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Abstract

Overfitting and generalization is an important con-
cept in Machine Learning as only models that
generalize are interesting for general applications.
Yet some students have trouble learning this im-
portant concept through lectures and exercises.
In this paper we describe common examples of
students misunderstanding overfitting, and pro-
vide recommendations for possible solutions. We
cover student misconceptions about overfitting,
about solutions to overfitting, and implementation
mistakes that are commonly confused with over-
fitting issues. We expect that our paper can con-
tribute to improving student understanding and
lectures about this important topic.

1. Introduction
Machine Learning has had large advances in the last years,
fueled by large datasets, large models, and lots of compu-
tation. This has driven the demand of machine learning
education, particularly about deep neural networks. But
the fundamentals of machine learning have not changed,
and the basic concept of any successful learning system is
generalization, that is, to learn from a limited training set,
and still generalize and perform well on test samples that
might come from different distributions (Hand, 2006).

Teaching the concept of overfitting is not easy (Demšar &
Zupan, 2021) (Acquaviva, 2022), basically because it is a
judgment call based on the ratios of training and validation
losses. Students learn about overfitting as one of the most
basic machine learning concepts, including method to detect
it, and regularization techniques to improve generalization
and reduce overfitting. Students might incorporate previous
experiences into their training (Shouman et al., 2022).

In this paper we show samples coming from our teaching
experience in machine/deep learning courses, and show
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Figure 1. Example view of overfitting in textbooks (top) vs how
students see overfitting in practice (bottom)

the typical mistakes or misconceptions that students have
about the concept of overfitting. We also present samples
on misconceptions about how to ”solve” overfitting, and
discuss the sources of these misconceptions, and propose
ideas to improve teaching of both concepts, with the aims
of improved learning for this important concept.

The contributions of this paper are a conceptual framework
to understand why students have misconceptions on over-
fitting, we present examples of these misconceptions, both
on the concept of overfitting, how overfitting can be pre-
vented, and possible implementation errors that are often
be confused with overfitting. We present use cases and
recommendations for lecturers to improve teaching of this
important concept in machine learning systems.

We believe that this paper can kickstart the discussion about
how we teach overfitting to machine learning students, what
difficulties they face (Marx et al., 2022), and how innovative
methods can improve student understanding, in order for
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students to become proficient machine learning practition-
ers.

2. Concept of Overfitting
Overfitting is the lack of generalization in a machine learn-
ing model (Murphy, 2022) (Bishop & Nasrabadi, 2006)
(Goodfellow et al., 2016). This is usually evaluated over
losses computed on train and validation split of the data,
where the generalization gap can be estimated:

Lgap = Lval − Ltrain (1)

In general if Lgap >> 0, it is said that the model is over-
fitting. But there is normally a small difference between
validation and training loss, the question is, how much differ-
ence should there be to declare overfitting. Regularization
methods like Dropout can also have the effect of inverting
the train and validation loss relationship (Srivastava et al.,
2014). The typical view of overfitting is presented in Figure
1, where training loss decreases with epochs while valida-
tion loss increases, clearly indicating overfitting.

Overfitting is generally presented as a binary condition, the
model overfits or not. This can be seen in many research
papers (some examples are (Krizhevsky et al., 2012) and
(Szegedy et al., 2015)), but overfitting is not formally de-
fined as a binary condition in the literature.

We believe that part of students having misconceptions
about overfitting, is that its seen, presented, and possibly
taught as a binary condition, and not as a continuous phe-
nomena. Overfitting is more likely to happen with larger
Lgap values, and the question is, how large Lgap must be to
decide that the model overfits. This is basically a judgment
call, and there are no clear guidelines in the literature.

3. Student Misconceptions of Overfitting
In this section, we present examples of student misconcep-
tions about the concept of overfitting. We obtained these
from our own experience teaching machine learning, deep
learning, and reinforcement learning courses at the Bache-
lor and Master level. Students provided feedback through
homework assignments and exams, from where we selected
the most common misconceptions specifically about over-
fitting, with questions directly tasked to evaluate student
knowledge about it.

We used the following question to evaluate overfitting con-
cept and possible solutions:

You are training your favourite neural network
and you notice that your validation loss is much
higher than your training loss. Give some possible
solutions to the problem.

Table 1 presents misconception examples for overfitting.
The most common misconceptions is to declare overfitting
by only looking at the training loss, which by definition
does not have the required information to assess general-
ization, and students also confuse specific loss values with
overfitting, like zero training loss, and use non-loss metrics
to assess overfitting (commonly accuracy).

Trying to reduce overfitting (we informally call this ”solv-
ing”) is a large part of many machine learning courses,
by showing students how to use regularization techniques,
reduce model complexity by removing selected layers or
decreasing width (number of neurons), or a diverse set of
standard model architectures that can be used as a base for
their own, in the quest to improve generalization perfor-
mance. We also note that students have misconceptions on
how overfitting can be reduced, examples are presented in
Table 2. Mostly students try to make unrelated changes to
the model or training process (like changing learning rates),
and in many cases the students do not realize that the dataset
is just too small, there are not many chances of learning a
useful concept from limited data. One example included
tuning the size of the validation or test set by manipulating
the splits, which can lead to possible scientific misconduct.

We also identified a set of implementation errors that led
students to think their models were overfitting but this was
just an incorrect implementation. These are presented in
Table 3, categorized by symptom. Since only losses are
typically monitored during training/validation, it is easy to
fall prey to implementation errors that produce convincing
losses to the untrained eye, while the model is not actually
learning.

The biggest implementation error is to test the model with
images that are very far from the training distribution. An-
other important error is not to notice that the model is under-
fitting, since there is almost no difference between training
and validation losses, but this could be caused by not train-
ing the model appropriately, or even using incorrect losses
or mismatch between model output ranges and labels.

Another important source of confusion regarding failure
to generalize, happens with the test distribution. Students
might train a model on the MNIST dataset, and then down-
load digit images from the internet or draw their own in
painting software, and then test the model on these images.
A very likely result is that the model will fail to make cor-
rect predictions, and this is simply because the new test
distribution is very far from the training distribution, only
MNIST-like digits have a chance of actually working on this
model.

Students generally learn overfitting using supervised learn-
ing examples, but it can also happen in unsupervised and
reinforcement learning settings
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A training loss of zero means it is overfitting.
Validation loss is unstable means it is overfitting.
Validation loss that is constant means it is overfitting.
Training and validation loss differ by 0.5 units, my model
is surely overfitting.
Validation loss is lower than training loss, means my
model is overfitting.
Training accuracy is higher than validation accuracy, my
model is overfitting.
Accuracy is constant which indicates the model is overfit-
ting.
Training loss stopped decreasing after N epochs, my
model just overfit.
The training loss increases instead of decrease, this means
my model is overfitting.
My model overfits from the start of training.
Overfitting only happens within Supervised Learning.
I have 10K data points, my model cannot possibly be
overfitting.
My network is pre-trained on ImageNet, thus it cannot
overfit.

Table 1. List of Student Misconceptions on the concept of Overfit-
ting, ordered by approximate frequency (most frequent on top).

4. Beyond Supervised Learning
As the concept of overfitting is typically explained from
the Supervised Learning perspective, students are prone to
forget that this phenomenon might appear in other machine
learning paradigms as well. As a result they tend to overlook
the existence of overfitting within Unsupervised Learning
(UL) and Reinforcement Learning (RL) and fail in realizing
that if their models underperform, overfitting might be the
cause of their underwhelming results.

• Unsupervised Learning. A common UL algorithm
which is taught in most undergrad courses is K-Means.
It is well known that the algorithm requires the user to
specify in advance the number of k clusters, which are
then found through an iterative process that minimizes
the within-cluster variance. One easy way that students
find to ensure that such quantity is minimized is to set
the value of k as high as possible. Yet, they tend to
forget that by doing so they will obtain clusters that are
only specific to very few data-points, therefore failing
in partitioning the data space properly.

• Reinforcement Learning. Just like a classifier might
fail in generalizing to data samples that are outside
from the training distribution, so can a RL agent that
has to deal with states that have not yet been seen
throughout its interaction with the environment. This
issue is even more prominent nowadays as RL algo-

If my model overfits, I can solve it by decreasing the
learning rate.
Overfitting can be solved by adding more convolutional
layers.
My model overfits because I did not normalize the inputs
correctly.
I am using ResNet (or any other standard model) and this
model cannot overfit, there must be a bug somewhere.
I will change the train/validation split from 80/20 to 70/30
and this will help with overfitting.
Overfitting is solved by changing some hyper-parameters
(unrelated to regularization or model complexity).

Table 2. List of Student Misconceptions on ”solving” Overfitting

rithms make use of Experience Replay memory buffers
that store RL trajectories that are needed for training,
therefore resulting in agents that can only learn a value-
function or policy for a limited set of trajectories.

In many cases methods for UL and RL are reformulated as
supervised learning problems, for example autoencoders for
UL, and Deep Q-Networks for RL.

5. Use Cases for Learning about Overfitting
We believe that multiple definitions of overfitting can be
used to show that it is not a unique concept, and there are
multiple aspects to be considered. For this we suggest the
following exercises or use cases that can aid students to
build a deeper understanding of overfitting.

Multiple Test Sets Train a model on a standard dataset,
that contains its own test split, but provide additional
test sets, including images collected from the internet,
and own images. Students should see that the model
works on the standard test set, but might fail on new
images from the internet. This can be used to show
that any model can overfit, only depending on the data
it is tested on.

Multiple Tasks Select multiple tasks (not just classifica-
tion), to showcase different scenarios where a model
can overfit. For example be object detection, semantic
segmentation, or even instance segmentation (a multi-
task combination of object detection and segmentation).
These tasks have different sample complexity and data
requirements.

Vary Training Set Size Overfitting often happens when
there is not enough training data, and providing stu-
dents with sub-sampled training sets to force overfitting
can help them understand the concept, specially if this
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Issue or Symptoms Possible Causes

Model predicts incorrectly on new images Input normalization not applied to new images.
Poor out of distribution generalization.
Inputs are very different from the training set.

Training and validation loss are both high. Model was not trained for enough epochs to reach convergence.
Model is underfitting / model is not appropriate for the task.
Incorrect training loss (e.g. using classification loss for regression).
Incorrect activation at the output or mismatch in output ranges.
Mismatch between model task and dataset task.

One or both losses behave erratically (noisy) Not enough training or validation data.
Model is too overparametrized for the training set.

Other and miscellaneous Metrics are used that are not appropriate for the task.
Losses are not differentiable or implemented incorrectly.

Table 3. List of Implementation Errors that can be confused with Overfitting

is combined with a variable size training set. An ex-
ercise can be built, adding more data to the training
set, the student can see how overfitting decreases and
generalization improves. This particular use case can
be used to showcase that overfitting is not a binary
condition but has continuous properties.

Multiple Paradigms We have argued that students might
think that overfitting is specific to supervised learning.
Using RL or UL tasks and datasets might help dispel
this misconception. For example, using unsupervised
feature learning on a standard dataset, students can
explore different classes present on the feature learn-
ing dataset, then using a different dataset that might
or might not share classes with the feature learning
dataset, which would reveal the different levels of gen-
eralization on seen and unseen object classes. In rein-
forcement learning, limited exploration can be used to
show students the influence of the training set on gen-
eralization, using part of the environment for training,
and out of training distribution parts of the environ-
ment for testing, which will most likely reveal failure
to generalize.

Showcase Judgement Calls We argue that the generaliza-
tion gap Lgap is not intuitive to interpret since there are
no clear thresholds to declare overfitting. All previous
examples can be used to show this to students, where
different generalization gaps can be produced by the
teacher, with different overfitting results.

The overall concept in these use cases is to teach overfitting
separately from failure to generalize. Overfitting should
be taught with multiple use cases and datasets, particularly
test sets, not just on a single task/dataset or the standard
train/validation split plot like Figure 1.

In the appendix we provide a checklist that students and
lecturers can use to check if their training scheme is appro-
priate. This can be useful to systematically debug overfitting
and failure to generalize issues, and from where new use
cases or exercises can be derived (Raschka, 2022).

We encourage that lecturers to make ”negative” examples,
where there is sample code but with some implementation
errors, and students are tasked to correct these errors (for
example, wrong losses, wrong number of output neurons,
output range mismatch, etc), and improve their knowledge
about overfitting.

6. Conclusions and Future Work
In this paper we study how to teach overfitting through
presenting examples of student misconceptions about the
concept, how it can be ”solved”, and implementation errors
that can be confused with overfitting. We present possible
use cases and exercises that we believe can help students
improve their understanding of overfitting in practice, and
move away from a binary condition into a continuous phe-
nomena.

We believe that this is useful information to improve teach-
ing of the overfitting concept and reduce possible student
failure. We encourage lecturers and practitioners of Ma-
chine Learning to create exercises, homework, and assign-
ments specifically crafted to address these misconceptions,
as a way to put learning materials ahead of possible stu-
dent understanding, which should overall improve learning
outcomes.

As future work we plan to develop special exercises to tackle
the overfitting misconceptions, and evaluate them in future
versions of our courses on a controlled experiment.
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A. Checklist for Debugging ML Models
Here we provide a short checklist for students to debug the training of their machine learning models. The idea of this
checklist is to follow it step by step

1. Is the loss used for training the model appropriate for the task?
If the incorrect loss function is used (cross-entropy for classification, mean squared error for regression, or similar),
then the model might not train, the loss might not decrease, or the model might not converge at all.

2. Was the model trained until convergence?
A common source of confusion is looking at metrics/losses or predictions of a model that has not been trained for a
sufficient amount of epochs. The predictions might look random or with strange patterns, which is produced by the
partial and unfinished training. Looking at predictions only makes sense once the model has converged, with a loss that
does not decrease further after a long stretch of constant decrease.

3. Was validation data used to be able to check for overfitting?
There is only one way to check for overfitting, that is, to use a train and a validation split that have no samples in
common, train the model on the training set, and after each epoch (or a set number of iterations), evaluate the model
on the validation set. Losses should be computed on the train and validation predictions, and compared to decide if
overfitting can happen.
The variation of train and validation losses can be plotted (see Figure 1) to decide if overfitting is happening, with a gap
(Lgap, of varying size) indicating overfitting, specially if this gap grows with increasing number of epochs.
Note that metrics should not be used to assess overfitting, since a metric might measure different aspects of the models’
predictions than the loss. Only train and validation losses should be used to assess overfitting.

4. Is there enough training data?
Assess the number of samples of your training set. If its too small, then the model might not learn the desired pattern or
have unstable loss and convergence properties. The model might fail to generalize, since there is little information
available for learning. Compare the number of samples in the training set to the number of model parameter, and assess
if the system is well specified or underspecified (the latter would be the case if there are more model parameters than
training samples). If this is the case, consider acquiring more data or using data augmentation.

5. Is the data distribution of training and validation/test sets equal or similar?
If input data used for testing is very different than the training set, the the model might not generalize to these images,
and this is a failure to generalize, not exactly an overfitting problem.

6. Is the model and/or training process correctly implemented?
Assess if there are implementation errors (refer to Table 3) that could cause the model to fail training, which might
masquerade as overfitting. Check if losses are implemented correctly, labels are correctly loaded and have the expected
ranges, check if gradients have the expected values (to assess vanishing gradients), etc.


