
Stimulating student engagement with an AI board game tournament

Ken Hasselmann 1 2 Quentin Lurkin 1

Abstract
Strong foundations in basic AI techniques are key
to understanding more advanced concepts. We
believe that introducing AI techniques, such as
search methods, early in higher education helps
create a deeper understanding of the concepts seen
later in more advanced AI and algorithms courses.
We present a project-based and competition-based
bachelor course that gives second-year students an
introduction to search methods applied to board
games. In groups of two, students have to use net-
work programming and AI methods to build an AI
agent to compete in a board game tournament—
othello was this year’s game. Students are eval-
uated based on the quality of their projects and
on their performance during the final tournament.
We believe that the introduction of gamification,
in the form of competition-based learning, allows
for a better learning experience for the students.

1. Introduction
Recent years have seen increased interest in machine learn-
ing and deep learning: many courses and teaching material
are now available (Wollowski et al., 2016; Ye et al., 2021),
and their availability is growing. We believe that, regardless
of the importance of teaching the most recent and state-
of-the-art technologies, it is important for students to have
sound knowledge of data structures and the basics of AI
algorithms. In the case of this course, when we refer to
the basics of AI algorithms, we refer to search algorithms,
adversarial search algorithms, and the basics of game the-
ory (Russell & Norvig, 2021).

We designed a project-based programming course for
second-year students revolving around the creation of an AI
agent for a given board game. Students are presented with
a board game at the beginning of the course. In groups of

1ECAM Brussels School of engineering, Brussels, Belgium
2Université libre de Bruxelles, Brussels, Belgium. Correspon-
dence to: Ken Hasselmann <hsl@ecam.be>, Quentin Lurkin
<lur@ecam.be>.

Proceedings of the 3 rd Teaching in Machine Learning Workshop,
PMLR, 2022. Copyright 2022 by the author(s).

two, they have to use the knowledge gained throughout the
lectures to create an AI agent that will compete against all
other student groups’ agents by the end of the course period.

The objectives of this course are three-fold: (i) we want
to introduce students to different python programming
paradigms that they have not seen in the curriculum yet;
(ii) we want to introduce AI for games and game theory;
and (iii) we want to introduce source code management and
unit testing for their project.

We focus on practical work, group projects, and creating
a challenge by having students compete with each other.
The introduction of gamification, namely competition-based
learning, in teaching has shown positive results in student
motivation and engagement (Seaborn & Fels, 2015; Bur-
guillo, 2010). We therefore believe that gamifying the
course’s end-goal, by introducing a student tournament, will
improve the overall learning experience. Students have to
apply the lecture concepts immediately and are motivated
by the idea of defeating rival teams, creating some intrinsic
motivation for learning.

2. Course design
This section details the course design, i.e., the structure and
organisation, both for lectures and practical sessions.

2.1. Audience

This course is designed for second-year engineering stu-
dents enrolled in a three-year bachelor’s program, which is
usually followed by a two-year master’s degree program. It
is taught to students that chose to have a pre-specialization
in computer science and electronics. It is one of the courses
that gives students a grasp of the computer science special-
ization and therefore plays an important role in the students’
decisions when later selecting a specialization subject for
their studies.

2.2. Lecture topics

Being a course intended both as an introduction to some
specific programming paradigms in python and as an intro-
duction to AI for games, the lecture topics are divided into
three main parts.



Stimulating student engagement with an AI board game tournament

Figure 1. The board of othello. Othello is a two-player strategy
game (a fixed initial setup variant of reversi), where players take
turns placing disks of their assigned color on the board. Disks
have one black and one white side. When placing a disk, any of
the opponent’s disks that are in line and bounded by disks of the
current player are turned over to the current player’s color. Once
the board is full, at the end of the game, the player whose color is
assigned to a majority of disks wins the game.

The first part of the lectures focuses on programming
paradigms. The lectures cover mainly: (i) network program-
ming, where students learn about the basics of networking
and protocols in order to exchange messages on a local net-
work programmatically; and (ii) concurrent programming,
where they learn about threads and how to handle multiple
concurrent computations.

The second part of the lectures focuses on classical AI for
board games, namely: (i) basic data structures, such as
stacks, heaps, and trees; (ii) search algorithms, such as
breadth-first search, depth-first search, The Dijkstra algo-
rithm, and A search; and (iii) adversarial search algorithms,
such as the minimax algorithm, negamax, alpha-beta prun-
ing, and iterative deepening.

The third part of the course presents the basic concepts of
source code management with the use of git. In this part,
the main concepts of git and its most common commands
are presented, and students also learn about the importance
of unit testing, how to implement good unit tests, and the
concept of code coverage.

2.3. Project

In order to motivate students to grasp all the concepts de-
scribed in the previous section, we ask them to build an AI
agent for a board game. The board game to be tackled in
the project changes every year. This year, the board game
was othello—see Fig.1.

We ask the students to form groups of two. The project
then consists in coming up with a good strategy to play
the game, implementing it, and letting it compete in the
final tournament at the end of the semester. We provide
the students with a simple description of how to connect

and use the tournament system (see Section 2.4 for a full
description of this system).

We observed that typically students first take some time un-
derstanding the rules of the game, then starting to prototype
strategies on paper, before they start to code. We ask them
to code their AI agents in python. We do not provide any
specific instructions on what algorithm to use. We want
students to experiment using different data structures and
AI techniques to try and find a suitable one.

2.4. Tournament system

The tournament system works as follows: a game server
hosts the game and agents (clients) connect to this server to
start a game and make a move on the board. The game server
works by accepting direct TCP connection from agents with
a documented custom protocol.

Students have to build agents to connect to this server and
play the game. Automatic matchmaking is implemented
into the game server so that every client that is connected
plays a game against all other clients that are connected.
The game server waits for connections from agents. Once
at least two agents are connected, the matchmaking starts
and the first game is launched. The game server saves the
state of the current game being played and queues all other
games to be played. Once a game is started, an agent has
5 s to make a move at each turn, if the agent does not send
an instruction within these 5 s, or if the move made by the
agent is illegal, the game server registers a bad move, and
the opposing agent takes a turn. At the end of the game, the
full log of the game is saved, including bad moves and the
winning agent.

During practical sessions, the game server runs on a
teacher’s computer so that students can test their agents
in the local network of the classroom. A random agent—an
agent that plays a random move on the game board every
turn—is constantly connected to the game server during the
practical sessions so that any student agent connecting to
the server automatically competes against it. This allows
students to test their agents in a simple scenario. All games
being played on the server are displayed on the server’s GUI
(see Fig. 2).

We also provide the students with the code of the game
server. This allows them to review and inspect code written
by an external person, and helps them in their own imple-
mentation. They can also run the game server locally on
their own computer to, for example, test their agents at
home. We wish students to carefully read the description
of the game server, understand how the system works, and
propose an implementation for their agent to connect and
use the custom network protocol.

The playing system is thus designed to enforce that students



Stimulating student engagement with an AI board game tournament

Figure 2. GUI of the tournament software. The current game
being played is displayed on the top right; below, is the list of
queued games. The left column shows all connected clients (AI
agents).

use all notions seen in the lectures, if they want to succeed
in connecting and playing the game.

2.5. AI agents

For the creation of the AI agent, we do not provide any
boilerplate implementation, nor do we provide the imple-
mentation of the random agent. Students have access to
the descriptions of classical algorithms presented during
the lectures (see section 2.2) and, of course, to any external
resources they could find. We do not enforce any specifi-
cations on the algorithms to be used. We want students to
experiment with different data structures and AI techniques
to try and find a suitable one.

A typical implementation of an agent includes: (i) a network
API for communicating with the game server; (ii) a model of
the game’s rules to determine possible moves given a game
board; (iii) an algorithm for determining the next move to
be played.

The students do have complete freedom on the AI algorithm
to use for determining the next move. Our minimal expec-
tation for this part is that student model the game using a
tree of possible actions and implement a search algorithm
for navigating the tree to find a move. We choose games
with a relatively high branching factor on purpose so that
exhaustive search is impractical. A highly effective imple-
mentation might, for instance, employ Monte-Carlo tree
search with a custom-trained heuristic.

2.6. Evaluation

Students are evaluated on different aspects and at different
stages during the course. The first part of the evaluation
consists of individual programming exercises done in class,
during a one hour exam period. Students complete four
programming exercises with precise specifications. For this
exam, they only have access to a computer, the lecture ma-

terials, and the latest version of the python documentation.
The programs produced by the students are then individually
tested. The students’ scores depend on whether their code
passes all unit tests.

The second part of the evaluation is on the creation of the
board game AI agent. Each group of students has to submit
their work using an online git repository. Repositories are
then fetched and all agents from all students compete against
each other in an online tournament. In this part, students are
evaluated on a competition among AI agents from all student
groups, but also on the quality of their code, the quality of
their unit tests, the coverage of those tests, and how they
managed their source code in git. Since the proposed board
game is different every year, the difficulty of the task of
creating the AI agent can vary slightly. However, we attempt
to minimize this by selecting board games with a similar
degree of complexity, or by qualitatively adjusting our level
of expectation for the project.

Each of the two parts (the individual programming exercise
and the group project) accounts for 50% for the final course
score. In this way, we evaluate the individual students’
understanding of the lecture topics as well as the quality of
their group projects, in terms of source code quality, code
efficiency, and source code management.

2.7. Gamification components

Motivation is a key factor in student performance and en-
gagement in a course (Saeed & Zyngier, 2012). Several
studies report that the use of gamification is an efficient
way of motivating students (Seaborn & Fels, 2015; Shahid
et al., 2019; Jawad & Tout, 2021). We chose to base our
course on competition-based learning, a certain way of im-
plementing gamification in which students take part in a
friendly competition. Competition-based learning has been
shown to improve motivation and help increase student per-
formance (Burguillo, 2010; Ho et al., 2022). Several studies
describe its usage in computer science courses (Lawrence,
2004; Ebner & Holzinger, 2007; Ribeiro et al., 2009; Jung
& Shim, 2010) and report satisfactory results in student
engagement and motivation. It can also be used in conjunc-
tion with project-based learning to encourage peer-learning
among students (Boss & Krauss, 2007; Burguillo, 2010;
Ho et al., 2022). As described in Section 2.6, we evaluate
students on multiple criteria. We designed the evaluation
score awarded to the project to be in several parts: 35%
of the score is awarded based on the use of git, code cov-
erage, and software documentation; another 35% of the
score is awarded based on software engineering practices,
naming conventions, comments, and bare minimum func-
tionalities; the remaining 30% depends on the students’
performance during the final tournament. The performance
of the students in the tournament (the aforementioned 30%)



Stimulating student engagement with an AI board game tournament

is computed based on: (i) their agent ranking better than the
random agent; (ii) the number of bad moves that their agent
tried to play; (iii) the overall rank of the agent. Since the
project score accounts for 50% of the final course grade, the
tournament performance only accounts for 15% of the final
grade of the student.

There are two frameworks for introducing competition in
education. In competitive-based learning, the learning re-
sult depends on the result of the competition itself. In
competition-based learning, by contrast, the learning result
is independent of the student’s score in the competition (Bur-
guillo, 2010). In our case, the different parts introduced in
the grading system make the 85% of the final score indepen-
dent from the competition. The learning result is thus also
independent from the competition since, the course’s skills
are diverse, and a good final score can be achieved with a
well-designed but relatively simple AI agent.

It has been shown that is some cases, competitive goal
structures can impede achievement, and that cooperation, or
cooperation with intergroup competition, is more effective
than interpersonal competition (Johnson et al., 1981). That
is why we designed the project as a group work, and also
why we decided on the relatively small percentage devoted
to the final competition: to encourage so-called friendly
competition, where students are motivated to engage in
the competition seriously without jeopardizing peer-based
learning.

3. Course assessment
We did not yet perform a systematic and formal teaching
assessment campaign. We base the judgements reported
here on the informal interactions we had with students and
the overall atmosphere during the lectures and practical
sessions.

Overall, our experience with the students has been very
positive. Although it was not mandatory to attend, there was
high attendance during both lectures and practical sessions,
compared to other courses that also did not have mandatory
attendance.

Most student groups seemed to show interest in understand-
ing how the algorithms they saw during the lectures were
working and came up with their own implementations of
the algorithms seen in the lectures.

All student groups managed to create a working agent that
interacted with the game server using the proper protocol.
Less than 15% of student groups’ agents tried to play bad
moves of the game. Around 75% of student groups managed
to create agents that were able to beat the random agent
in some games. Some student groups’ agents would still
lose when the random agent was the first player. Note

that playing first indeed gives an advantage in the game.
The top 15% of student groups experimented with different
heuristics to estimate the quality of a board position in
adversarial search algorithms. The best group implemented
an iterative deepening minimax algorithm with alpha-beta
pruning and transposition tables.

Some students reported that the course motivated them to
continue their study in the field of computer science. As this
course is given quite early in the studies, it is for us very
important that it is designed to be attractive to students.

4. Conclusion
We have presented our design for an introductory course
to AI and software engineering. The course involves
group project-based learning and gamification through
competition-based learning. The results of the course sug-
gest that both project-based learning and gamification help
motivate students and create a better learning experience
through peer-based learning and the intrinsic motivation
created by friendly competition.

We wish to conduct a formal teaching assessment campaign
before next year’s edition of the course to confirm what
our informal assessment has suggested about the students’
highly positive sentiment towards this course.

Software and Data
The tournament system software is available online (Lurkin,
2021) (documentation in french).

Acknowledgements
We thank the reviewers for their careful reading of our
manuscript and their insightful comments and suggestions.
We acknowledge the support of ECAM Brussels School of
engineering.

References
Boss, S. and Krauss, J. Reinventing Project-Based Learning:

Your Field Guide to Real-World Projects in the Digital
Age / Suzie Boss, Jane Krauss. International Society
for Technology in Education, Eugene, Or, 1st ed edition,
2007.

Burguillo, J. C. Using game theory and Competition-
based Learning to stimulate student motivation and per-
formance. Computers & Education, 55(2):566–575, 2010.
doi: 10.1016/j.compedu.2010.02.018.

Ebner, M. and Holzinger, A. Successful implementation of
user-centered game based learning in higher education:
An example from civil engineering. Computers & Edu-



Stimulating student engagement with an AI board game tournament

cation, 49(3):873–890, 2007. doi: 10.1016/j.compedu.
2005.11.026.

Ho, J. C.-S., Hung, Y.-S., and Kwan, L. Y.-Y. The impact of
peer competition and collaboration on gamified learning
performance in educational settings: A Meta-analytical
study. Education and Information Technologies, 27(3):
3833–3866, 2022. doi: 10.1007/s10639-021-10770-2.

Jawad, H. M. and Tout, S. Gamifying Computer Science
Education for Z Generation. Information, 12(11):453,
2021. doi: 10.3390/info12110453.

Johnson, D., Murayama, G., R.T., J., Nelson, D., and
Skon, L. Effects of cooperative, competitive, and in-
dividualistic goal structures on achievement: A meta-
analysis. Psychological Bulletin, 89:47–62, 1981. doi:
10.1037/0033-2909.89.1.47.

Jung, S. and Shim, K. K. A case study as a class project
of master-slave line tracer competition for undergradu-
ate student education. In ICCAS 2010, pp. 2485–2489,
Gyeonggi-do, 2010. IEEE. doi: 10.1109/ICCAS.2010.
5670275.

Lawrence, R. Teaching Data Structures Using Competitive
Games. IEEE Transactions on Education, 47(4):459–466,
2004. doi: 10.1109/TE.2004.825053.

Lurkin, Q. Tournament software,
PI2CChampionshipRunner, 2021. URL
https://github.com/qlurkin/
PI2CChampionshipRunner.

Ribeiro, P., Simões, H., and Ferreira, M. Teaching Artificial
Intelligence and Logic Programming in a Competitive
Environment. Informatics in Education, 8(1):85–100,
2009. doi: 10.15388/infedu.2009.06.

Russell, S. J. and Norvig, P. Artificial Intelligence: A Mod-
ern Approach. Pearson Series in Artificial Intelligence.
Pearson, Hoboken, fourth edition, 2021.

Saeed, S. and Zyngier, D. How Motivation Influences
Student Engagement: A Qualitative Case Study. Jour-
nal of Education and Learning, 1(2):p252, 2012. doi:
10.5539/jel.v1n2p252.

Seaborn, K. and Fels, D. I. Gamification in theory and
action: A survey. International Journal of Human-
Computer Studies, 74:14–31, 2015. doi: 10.1016/j.ijhcs.
2014.09.006.

Shahid, M., Wajid, A., Haq, K. U., Saleem, I., and Shujja,
A. H. A Review of Gamification for Learning Program-
ming Fundamental. In 2019 International Conference on
Innovative Computing (ICIC), pp. 1–8, Lahore, Pakistan,
2019. IEEE. doi: 10.1109/ICIC48496.2019.8966685.

Wollowski, M., Selkowitz, R., Brown, L., Goel, A., Luger,
G., Marshall, J., Neel, A., Neller, T., and Norvig, P. A
Survey of Current Practice and Teaching of AI. Proceed-
ings of the AAAI Conference on Artificial Intelligence, 30
(1), 2016. doi: 10.1609/aaai.v30i1.9857.

Ye, R., Sun, F., and Li, J. Artificial Intelligence in Education:
Origin, Development and Rise. In Liu, X.-J., Nie, Z., Yu,
J., Xie, F., and Song, R. (eds.), Intelligent Robotics and
Applications, Lecture Notes in Computer Science, pp.
545–553, Cham, 2021. Springer International Publishing.
doi: 10.1007/978-3-030-89092-6 49.

https://github.com/qlurkin/PI2CChampionshipRunner
https://github.com/qlurkin/PI2CChampionshipRunner

