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Abstract

As the importance of causality in machine learning grows, we expect the model to learn
the correct causal mechanism for robustness even under distribution shifts. Since most of
the prior benchmarks focused on vision and language tasks, domain or temporal shifts in
causal inference tasks have not been well explored. To this end, we introduce Backend-
TS dataset for modeling uplift in continual learning scenarios. We build the dataset with
CRUD data and propose continual learning tasks under temporal and domain shifts.

1. Introduction

Uplift modeling is a particular type of predictive causal model with broad applications in
marketing, personalized medicines, and politics. Uplift is defined as Individual Treatment
Effect (ITE), but its evaluation metric differs from the other causal tasks (Radcliffe and
Surry, 1999). Separating causality from spurious relationships and precise estimation of
treatment effects are crucial in causal tasks. However, by modeling uplift with causality,
p(y|do(t), x), we ultimately target a subgroup of individuals with high uplift scores, and
therefore, the model’s performance is measured by cumulative uplift across the population.
Identifying this subgroup cannot be answered by the propensity model, p(y|t = 1, x), which
merely predicts one’s future behavior.

In practice, the bottlenecks of causal models are data availability, scalability, and distri-
bution shifts. In Randomized Controlled Trials (RCTs), individual’s treatment is randomly
assigned; therefore, we can identify Average Treatment Effect (ATE) with the difference
between the treatment and control group’s average outcomes (Pearl, 2010). In many cases
where RCTs are infeasible, however, practitioners are given observational data. No mat-
ter how many variables one has collected, unobserved confounders may still exist. Even if
one can collect more covariates, the curse of dimensionality may occur. It is problematic,
particularly for causal inference with high-dimensional data, as the chance of violating the
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positivity assumption increases (Zhao et al., 2017; D’Amour et al., 2021). Moreover, distri-
bution may change over time and among different domains, resulting in improper validation,
and eventually, the degradation of the fitted model.

To challenge the aforementioned issues with causality in high-dimensional spaces and
bridge the gap between research and practice environments, we publish Backend-TS
dataset1, a real-world uplift dataset from mobile game users. The task is to predict uplift to
push notifications by recognizing patterns from each user’s CRUD2 history. A model must
learn underlying causal mechanisms and continuously adapt to distributions varying over
time and to other games; otherwise, its performance will drop sharply when the distribution
changes. We also argue that distribution changes can cause severe problems in causal infer-
ence since we model future customer behaviors based on their history. To the best of our
knowledge, Backend-TS is the first uplift dataset with time-series under domain shifts.

2. Background

2.1. Causal Inference And Its Notations

Potential outcomes framework (Rubin, 1974) defines causal effect as the difference between
two potential outcomes YT=t − YT=0: when receiving treatment (T = t) and under control
(T = 0). We simplify the problem to the case where both are binary, i.e., Y, T ∈ {0, 1},
and shortly denote YT=t as Y (t). The fundamental problem of causal inference (Holland,
1986) states that either Yi(1) or Yi(0) is observable for each unit indexed by i ∈ {1, . . . , n},
and the unobserved outcome is called counterfactual.

To estimate ITE, or uplift, ui := Yi(1)−Yi(0), we model Conditional Average Treatment
Effect (CATE) conditioned on features X, i.e., u(X) := E [Y (1) − Y (0)|X]. Among the
assumptions needed to identify CATE, two assumptions are crucial and often likely to be
violated (Pearl, 2010; Neal, 2020): unconfoundedness, i.e., Y ⊥⊥ T |X, and positivity, i.e.,
P (T |X = x) > 0,∀x : P (X = x) > 0.

2.2. Uplift Modeling

Here, we introduce marketing terms following Radclifte and Simpson (2008) to illustrate
the concept of uplift modeling. Individuals can be segmented into four groups along two
axes: received treatment and response to it. Sure Things will stay (or buy a product)
whether or not they receive treatment (e.g., an advertisement), and Lost Causes will leave
(or not buy the product) in either case. In short, the treatment has neither positive nor
negative effects on both groups, i.e., ui = Yi(1)−Yi(0) ≈ 0. On the other hand, Persuadables
are likely to stay only if they receive the treatment, i.e., ui > 0, but Sleeping Dogs would
be annoyed and eventually leave, i.e., ui < 0. Based upon this fundamental segmentation,
the main goal is thus to identify as many Persuadables as possible while avoiding Sleeping
Dogs for the treatment.

1. The dataset is available under CC BY-NC-SA 4.0 license at https://blog.thebackend.io/

research-backnd-ts, and the baseline code for models and dataloader is available at https://github.
com/nannullna/ts4uplift

2. CRUD refers to the four functions necessary for storage and server applications: Create, Read, Update,
and Delete.
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2.3. Time-Series Modeling

Time-series is a sequence of discrete-time data. Many previous works have dealt with reg-
ular time-series, but in this paper, we mainly focus on irregular time-series, where intervals
between two consecutive data points are not the same. RNNs (Rumelhart et al., 1986;
Hochreiter and Schmidhuber, 1997; Cho et al., 2014), TCNs (Bai et al., 2018) with dilated
convolutions (Yu and Koltun, 2015), and Transformers (Vaswani et al., 2017) have become
popular choices for handling time-series data. However, there is no one-size-fits-all aug-
mentation strategy in various types of time-series (Yue et al., 2022) except for dropout
(Srivastava et al., 2014), or random masking (Devlin et al., 2018; He et al., 2022).

2.4. Continual Learning

Continual Learning (CL) aims to effectively learn new tasks and adapt a model to distri-
bution shifts over time while minimizing performance degradation in the learned scenarios,
which is called catastrophic forgetting (McCloskey and Cohen, 1989; Kirkpatrick et al.,
2017). It is also infeasible in practice to fully retrain the model whenever new data are
available due to training costs or the unavailability of previous data. Therefore, recent
algorithms for CL aim to accumulate knowledge and reuse them in future scenarios with-
out forgetting information (e.g., iCaRL (Rebuffi et al., 2017b), A-GEM (Chaudhry et al.,
2019), EWC (Kirkpatrick et al., 2017), SI (Zenke et al., 2017)). Moreover, causal inference
tasks require the model to capture the causal mechanism over distributional shifts, on which
existing CL algorithms have not focused.

3. Previous Benchmarks

3.1. Benchmarks for Uplift Modeling

Researchers on uplift have relied on (semi-)synthetic data for testing algorithms since under-
lying causal mechanisms can be fully specified by researchers and counterfactuals do exist
in synthetic settings. On the other hand, as of now, the largest observational benchmark
for uplift modeling is Criteo dataset (Eustache et al., 2018) with 12 static features from
14M real-world users. Thus far, there has been little motivation to use deep learning, and
therefore, related works have been restricted to smaller neural networks (# params < 1K)
or other machine learning algorithms. With regard to causal inference with time-series,
a subset of MIMIC II/III (Johnson et al., 2016) has been used for causal discovery or
inference. See Moraffah et al. (2021) for a comprehensive review.

3.2. Benchmarks for Continual Learning

Benchmarks in various fields and tasks with CL scenarios have been introduced, e.g., object
recognition in robotics (Fanello et al., 2013; Lomonaco and Maltoni, 2017; She et al., 2020),
classification tasks in various domains on images (Rebuffi et al., 2017a; Lake et al., 2015;
He et al., 2021), videos (Roady et al., 2020), 3D objects (Stojanov et al., 2019), and natural
language (Hussain et al., 2021; Srinivasan et al., 2022). However, domain or temporal shifts
in CL tasks have not been well explored.
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Figure 1: Illustration of Backend-TS dataset construction.

4. Backend-TS Dataset

In this section, we introduce Backend-TS dataset. The dataset construction method and
the proposed tasks are briefly illustrated in Figure 1.

4.1. Background

We collected data from AFI Inc., a Backend-as-a-Service (BaaS) company specializing in
mobile games. The company owns backend servers and provides APIs that game developers
can access to quickly release their apps without backend servers of their own. One of the
features is to send a push notification to all users at the same time. We wanted to build
a model that targets only a subset of users with high gains from a push message. However,
CRUD log data are only available to us since the company does not collect user-specific
information and has no access to each game’s code or internal data.

4.2. Construction

The treatment is not assigned randomly in a typical observational dataset, and the true
treatment assignment mechanism is unknown. In our data, however, the treatment group
only exists as the push message is given to all users simultaneously. To circumvent this
problem, for a train set, we sampled a pseudo-control group exactly one week before the
push so as to eliminate the time and weekday effect. We also introduced a concept of no
push area, an -12∼+6 hour window around which no other pushes must exist to prevent
interference from them. Note that some users exist in both groups, and utilizing those data
points (e.g., randomly choosing either one or using both) is up to modeling strategies. For
a test set, we randomly split those overlapping users into either group to simulate RCTs.

4.3. Overview

The dataset consists of three games (A, B, and C) with a total of 16.7M lines of CRUD
logs from 5,360 users. Only a handful of games met the conditions mentioned above among
hundreds of games in service, most of which either sent pushes too frequently or did not use
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this API at all. Each consists of a triple (Xi, Ti, Yi), where Xi is a sequence of categorical
variables along with corresponding timestamps, and Ti, Yi ∈ {0, 1} are binary indicators
of the treatment and whether a gamer logged in within {three, six, twelve}3 hours after
the push message had been sent. Although the games use the same APIs provided by the
company, they differ in response rates, lengths, API usage, and other factors. For example,
two different games may use the same type of API calls for different purposes.

4.4. Tasks

We experimented on uplift modeling in the following proposed tasks:

• In Distribution (id): train with the game A (APR, MAY) and test on 20% random-
split holdout set.

• Temporal Shift (ts): train with the game A (APR, MAY) and test on the game A
(JUN).

• Out Of Domain (ood): train with the game A (APR, MAY) and test on the game B
with fine-tuning (ood w/) or on the game C without fine-tuning (ood w/o).

5. Experiments

Model Ckpt id ts ood w/ ood w/o

Dragon val .091/.056 .006/.003 .118/.038 .037/.023
max .112/.074 .372/.082 .123/.081

Siamese val .145/.062 -.036/-.011 .154/.057 -.057/-.030
max .249/.067 .207/.075 .036/.022

P (Y = 1) 11.9% 12.2% 5.9% 22.4%

Table 1: Baseline results. val denotes the best checkpoint on the holdout set, and max the
best metric during entire training, showing the discrepancy of the performance.

5.1. Baselines.

We used Dragonnet (Shi et al., 2019) and Siamese network (Mouloud et al., 2020) with 11
TCN blocks (receptive field of length 2,048, and each time-series was truncated accordingly.)
and applied EWC for CL. Dragonnet is trained to directly predict a conditional mean
E[Y |T,X] as well as the propensity score, e(X) := P (T = 1|X), based on its sufficiency for
adjustment (Rosenbaum and Rubin, 1983). For Siamese network, a variable transformation

method, Zi = TiYi
e(Xi)

− (1−Ti)Yi

1−e(Xi)
, was used based on the fact that its conditional expectation,

i.e., E[Z|X], is equal to the true uplift u(X) (Athey and Imbens, 2015). We attached an

3. The shorter the time interval, the greater the influence of the push, but the smaller the number of people
responding. In our experiment, ”three hours” was used as a target.
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embedding layer with LayerNorm (Ba et al., 2016) which is similar to language models like
BERT (Devlin et al., 2018) for categorical variables and used sinusoidal functions to encode
second, hour and weekday information as follows:

f(t) =

[
sin

(
2πt

maxt

)
, cos

(
2πt

maxt

)]
,

where maxt is the maximum possible value of t, i.e., 3600 seconds in an hour, 24 hours in
a day, and 7 for weekday.

5.2. Evaluation

The performance of an uplift model can be evaluated by qini coefficients (qini) (Radcliffe,
2007) and auuc (Devriendt et al., 2020). The two metrics are basically similar, measuring
cumulative incremental gains when the treatment is given only to the top individuals sorted
by uplift scores predicted by the model.

5.3. Results

Table 1 shows qinis (left) and auucs (right) of the best checkpoint on the holdout set (val)
and among the entire training checkpoints (max) for each task. The difference between val
and max can be attributed to the model capturing spurious correlations rather than the
true mechanisms and the wrong validation due to distributional shifts.

• ts: The performance gap between val and max was significant, and val actually
performed worse than random targeting (qini & auuc below zero). This empirically
shows the existence of the temporal distribution changes.

• ood w/: Fine-tuning with the additional data using the CL algorithm has somewhat
reduced the performance gap. We conjecture that the model became more robust
since it further learns common mechanisms and forgets relationships irrelevant to the
true effect.

• ood w/o: The performance dropped sharply without fine-tuning. We emphasize that
the true causal model should perform equally well both in id and ts and generalize
to different games even without training, although they may potentially have a very
different user base.

6. Conclusion and Future Work

In this paper, we introduce Backend-TS dataset and propose uplift tasks accordingly, com-
bining causal inference with CL scenarios. We demonstrate that näıvely applying existing
methods may fail as uplift modeling tries to predict future behaviors based on historical
data. All observational datasets have inherent biases; identifying causal relationships and
eliminating undesirable effects would be one of the most important follow-up research top-
ics. We believe that learning causal mechanisms invariant over time is crucial for the way
toward general-level AI and that the dataset will contribute to developing such algorithms.
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Ethical Statement and Societal Impact

We did not collect any sensitive information, and all data have been fully anonymized. Do
not attempt to misuse it for purposes other than research, including but not limited to,
identifying individuals or games, hacking, and cracking the system. Backend-TS will con-
tribute to developing robust models and algorithms that can infer correct causal mechanisms
in high-dimensional spaces.
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