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Abstract

Given the challenges associated with the real-world deployment of Machine Learning (ML)
models, especially towards efficiently integrating novel information on-the-go, both Con-
tinual Learning (CL) and Causality have been proposed and investigated individually as
potent solutions. Despite their complementary nature, the bridge between them is still
largely unexplored. In this work, we focus on causality to improve the learning and knowl-
edge preservation capabilities of CL models. In particular, positing Causal Replay for
knowledge rehearsal, we discuss how CL-based models can benefit from causal interventions
towards improving their ability to replay past knowledge in order to mitigate forgetting.

1. Introduction

Real-world application of Machine Learning (ML) solutions require models to dynamically
learn and adapt with streams of incrementally acquired data, while preserving past knowl-
edge. Conventional ML-based methods are ill-fated to meet these challenges as they work
under a pivotal assumption that all data is available apriori under relatively stationary
data distributions (Graffieti et al., 2022). This stationarity ensures that training samples
are independent and identically distributed (i.i.d), allowing models to learn in batches of
representative distributions. The real-world, however, is not stationary and changes contin-
uously (Hadsell et al., 2020). As models continually encounter novel information, violating
this i.i.d assumption, their ability to remember previously learnt tasks progressively dete-
riorates, resulting in forgetting (McCloskey and Cohen, 1989).

Continual Learning (CL) (Parisi et al., 2019; Hadsell et al., 2020) aims to address adapt-
ability in ML-based models by enabling them to continually learn and adapt, balancing
incremental learning of novel information with the preservation of past knowledge. CL
focuses on learning with continuous streams of data acquired from non-stationary or chang-
ing distributions (Hadsell et al., 2020). This may be achieved by regulating model updates
to control plasticity or rehearsing past knowledge by storing and replaying already seen
information to simulate i.i.d learning settings.
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Given the above, Causality (Pearl, 2009), especially addressing adaptability and causal
discovery, can complement lifelong learning of information by helping understand the causal
structure of the data or the task and ‘re-adjust’ model learning to cope with changing
data distributions (Pearl, 2019). Furthermore, it has been posited that the increasingly
apparent challenges in ML (such as robustness, generalisation, bias, transparency) are due to
conventional ML methods learning correlation-based patterns and relationships (Schölkopf
et al., 2021). Causal reasoning tools can contribute towards understanding (Cheong et al.,
2023) and addressing some of these challenges (Cheng et al., 2022).

In this position paper, we focus on knowledge rehearsal as an effective tool for CL-based
models to preserve past knowledge particularly using causal interventions to understand
and update data distributions such that only the most relevant data samples (for rehearsal)
or features (for pseudo-rehearsal) can be used by the model to preserve past knowledge.
Such Causal Replay can help improve the efficiency of knowledge rehearsal for continual
learning of information.

1.1. Knowledge Rehearsal to Mitigate Forgetting

Efficient rehearsal of past knowledge can be achieved by physically storing samples from
previous tasks in memory buffers and regularly sampling from them (rehearsal – Robins
1993) mixing it with new data. The simplest strategy to achieve this is to fix the size of the
memory buffer to be ‘large enough’ and randomly maintain a fraction of previously seen
samples from each task in the buffer for periodic rehearsal (Hsu et al., 2018). However,
as the number of tasks increases, fewer samples are available for rehearsal per task. Other
sophisticated rehearsal methods focus on prioritising replay following certain heuristics such
as feature or classification margins (Hu et al., 2021), or storing exemplars for each task that
best approximate task means (Rebuffi et al., 2017). Despite such ‘intelligent’ sampling,
high dimensionality of data and a large number of tasks require a huge amount of memory,
making their real-world application inefficient (Kwon et al., 2021).

Alternatively, generative models may be used, along with the learning model, that
learn the inherent data statistics, enabling models to draw pseudo-samples to be replayed
(pseudo-rehearsal – Robins 1995) along with novel data. Recent advances in generative
models (Goodfellow et al., 2014; Kingma and Welling, 2013), particularly in their ability
to generate high-quality samples, have greatly enhanced the potential of pseudo-rehearsal
methods (Shin et al., 2017; Churamani and Gunes, 2020). More recent methods focus on
generative feature replay (van de Ven et al., 2020; Stoychev et al., 2023), alleviating the
need to optimise generators for reconstructing high-dimensional samples. However, as the
number of tasks increases, they face capacity saturation and are not able to efficiently learn
task-discriminative representations. Furthermore, the generators become harder to train,
resulting in an inefficient rehearsal of past knowledge. We believe causality can offer sig-
nificant improvements in this regard. To date, there is minimal work that explores the
synergies between CL and causality (Chu et al., 2021).

1.2. Causality

The study of causality entails a range of tools such as graphical models, the do-operator,
counterfactuals as well as structural equations (Pearl, 2009).Using these tools, conventional

64



Towards Causal Replay for Knowledge Rehearsal in Continual Learning

causal research has mostly focused on causal pattern recognition (Vowels et al., 2021) and
causal distribution estimation (Yao et al., 2021). Here, we focus on methods to merge
conventional causal research with ML to address the existing gaps. Recent works in causal
interpretability (Moraffah et al., 2020) and causal fairness (Makhlouf et al., 2020) have
proven such an approach to be promising. Here, we leverage two main themes: Causal
Interventions and Causal Structure Discovery.

Following Pearl’s notation (Pearl, 2009) for a Structural Causal Model (SCM), we have
a set of variables V and a set of functions F that encode the causal relations between each
variable. Using this framework, causal interventions can be either be ‘structural’ or ‘para-
metric’ (Spirtes et al., 2000) representing a continuum of ‘harder’ to ‘softer’ interventions.
A ‘hard’ intervention can be understood as a forcible removal of an edge such that the
function encoding Vi ← fVi is modified such that another variable Vj is no longer a parent
of variable Vi. ‘Soft’ interventions, on the other hand, simply modify the conditional prob-
ability distributions of the intervened variable Vi. Depending on the task, we can combine
the most appropriate form of causal interventions with CL-based models to preserve past
knowledge and update the model using only the relevant features. In addition, we also
propose to leverage existing causal discovery methods (Vowels et al., 2021) that can be
utilised to discover causal relations within the observational data. We propose to impart
the discovered causal knowledge to CL-based methods in order to mitigate forgetting and
to learn new relevant features.

2. Causal Replay for Knowledge Rehearsal

Understanding the causal structure of the data can enable models to distil task-relevant
information, positively impacting performance (Deng and Zhang, 2021; Yang et al., 2021).
This can either be in the form of identifying and prioritising data samples that contribute
the most towards the models’ learning (motivating causal rehearsal) or pruning feature-sets
to extract meaningful representations that best attribute the task to be learnt (motivating
causal pseudo-rehearsal). These possibilities are discussed further in this section.

2.1. Causal Rehearsal

One strategy for augmenting CL with causality can be causality-driven rehearsal (see Fig-
ure 1 a). Firstly, we aim to understand the causal structure of task-specific data in order to
prioritise samples for rehearsal. As neural networks are capable of representing the input
features as well as their respective causal relations to each other within their parameters,
we can learn the causal structure of the data during the training phase using a range of
existing causal discovery methods (Vowels et al., 2021). An online example of doing so is
exemplified by Javed et al. (2020) who propose to measure the variance in the weights of
the model, over time, with spurious features resulting in high variance. As we are only
able to discover causal Directed Acyclic Graphs (DAGs) up to Markov equivalence, we can
subsequently leverage causal-scoring methods (Glymour et al., 2019) or causality-based fea-
ture selection methods (Yu et al., 2020) to prioritise those samples for rehearsal that are
deemed to have a higher causal effect on the target prediction outcome. In addition, given
the causal structure of the data, we can therefore prune off features that have the least or
weakest causal effect on the target outcome. Subsequently, as we update the model with
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Figure 1: Causal Replay for (a) Prioritised Rehearsal and efficient (b) Pseudo-rehearsal of
past knowledge.

each new task, we can reprioritise the samples to update the memory buffer as well as the
learnt causal structure. As such, the causal model can then also be updated in a continual
manner as more data becomes available.

2.2. Causal Pseudo-rehearsal

Another opportunity is that of causality-driven pseudo-rehearsal (see Figure 1 b). Here the
goal is to use the learnt causal structure of the data to rehearse information in a principled
manner. Attempts to remove unwanted causal relations has proven to be effective in the
case of knowledge distillation (Deng and Zhang, 2021). However, such an idea has yet to be
fully explored in CL. Existing methods largely rely on pattern generation to simulate i.i.d.
settings. However, this does not take into account the causal relations between variables.
One way of addressing this is to make use of interventions (both ‘hard’ and ‘soft’) such
that we generate samples from the updated distribution which has been ‘intervened’ upon.
Such an approach has proven to be effective in the domain of disentangled representation
learning using Variational Autoencoders (VAEs) (Yang et al., 2021). Instead of simply
generating pseudo-samples, we can intervene by updating the parameters of the generative
model based on the causal effect estimated or parameterised by the learnt causal structure
of the data. These parameters can also be continually updated given new information. By
conducting pseudo-rehearsal in this manner, we are able to adapt to the changes in new
data whilst preserving old information.
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3. Summary and Next Steps

In this position paper, we propose to learn the causal structure of the data for efficient
knowledge rehearsal in CL models. Understanding causal relationships can help distil
knowledge by prioritising samples that contribute most towards model learning (causal
rehearsal) as well as prune feature-sets to include only the most relevant features (causal
pseudo-rehearsal), having the strongest causal relationships vis-à-vis the tasks at hand. Yet,
as causal relations can be problem or task-specific (as opposed to task-agnostic), it will also
be important to consider the causal relationship and dependencies between the different
tasks to be learnt, across datasets. Some possible directions may involve exploring image
datasets such as ImageNet (Deng et al., 2009) and CIFAR-10 (Krizhevsky and Hinton, 2009)
where models need to learn different objects or, more Facial Expression Recognition (FER)
datasets such as AffectNet (Mollahosseini et al., 2018) and RAF-DB (Li et al., 2017) where
the models need to learn to classify different facial expressions. FER-based applications can
be particularly interesting to explore given the high overlap in the learnt feature-spaces for
the different tasks (evaluating human faces for expression recognition) as well as subject-
specific variations in data samples. Thus, FER benchmarks will form the pivotal focus of
our further experimentation with Causal Replay.
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