var(x̃1)

1−m1
− m1

(1−m1)2
E[x̃1]

2

Putting this together, the variance-covariance matrix is given by (elementwise division below):

Cov(X̃, X̃) = (1−m)(1−m)⊤ ⊙ Cov(X,X)

+ diag(((1−m)− (1−m)2)Var(X) +m(1−m)E[x1]
2)

= (1−m)(1−m)⊤ ⊙ Cov(X,X) + diag(m(1−m)(Var(X) + E[X]2))

= (1−m)(1−m)⊤ ⊙ Cov(X,X)

+ diag(m(1−m)⊤)diag(Cov(X,X) + E[X]⊤E[X])

= (1−m)(1−m)⊤ ⊙ Cov(X,X) + diag(m(1−m)⊤)diag(E[X⊤X])

=⇒ Cov(X,X) =

(
1

1−m

)(
1

1−m

)⊤

⊙ Cov(X̃, X̃)

+ diag

− Var(X̃)

(1−m)2
+

Var(X̃)

1−m
−

mE
[
X̃
]2

(1−m)2


=

(
1

1−m

)(
1

1−m

)⊤

⊙ Cov(X̃, X̃)− diag
(

m

(1−m)2
(Var(X̃) + E[X̃]2)

)
Thus far, we have been working with the covariance matrix. How do the expressions for covariance relate to X̃⊤X̃ and
X̃⊤Y ? We have:

Cov(X̃, X̃) = (1−m)(1−m)⊤ ⊙ Cov(X,X) + diag
(
m(1−m)⊤

)
diag(E[X⊤X])

E[X̃⊤X̃] = Cov
(
X̃, X̃

)
+ E[X̃]⊤E[X̃]

= (1−m)(1−m)⊤ ⊙ (Cov(X,X) + E[X]⊤E[X])diag
(
m(1−m)⊤

)
diag

(
E
[
X⊤X

])
= (1−m)(1−m)⊤ ⊙ E

[
X⊤X

]
+ diag

(
m(1−m⊤)

)
diag

(
E
[
X⊤X

])
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Additionally,

Cov (X,X) =

(
1

1−m

)(
1

1−m

)⊤

⊙ Cov(X̃, X̃) + diag
(
− m

(1−m)2

)
diag

(
Var(X̃) + E[X̃]2

)
E
[
X⊤X

]
= Cov (X,X) + E [X]⊤ E [X]

=

(
1

1−m

)(
1

1−m

)⊤

⊙
(

Cov(X̃, X̃) + E[X̃]⊤E[X̃]
)

+ diag
(
− m

(1−m)2

)
diag

(
Var(X̃) + E[X̃]2

)
=

(
1

1−m

)(
1

1−m

)⊤

⊙ E[X̃⊤X̃]− diag
(

m

(1−m)2

)
diag

(
E[X̃⊤X̃]

)

Table 3: Summary of 1st and 2nd moments of corrupted data and clean data

Quantity of Interest Expression

E [X] 1
1−m ⊙ E

[
X̃
]

E
[
X̃
]

(1−m)⊙ E [X]

E
[
X⊤X

] (
1

1−m

)(
1

1−m

)⊤
⊙ E

[
X̃⊤X̃

]
− diag

(
m

(1−m)2

)
diag

(
E[X̃⊤X̃]

)
E
[
X̃⊤X̃

]
(1−m)(1−m)⊤ ⊙ E

[
X⊤X

]
+ diag

(
m(1−m)⊤

)
diag

(
E
[
X⊤X

])
H.3 Closed Form Solution

Using results from previous sections, we can now derive a closed form solution for the optimal linear classifier for a target
domain with missing rates mt, given labeled data from a source domain with missing rates ms. We break down this problem
by going from corrupted data with some missingness rate to clean data with 0 missingness, and then from clean data with 0
missingness to corrupted data with another level of missingness.

Suppose we are going from corrupted data X̃ with missing rate m to clean data X with 0 missingness:

Cov (X, y) =
1

1−m
⊙ Cov

(
X̃, y

)
E
[
X⊤y

]
= Cov (X, y) + E [X]⊤ E [y]

=
1

1−m
⊙ Cov

(
X̃, y

)
+

1

1−m
⊙ E

[
X̃
]⊤

E [y]

=
1

1−m
⊙ E

[
X̃⊤y

]
E
[
X⊤X

]
=

(
1

1−m

)(
1

1−m

)⊤

⊙ E
[
X̃⊤X̃

]
− diag

(
m

(1−m)2
⊙ E

[
X̃⊤X̃

])

=⇒ β =

{(
1

1−m

)(
1

1−m

)⊤

⊙ E
[
X̃⊤X̃

]
− diag

(
m

(1−m)2
⊙ E

[
X̃⊤X̃

])}−1
1

1−m
⊙ E

[
X̃⊤y

]
Going from clean to corrupted data, we have:

E[X̃⊤y] = Cov(X̃, y) + E[X̃]⊤E [y]

= (1−m)⊙ Cov (X, y) + (1−m)⊙ E
[
X̃
]⊤

E [y]

E[X̃⊤X̃] = (1−m)(1−m)⊤ ⊙ E
[
X⊤X

]
+ diag

(
m(1−m⊤)

)
diag

(
E
[
X⊤X

])
=⇒ β̃ =

[
(1−m)(1−m)⊤ ⊙ E

[
X⊤X

]
+ diag

(
m(1−m⊤)

)
diag

(
E
[
X⊤X

])]−1

(1−m)⊙ E
[
X⊤y

]
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Now, we put all of these equations together, going from source corrupted data (S), to clean data (C), to target corrupted data
(T).

(S) → (C):

E[X⊤X] =

(
1

1−ms

)(
1

1−ms

)⊤

⊙ E[X̃s⊤X̃s]− diag
(

ms

(1−ms)2
⊙ (E[X̃s⊤X̃s])

)
E[X⊤y] =

1

1−ms
⊙ Cov

(
X̃s, y

)
+

1

1−ms
⊙ E[X̃s]⊤E [y]

(C) → (T):

E
[
X̃t⊤X̃t

]
= (1−mt)(1−mt)⊤ ⊙ E

[
X⊤X

]
+ diag

(
mt(1−mt⊤)

)
diag

(
E
[
X⊤X

])
= (1−mt)(1−mt)⊤ ⊙

[(
1

1−ms

)(
1

1−ms

)⊤

⊙ E
[
X̃s⊤X̃s

]
− diag

(
ms

(1−ms)2
E
[
X̃s⊤X̃s

])]

+ diag
(

mt

1−mt

)
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I EXPERIMENT DETAILS

Experiments were run on a machine with 28 CPU cores. The linear regression models were implemented from scratch
and validated against that of sklearn. The MLPRegressor class from the scikit-learn Python package was used with default
hyperparameters, and the XGBoost class from the xgboost Python package was used with default hyperparameters. All
experiments (except imputation) are feasible to run within a few hours.

Semi-synthetic experiments on linear models included 10 samples of β, and 50 samples of missingness rates under each
regime (ms ⪯ mt and ms ? mt). Semi-synthetic experiments on nonlinear models (XGB, NN) included 5 samples of β and
20 samples of missingness rates under each regime. Across these runs, 95% confidence intervals were computed.

In the imputation experiments, a MissForest imputer from the missingpy Python package was trained on the combination
of the source training set and target training set (just on the covariates, without labels). This imputer was then applied to
both the source and target test sets. Finally, we train a source classifier on the imputed source labeled data and evaluate its
performance on the target unlabeled data. We note that in our experience with the imputation experiments, imputation was
somewhat slow (2-3 minutes for each imputation), and so all of our imputed results are reported on 5 samples of β and 20
samples of missingness rates under each regime, across all semi-synthetic datasets.

I.1 Synthetic Experiments

Table 4: MSE/Var(Y) on Redundant Features and Confounded Features settings, with 95% confidence intervals computed
over varying ϵ between 0.05 to 0.95.

ms ⪯ mt ms ? mt

Lin. Reg. (oracle) 0.178 (0.172 – 0.185) 0.206 (0.199 – 0.213)
Lin. Reg. (source) 1.259 (1.231 – 1.286) 1.103 (1.076 – 1.129)
Lin. Reg. (imputed) 1.002 (1.002 – 1.002) 0.918 (0.915 – 0.921)
Lin. Reg. (closed-form adj.) 0.186 (0.180 – 0.193) 0.209 (0.205 – 0.213)
Lin. Reg. (non-param. adj.) 0.473 (0.471 – 0.476) 0.492 (0.489 – 0.495)

XGBoost (oracle) 0.166 (0.160 – 0.172) 0.200 (0.193 – 0.208)
XGBoost (source) 0.166 (0.160 – 0.172) 0.475 (0.458 – 0.492)
XGBoost (imputed) 1.002 (1.002 – 1.002) 1.157 (1.102 – 1.211)
XGBoost (non-param. adj.) 0.425 (0.422 – 0.428) 0.473 (0.468 – 0.478)

MLP (oracle) 0.166 (0.160 – 0.172) 0.201 (0.195 – 0.208)
MLP (source) 0.184 (0.165 – 0.202) 0.321 (0.300 – 0.342)
MLP (imputed) 1.003 (1.002 – 1.003) 0.924 (0.918 – 0.930)
MLP (non-param. adj.) 0.436 (0.428 – 0.444) 0.470 (0.465 – 0.474)

I.2 Semi-Synthetic Experiments

The UCI datasets Dua and Graff (2017) used in this work are:

• Adult Data Set: The classification task is whether an individual’s income exceeds $50K a year based on census data.
The dataset contains categorical variables (occupation, education, marital status, etc.), as well as continuous variables
(age, hours per week, etc.)

• Bank Marketing Data Set: The classification task is whether a client will subscribe a term deposit. This dataset contains
categorical features such as type of job, marital status, education, whether they have a housing loan, etc., as well as
continuous variables such as age, number of contacts performed, etc.

• Thyroid Disease Data Set: The classification task is of increased vs. decreased binding protein. This dataset contains
binary variables such as whether the patient is pregnant, is male, on thyroxine, has a tumor, etc., as well as continuous
variables such as age, TSH, T3, TT4, etc.
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For semi-synthetic experiments, we pre-process the UCI data by creating dummy variables from categorical variables,
dropping redundant columns, normalizing numerical variables, dropping binary variables with low frequency (< 5%, since
we apply additional synthetic missingness in our experiments), and dropping columns with low variance (< 5%). We
additionally generate synthetic labels by sampling coefficients βj ∼ Uniform(0, 10),∀j ∈ {0, 1, 2, ..., d} and computing
new synthetic labels ynew = Xβ. Table 5 contains the MSE/Var(Y) and 95% confidence intervals (from sampling several β
and ms,mt) of the adult dataset, Table 6 contains the MSE/Var(Y) and 95% confidence intervals of the bank dataset, and
Table 7 contains the MSE/Var(Y) and 95% confidence intervals of the thyroid dataset.

Table 5: MSE/Var(Y) on UCI Adult Semi-synthetic Setting, with 95% confidence intervals computed over multiple samples
of β and ms,mt (described in Section 7).

ms ⪯ mt ms ? mt

Lin. Reg. (oracle) 0.420 (0.415 – 0.424) 0.362 (0.356 – 0.367)
Lin. Reg. (source) 0.437 (0.433 – 0.442) 0.380 (0.373 – 0.386)
Lin. Reg. (imputed) 0.490 (0.471 – 0.509) 0.483 (0.475 – 0.491)
Lin. Reg. (closed-form adj.) 0.422 (0.417 – 0.426) 0.363 (0.358 – 0.368)
Lin. Reg. (non-param. adj.) 0.420 (0.415 – 0.424) 0.373 (0.367 – 0.379)

XGBoost (oracle) 0.398 (0.386 – 0.409) 0.354 (0.344 – 0.363)
XGBoost (source) 0.399 (0.387 – 0.410) 0.379 (0.369 – 0.388)
XGBoost (imputed) 0.512 (0.491 – 0.534) 0.521 (0.508 – 0.535)
XGBoost (non-param. adj.) 0.399 (0.387 – 0.410) 0.392 (0.382 – 0.402)

MLP (oracle) 0.389 (0.378 – 0.401) 0.343 (0.334 – 0.352)
MLP (source) 0.399 (0.387 – 0.410) 0.357 (0.348 – 0.367)
MLP (imputed) 0.480 (0.461 – 0.499) 0.468 (0.456 – 0.481)
MLP (non-param. adj.) 0.389 (0.378 – 0.400) 0.355 (0.346 – 0.364)

Table 6: MSE/Var(Y) on UCI Bank Semi-synthetic Setting, with 95% confidence intervals computed over multiple samples
of β and ms,mt (described in Section 7).

ms ⪯ mt ms ? mt

Lin. Reg. (oracle) 0.338 (0.336 – 0.340) 0.433 (0.426 – 0.440)
Lin. Reg. (source) 0.371 (0.369 – 0.373) 0.480 (0.472 – 0.487)
Lin. Reg. (imputed) 0.501 (0.491 – 0.511) 0.592 (0.583 – 0.602)
Lin. Reg. (closed-form adj.) 0.339 (0.337 – 0.340) 0.442 (0.436 – 0.449)
Lin. Reg. (non-param. adj.) 0.338 (0.336 – 0.340) 0.459 (0.453 – 0.466)

XGBoost (oracle) 0.287 (0.279 – 0.295) 0.453 (0.438 – 0.468)
XGBoost (source) 0.305 (0.297 – 0.313) 0.500 (0.484 – 0.516)
XGBoost (imputed) 0.492 (0.482 – 0.503) 0.708 (0.684 – 0.732)
XGBoost (non-param. adj.) 0.287 (0.279 – 0.295) 0.503 (0.486 – 0.519)

MLP (oracle) 0.295 (0.287 – 0.303) 0.458 (0.442 – 0.473)
MLP (source) 0.322 (0.314 – 0.330) 0.499 (0.483 – 0.516)
MLP (imputed) 0.484 (0.474 – 0.494) 0.668 (0.645 – 0.690)
MLP (non-param. adj.) 0.294 (0.286 – 0.302) 0.487 (0.471 – 0.503)
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Table 7: MSE/Var(Y) on UCI Thyroid Semi-synthetic Setting, with 95% confidence intervals computed over multiple
samples of β and ms,mt (described in Section 7).

ms ⪯ mt ms ? mt

Lin. Reg. (oracle) 0.298 (0.292 – 0.303) 0.251 (0.246 – 0.256)
Lin. Reg. (source) 0.350 (0.342 – 0.357) 0.320 (0.314 – 0.326)
Lin. Reg. (imputed) 0.306 (0.298 – 0.313) 0.358 (0.351 – 0.365)
Lin. Reg. (closed-form adj.) 0.316 (0.310 – 0.322) 0.291 (0.286 – 0.295)
Lin. Reg. (non-param. adj.) 0.293 (0.288 – 0.298) 0.291 (0.286 – 0.296)

XGBoost (oracle) 0.316 (0.304 – 0.328) 0.274 (0.265 – 0.282)
XGBoost (source) 0.310 (0.298 – 0.322) 0.352 (0.341 – 0.362)
XGBoost (imputed) 0.355 (0.346 – 0.364) 0.441 (0.430 – 0.452)
XGBoost (non-param. adj.) 0.310 (0.298 – 0.321) 0.381 (0.370 – 0.392)

MLP (oracle) 0.279 (0.269 – 0.288) 0.230 (0.223 – 0.236)
MLP (source) 0.320 (0.308 – 0.331) 0.303 (0.294 – 0.311)
MLP (imputed) 0.304 (0.296 – 0.311) 0.345 (0.336 – 0.355)
MLP (non-param. adj.) 0.278 (0.268 – 0.288) 0.272 (0.265 – 0.279)

I.3 Real Experiments

The data for these experiments were derived from eICU-CRD (Pollard et al., 2018), a multi-hospital critical care database
which uses the PhysioNet Credentialed Health Data License Version 1.5.0. We extract data for predicting 48-hour mortality
through the FIDDLE (Tang et al., 2020) preprocessing pipeline with default parameters. FIDDLE extracts both time-varying
and fixed features. We collapse the time-varying features by taking the maximum value (note that most features are binary,
and none take values less than 0). We extract data from two of the hospitals with the most data, the first of which contains
3,006 data points, and the second of which contains 2,663 data points. The rate of 48-hour mortality in the first hospital is
0.097, and the rate of 48-hour mortality in the second hospital is 0.100. Additionally, we threshold for features that are
present that have a prevalence of at least 5% in either of the hospitals and at least 1% in both of the hospitals. Code is
provided in the supplementary material. We used target unlabeled data (αt = 1, αs = 0) to estimate E[X̃t⊤X̃t] for the
adjusted linear closed form model because we noticed that the estimation error with limited data made the source estimates
less reliable. Due to limited positive samples, in order to evaluate cross-domain performance, a model was trained on all
data from one domain and tested on all data from the other. Oracle performance (training and testing on the same domain)
was computed from training on a randomly sampled 80% of the data and testing on the remaining 20%. Table 8 contains the
estimated relative non-missingness of the top five coefficients for the oracle models from each hospital.

Table 8: The estimated proportion of nonzeros in Hospital 1 (q1) and Hospital 2 (q2), estimated relative non-missingness
rates q2/q1 = 1− r1→2, Hospital 1 Oracle coefficient (β1), and Hospital 2 Oracle coefficient (β2) for each of the top five
features (measure by magnitude of coefficient) from the Oracle linear predictors of Hospital 1 and 2.

β1 β2 q1 q2 q2/q1

noninvasivemean max (78.0, 86.0] -0.279 -0.364 0.754 0.938 1.244
systemicsystolic mean (-94.001, 99.667] 0.271 -0.362 0.333 0.134 0.404
unittype...Neuro ICU 0.055 -0.577 0.194 0.315 1.629
ethnicity...African American -0.275 0.361 0.141 0.071 0.506
...Intake (ml)...(100.0, 150.0] 0.070 -0.732 0.318 0.045 0.142
...Invasive BP Systolic...(-59.001, 101.0] -0.571 0.474 0.350 0.130 0.372
cvp max (8.0, 12.0] 0.536 -0.476 0.262 0.125 0.477
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