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Abstract

We have been investigating the causal analysis of industrial plant process data and its
various applications, such as material quantity optimization utilizing intervention effects.
However, process data often comes with various problems such as non-stationary character-
istics including distribution shifts, which make such applications difficult. When combined
with the idea of continual learning, causal models may be able to solve these problems.
We present the potential and prospects for industrial applications of continual causality,
showing previous work. We also briefly introduce our causal discovery method utilizing a
continual framework.

1. Our Position and Purpose

We have been researching business applications for industrial plants in which predictive
models are created from data and the results are used for later actions to achieve specific
objectives. Our findings have shown that the concepts of continual learning and causality
are important for achieving these goals. Here, we present the challenges we have faced so
far in terms of the combination of continual learning and causality (continual causality)
and discuss potential solutions. We also briefly discuss a new causal discovery method to
deal with non-stationarity and non-linearity by continual learning.

2. Discussion

2.1. Causality in Industrial Applications

In many industrial applications of AI, the purpose of a prediction is often to stabilize or
maximize a specific variable using the predicted value, e.g., optimizing the output product
for material input in an industrial plant. Since a simple prediction model may not accurately
capture the data generation process, it can be difficult to estimate intervention effects,
such as how much the production rate will increase when the material input is increased.
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Therefore, causal analysis is important for such applications. Causality is also useful from
the viewpoint of interpretability because plants have a high risk of accidents and potential
damage, which makes it important to understand the basis and reasons for various types of
predictions.

While causality is useful, the complete picture of causal relationships is rarely avail-
able in plant process data. This is because plant processes often include feedback loops
and material reuse, and there may be time-delayed effects among processes, resulting in
causal relationships and directions that are often nontrivial. It is therefore vital to iden-
tify unknown causal relationships as well as to estimate intervention effects. However, it is
difficult to conduct experiments such as Randomized Controlled Trials (RCTs) to identify
causal relationships in non-operating conditions because of the risk of accidents, potential
damage, and the various business factors in a given plant. This makes the framework of
causal discovery, which identifies causal relationships and directions only from data, quite
important.

2.2. Potential of Continual Learning

To begin, in this paper, we broadly define Continual Learning as a framework in which
new knowledge in machine learning should be learned in such a way that it reuses knowl-
edge already learned and acquired, and can be learned continuously, hierarchically, and
additionally. (Refer to this paper Ring et al. (1994).) Note that our definition treats Con-
tinual Learning as something that is not necessarily strongly associated with reinforcement
learning.

Modeling plant process data also runs into difficulties in terms of maintenance over
time. For example, the average plant will exhibit many non-stationary characteristics,
such as instability at start-up, distribution shifts due to changes in the quantity or type of
products, trends related to equipment aging, and seasonality issues stemming from outdoor
temperature changes Kadlec et al. (2009). By utilizing the concept of continual learning,
the system can continuously train models and adapt to changes in system conditions. We
have integrated this concept into a new method called JIT-LiNGAM Fujiwara et al. (2023)1

(discussed later).

It may also be possible to reconsider the aforementioned tasks of stabilizing and max-
imizing plant process variables in the context of not only system control or causality but
also reinforcement learning and continual learning (future work).

3. Past Efforts and Future Prospects

In this paper, we discuss the below challenges, describe the efforts of ourselves and other
researchers to address them, and briefly mention future prospects.

3.1. Causal Discovery

Causal discovery is a framework for identifying unknown causal relationships and directions
only from data. As mentioned above, this framework is important because causal relation-

1. Under review at the time of the AAAI Bridge Program on Continual Causality, but now already accepted
and presented.
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Figure 1: Flow of vinyl acetate production plant simulator Luyben and Tyréus (1998).

Figure 2: Results of applying VAR-LiNGAM to plant simulator data. Edges represent
linear causality coefficients. Nodes x7–x10 denote process variables, e.g., x7(t-1)
means the value of x7 one step before at time t.

ships are often unknown in plant process data. Discovered causal relationships are utilized
for later intervention effect estimation and optimization, as well as for variable selection
and model interpretation. LiNGAM Shimizu et al. (2006) is a representative linear causal
discovery method, and it has been extended with partial prior knowledge Shimizu et al.
(2011) and with latent variables Hoyer et al. (2008). Several non-linear methods are also
known Peters et al. (2014); Zheng et al. (2020); Uemura et al. (2022).

We have applied these methods to actual plant process data but faced the common prob-
lem that the “true causal relationships” are unknown, which makes it difficult to evaluate
the results. However, there is a possibility that the causal model can be continuously eval-
uated indirectly on the basis of the results of later interventional actions and then updated
accordingly. This should be considered in future work related to continual causality.
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Figure 3: Overview of JIT-LiNGAM.

3.2. Time-series Extension

It is necessary to introduce time-series models to account for time-lagged variables in causal
discovery, as this enables us to construct causal models without contradiction by expanding
feedback loops along the time direction. Specific methods in this vein include VAR-LiNGAM
Hyvärinen et al. (2010). We have conducted numerical experiments in which VAR-LiNGAM
is applied to the simulation data of vinyl acetate plants Luyben and Tyréus (1998), with
the results briefly presented in Figs. 1 and 2.

3.3. Optimal Intervention

After constructing a complete causal model, the optimal amount of intervention to an
operable variable can be calculated backward such that a certain variable has a specific
value Pearl et al. (2016). There are various extensions of this approach, including methods
that utilize predictive models Blöbaum and Shimizu (2017) or that estimate the optimal
individual-level intervention Kiritoshi et al. (2021).

3.4. Continual Causal Discovery : JIT-LiNGAM

We proposed a causal discovery method for non-stationarity (e.g., distribution shift and non-
linear causal relationships) called JIT-LiNGAM Fujiwara et al. (2023), in which LiNGAM is
combined with Just-In-Time Modeling (JIT) Stenman et al. (1996); Bontempi et al. (1999).
JIT is a method conventionally used for soft sensors (pseudo-sensors in plants for difficult-
to-measure locations using regression models, etc.), where local linear models are trained
continually by extracting neighboring samples of the current input sample from a database.
On the basis of Taylor’s theorem, non-linear phenomena in plants can be approximated by
local linear models, and by utilizing neighboring samples for the modeling, we can follow
continual changes in plants. The database can also be updated by adding samples online;
however, due to limitations of memory and computational complexity, efficient use of data is
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vital. Future work should examine the optimal way of using data and consider the inclusion
of other developments, such as the use of influence functions or of continual learning methods
combined with reinforcement learning.

Extensions to time-delayed causality (as described above) and optimal intervention are
also possible. In addition, since this approach enables us to capture snapshots of non-linear,
non-stationary, and dynamically changing causal relationships, we may even be able to deal
with cases where causal directions are being reversed. This is a potential solution to the
plant feedback loop problem described above.

4. Conclusion

We presented our positions in the causal analysis research area relevant to continual learning
problems. We are currently working on each introduced theme independently, but in the
future we will need to integrate them. In particular, we plan to extend JIT-LiNGAM
in various ways. Continual causality is still a very much unexplored area, and extensive
research will thus be conducted in the future.
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Appendix A. JIT-LiNGAM Algorithm

We present the details of JIT-LiNGAM in Algorithm 1. Additional details are included in
our submitted paper Fujiwara et al. (2023).

Algorithm 1 JIT Algorithm for Time-Series Causal Discovery (JIT-LiNGAM)

Inputs:
stored data D =

{
x(t) | t = 1, . . . , T − 1

}
,

query point xQ = x(T ), distance function d(·, ·), number of neighbors K.
Outputs:

weighted adjacency matrix J(x(T )): representing the causality defined in the neighbor-
hood for query point x(T ).

Procedure 1
Extract K-data of x(t) from D, on the basis of d(x(t),xQ), which is the distance from
the query point xQ. (The details of how to extract K-data are described in the paper
Fujiwara et al. (2023)) The resulting K-data subset Ω(xQ; d,K) is:

Ω(xQ; d,K) =
{
x(σ(k)) | k = 1, . . . ,K

}
,

where σ(k) is a function that returns the k-th nearest time index t in Ω(xQ; d,K).

Procedure 2
Centralize Ω(xQ; d,K) and get Ω̃(xQ; d,K), where the mean is subtracted from each
element of Ω(xQ; d,K) along each dimension of x.

Procedure 3
Train LiNGAM using Ω̃(xQ; d,K) and get resulting weighted adjacency matrix J(x(T )).
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