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Abstract
Students from engineering & management with a
focus on vocational activities such as machining
or accounting tend to lack the necessary computer
science foundations to build, appreciate, and eval-
uate machine learning solutions. However, they
are likely going to have to identify and judge po-
tential use cases in their careers in industrial prac-
tice. Therefore, we propose a guided three-day
curriculum that goes all the way from manual data
inspection to the implementation of several mod-
els in Python, including several evaluation metrics.
We focus on a computer vision task identifying
traffic signs due to its conceptual simplicity and
similarity to tasks in vision-based quality assur-
ance. We share our material as OER as well as
experiences from four offerings of the bootcamp.

1. Background
Machine learning and especially deep learning are getting in-
creasingly important in classical engineering disciplines due
to, e.g., computer vision applications such as automated
quality inspection or anomaly detection in process data
from machines. Graduates from engineering & manage-
ment, industrial engineering have to be able to identify and
prototypically implement promising ML use cases. At our
university, the curriculum involves a fair amount of classi-
cal engineering (mechanics, manufacturing processes, CAD
construction) and business (accounting, marketing) courses
but the computer science background falls short with only
two dedicated compulsory lectures.

We designed a short block event called “deep learning boot-
camp” that is run over three days, eight hours each day,
that walks the students through a hands-on project: rec-
ognizing traffic signs from images. The bootcamp has
been offered four times so far in different degree programs.
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We share our positive and negative experiences and pro-
vide our materials as open education resources (OER) on
https://doi.org/10.5281/zenodo.6984734.

We make the following assumptions about our audience

Computer-Operation-Level (COL): The command of ba-
sic computer science concepts (handling files programmat-
ically in a shell environment, working a command line,
connecting to a server via SSH, . . . ) is low.

Programming-Level (PL): Similarly, strong programming
skills in a language such as Python or R cannot be assumed.

Application-Oriented (AO): The application perspective
matters most. Students tend to work part-time in industrial
environments (e.g., manufacturing companies) where they
might get tasked to experiment with ML.

STEM-Background (STEM): The students have a suffi-
cient mathematical foundation to understand the key con-
cepts of deep learning, in particular, linear algebra and mul-
tivariate calculus.

The course has been offered four times, each time in a
virtual manner via Zoom and in a blocked way. We hope
that the provided notebooks are useful for ML teachers. For
interactivity, we inserted a couple of demos that can be
found in (NVIDIA, 2022) or (Google, 2022).

Related work Several papers propose related courses.
(Müller et al., 2022) describes a course of similar duration
(5 days) that introduces ML to PhD students in molecular
biology research. (Acquaviva, 2022) presents concepts for
teaching ML to physisicsts. The courses were much longer
than ours, but similar experiences were made. (Shouman
et al., 2022) also propose a semester-spanning event, but
with similar elements to our course, e.g. a focus on practi-
cally relevant examples or block sessions with diverse con-
tent delivery. By contrast, (Garcia-Algarra, 2021) targets an
audience that lack the STEM background we presuppose.

2. Learning goals
Contrary to many classical ML courses, our main goal is
– besides teaching the inner workings of elementary deep
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Figure 1. The data for the GTSRB are not readily available in Keras but can be inspected using tools familiar to the students (Windows
Explorer, Microsoft Excel), taking into account COL and PL.

learning models and algorithms – to convey a sense of the
tasks that need to be done when approaching a novel prob-
lem: (i) data acquisition, (ii) exploratory data analysis, (iii)
framing of the learning problem (e.g., if supervised, what
are the inputs and targets?) (iv) gathering metrics and eval-
uating the trained models. It also delibaretly omits many
important ML algorithms on tabular data such as gradient
boosting to (1) foster motivation for “tangible” use cases
in industrial practice such as image recognition (2) show
that these use case are within reach for the students due to
the impressive quality of software frameworks and modern
hardware.

The main learning goals result from the designated audience.
After passing the bootcamp students should:

i) Understand that preparing and inspecting the data is a key
challenge.

ii) Know how to implement an off-the-shelf convolutional
network for image recognition using Keras (Chollet et al.,
2015) and scikit-learn (Pedregosa et al., 2011).

iii) Have a coarse understanding for the inner workings
of a deep learning system (i.e., autograd, gradient descent,
hyperparameters such as the learning rate)

iv) Be able to identify problems that are suitable for transfer
learning using pretrained nets as this is a standard approach
when dealing with real-world datasets.

With the learning goals in mind, the overall goal of the
course is to solve an image recognition task together with
the participants – albeit one that is not simply available
as a benchmark in Keras/TensorFlow rightaway (e.g., CI-
FAR10, Fashion MNIST, Imagenet, etc). Since the underly-
ing dataset should keep the students’ motivation high, we
use the German Traffic Sign Recognition Benchmark (GT-
SRB) (Houben et al., 2013). The task is clear (see fig. 1),
classifying a photo taken from a car into 43 classes that

correspond to different traffic signs, but it involves a fair
amount of data handling (cf. COL) since the 50 000 training
and 10 000 test images are organized in a file directory tree
and CSV files.

3. Contents
The bootcamp is divided into several blocks that each con-
sist of a set of slides accompanied by a Jupyter notebook
and various activation exercises. Besides, the students and
teachers together complete a shared slideshow file. We used
Google docs due to its capability of using pseudonyms for
the students which made them more confortable in partici-
pating but any collaborative tool would do.

3.1. What is a neural network, what is deep learning?

Initially, most of the students in our audience tend to have
no idea what a neural network is or what the difference
between AI, ML, Deep learning and neural networks are.
Therefore, the course starts with a brief introduction to those
keywords, establishing that deep learning can be seen as
a generalization from classical feedforward nets to more
general algebraic circuits of differentiable modules that can
be trained using gradient descent on loss functions (Russell
& Norvig, 2020). We also include the broader perspective on
AI research since the 1960s including symbolic approaches.
At this point, we ask the students to write down in the
shared slides if they perceive AI as something positive or
negative, what they know about AI/ML and whether they
think it has an impact on their careers and lives1. This will
be compared with the results after three days. Since the
focus is on deep learning, we then take a quick turn to the
Tensorflow Playground (Google, 2022) to have the students
see a neural net train as fast as possible in the course – this

1Click here for an example

https://github.com/AImotion-Bavaria/dl-bootcamp/blob/main/slides/Deep_Learning_Bootcamp_Slides.pdf
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usually happens within the first hour.

Using the playground, students can get a first grasp to con-
cepts such as changing weights and the decision boundaries
of a binary classifier evolving (and typically improving)
over time. It is also helpful to stop the training process after
a couple of epochs, inspect the loss and the visual result.
This part is concluded by challenging the students to find
the configuration with the smallest loss (highest accuracy
resp.) and post screenshots thereof in the shared slides.

+ Gives a fast first impression of neural networks

+ Contains all the major components of a DL system

+ Allows for experimenting with provoked underfits / over-
fits to build intuition

- Tinkering with the playground may enforce the “wrong”
priorities in first-learners: “I. as an ML engineer, must excel
at deciding layers/neurons/activation functions” whereas
this can often be automated or become less relevant when
working with a large enough data set.

In terms of self-study tasks, we had the students watch the
neural network series by 3Blue1Brown (Sanderson, 2017)
after playing with the TensorFlow playground. This was
accompanied by a clear call to action with questions in
the shared slides that had to be filled out afterwards and
discussed.

3.2. How is a neural network for image recognition
programmed?

After the initial exposition to neural networks in the play-
ground setting and video material, we focus on image recog-
nition, keeping AO in mind. To show that the actual DL
code can be, nowadays, fairly compressed using Keras or
PyTorch, we start with a single-cell Jupyter notebook that
trains a convolutional net on CIFAR10.

This segment can then be accompanied by some data explo-
ration, plotting some images using imshow along with the
target classes. We cover the basics of computer vision (e.g.
how an image is represented as a N ×M × 3 tensor). After
training, a few calls to model.predict() reinforce the
impression that the model “has actually learned something”
if it produces some accurate predictions.

+ Students can train their first neural network in Python
directly in Google Colab (PL), even on a GPU (COL)

+ No data handling required for the first contact, application
is clear (AO)

- A ConvNet uses many concepts yet to be introduced but a
simple feedforward net does not perform as well

- Cifar10 comes with a vector of normalized logits as outputs,
they need to be converted to “human-readable” class names

using argmax and a list (PL)

- Model predict needs a (1, 32, 32, 3) tensor (including the
batch dimension) which requires a reshape which is not
intuitive for first-time learners (PL)

3.3. What does the GTSRB data look like?

But at the heart of the bootcamp lies our goal of solving a
“fresh” image recognition task akin to what students would
have to do if they collected their own data in their respective
companies (e.g., by scraping or taking photos). We tend to
spend more time on this data exploration every running of
the course. And in this paper, we truly want to recommend
the GTSRB data set for other similar courses:

(1) The problem is very easy to grasp and common in real
life (even non-driver pedestrians need to understand traf-
fic signs). Further, there are attractive use cases such as
autonomous driving or driver assistance (AO).

(2) Training and test data are organized as PNG images in
a ZIP file (see fig. 1). That means, students can browse
through instances directly in Windows Explorer (or other
gallery tools on a Mac or Unix system) without having to
code (PL). This easily enables them to identify difficulties
(illuminations, occlusions, similarities between classes such
as 30/80 limit).

(3) The 43 classes are represented by “canonical” images in
the Meta folder which also makes it very easy to work with
class indices by image.

(4) The images have different sizes and the training im-
ages are sorted in folders according to their classes, which
makes additional preprocessing steps necessary. This is very
similar to real-world problems.

To conduct data exploration, we again formulate clear ques-
tions to address: Is the dataset hard to learn for a computer?
Where could be difficulties between classes? Are some in-
stances harder to classify than others? The responses are
collected in the shared slides.

+ Easy data exploration without specialized tools (PL
STEM)

+ Data set contains a non-trivial variety of instances, not all
class overlaps are obvious!

+ Handling the files programmatically (e.g., extracting, con-
verting PNGs to numpy arrays, resizing) requires additional
code (which we provide in this notebook as a basis)

- Training and test images are organized differently, adding
a bit of confusion

- CSV files contain additional information (region of inter-
ests, etc) which can be overwhelming (COL)

https://anonymous.4open.science/r/dl-bootcamp-F584/%5BSolution%5DCIFAR_10.ipynb
https://anonymous.4open.science/r/dl-bootcamp-F584/%5BWORKBOOK_Data_Loaded%5DDeep_Learning_Bootcamp.ipynb
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Figure 2. Some slides created and provided with courtesy by the students (in German) using a confusion matrix to determine classes that
caused, well, confusion in the model. Besides traffic signs with obvious similarities (e.g. “crosswalk” and “risk of slipping/skidding”),
they also observed confusion between a white arrow on blue background and a white line on red background

3.4. How is a neural network actually trained?

After having trained neural networks in the TensorFlow play-
ground and Keras (so far only CIFAR10), the students have
a rough understanding of the training mechanism which
we then deepen. This draws on the sufficient mathematical
foundations (STEM) although discussing partial derivatives
of the loss function with respect to weights and biases (i.e.
in the application context of neural networks) seemed to
make the otherwise abstract concepts of multivariate cal-
culus more tangible to the students. To make gradient de-
scent more intuitive (and appealing), we include a session
in the loss landscape explorer (Ideami, 2020), where we
task the students to experiment with different initial condi-
tions, learning rates, and levels of momentum. The most
interesting screenshots are stored in the shared slides. This
part of the course follows a standard exposition to auto-
differentiation and gradient descent.

3.5. How to put it all together and do experiments?

Based on the code for training a model on CIFAR10 and
the code to load the GTSB data programmatically into a
running Jupyter notebook, the students are putting the pieces
together – mostly on their own. That involves taking care
of the input dimensions (we resize the GTSB images to
45×45×3 instead of 32×32×3), encapsulating the model
creation for fully connected, convolutional, and pretrained
convolutional into functions as well as evaluating the models
in terms of training duration and accuracy. We leave enough
time for the students to build up these parts by themselves
or in groups. An exemplary solution can be found here.

4. Experiences and Results
The predetermined duration of three days is very limited for
such a block course. Especially if the students lack basic

programming skills in Python, it is hard and distracting for
them to develop the models and experiments by themselves.
Hence, we offered substantial code bases for students to
fill in the gaps – which might bore them. Nevertheless, the
fact that they actually built a system that can do something
as useful as recognizing traffic signs within three days was
reported as motivating.

Despite Python and Keras being beginner friendly, it may
still be overwhelming. Moving the data exploration and
design of the DL system to tools they are familiar with –
Windows Explorer and Excel – turned out to be beneficial.
For such an audience, we also consider experimenting with
graphical tools offered by Microsoft or Matlab.

In terms of videocalling tools such as Zoom or Teams, while
we noticed the typical downsides (less interaction and feed-
back) they also have a couple of advantages. It was easier
to catch breaks for both the students and the lecturers which
is a critical factor during eight-hour-days. Additionally,
most participants had a computer setup they are comfortable
with at home. This avoids limitations of university labs,
e.g. not enough power outlets, unstable WIFI or projectors
with low resolution. Especially the screen sharing was a
big advantage. The shared slides led to a more productive
cooperation than leaving the organization up to the students,
as evidenced by the results they created in fig. 2.

Finally, the students’ impressions about DL and AI changed
tremendously throughout all offerings. While the mechanics
of training deep networks can take away from the “magic”
halo that surrounds the typical media coverage, working
with software trained purely from data still fascinated the
participants. We hope that our experiences and learning
resources are useful for the community of ML (and here
DL) teachers.

https://anonymous.4open.science/r/dl-bootcamp-F584/%5BSolution%5DCIFAR_10.ipynb
https://anonymous.4open.science/r/dl-bootcamp-F584/%5BWORKBOOK_Data_Loaded%5DDeep_Learning_Bootcamp.ipynb
https://anonymous.4open.science/r/dl-bootcamp-F584/%5BSOLUTION%5DDeep_Learning_Bootcamp.ipynb
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