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Abstract

Both of the fields of continual learning and causality investigate complementary aspects of
human cognition and are fundamental components of artificial intelligence if it is to reason
and generalize in complex environments. Despite the burgeoning interest in investigating
the intersection of the two fields, it is currently unclear how causal models may describe
continuous streams of data and vice versa, how continual learning may exploit learned
causal structure. We proposed to bridge this gap through the inaugural AAAI-23 “Contin-
ual Causality” bridge program, where our aim was to take the initial steps towards a unified
treatment of these fields by providing a space for learning, discussions, and to build a di-
verse community to connect researchers. The activities ranged from traditional tutorials
and software labs, invited vision talks, and contributed talks based on submitted position
papers, as well as a panel and breakout discussions. Whereas materials are publicly dis-
seminated as a foundation for the community: https://www.continualcausality.org,
respectively discussed ideas, challenges, and prospects beyond the inaugural bridge are
summarized in this retrospective paper.

1. Continual Causality: Bridging Continual Learning with Causality

For an agent to successfully learn in natural settings, it must accommodate often non-linear,
emergent dynamics from a sea of apparent stochasticity. For machine learning agents, the
last decade has seen spectacular progress in these settings, surpassing human performance
across a host of complex tasks. However, it is not only essential to these problems to identify
the dependence between variables in observational data and their dynamics, but it is also
essential to understand their underlying causation and how their dependencies arise.

Causality theory (Pearl, 2009; Peters et al., 2017) provides language, algorithms, and
tools to discover and infer cause-and-effect relationships from any collection of observa-
tional/experimental data based on a partial understanding of a complex system. The field
provides a powerful framework for learning a (partial) representation of the underlying
causal model, evaluating the effect of unrealized interventions, reasoning about the effects
of stochastic policies, generalizing causal knowledge to a target population, recovering from
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selection bias, and deriving counterfactual explanations. Moreover, there is increasing in-
terest in learning and leveraging causal knowledge in dynamic environments with shifts in
data distribution (Tian, 2008; Bareinboim and Pearl, 2016; Davis et al., 2018).

In machine learning, many of these problems appear under the rubric of continual learn-
ing. Continual learning systems (Chen and Liu, 2018; Hadsell et al., 2020) learn over time
from a continuous stream of data, enable knowledge transfer and alleviate potentially mali-
cious interference when distributional shifts are experienced. At the crux, they achieve the
latter without revisiting previously encountered training samples (unless they are in mem-
ory), much in contrast to traditional machine learning settings where all training samples
are available from the start and can be revisited.

The fields of causality and continual learning thus exhibit complementary strengths. On
one hand, causal models formally describe structural similarities between domains that can
aid the generalization of continual learning systems. On the other hand, continual learning
systems efficiently navigate complex data collection and model streams of data that have
not yet been studied from a causal perspective. These are both unavoidable components to
move towards the goal of building autonomous or ‘human-like’ systems (Lake et al., 2017).
The latter should be capable of learning continuously in the presence of different types of
data and performing cause-and-effect reasoning about its surrounding world.

1.1. Goals: challenges and opportunities

Despite causality having recently taken huge strides, causal learning tools are prone to
catastrophic interference of past-learned and possibly imperfect representations when new
data becomes available. Learning (possibly dynamic and out-of-equilibrium) causal models
from a continuous stream of data is thus extremely challenging, especially when data comes
from multiple disparate sources and is collected under different conditions and study designs.

The field of continual learning is poised to mitigate these shortcomings. Despite prior
efforts to transfer causal knowledge across domains and populations (Pearl and Bareinboim,
2014; Magliacane et al., 2018; Lee et al., 2020; Teshima et al., 2020), a challenging assump-
tion of sufficient background knowledge on what features are shared across the domains is
made. To aid causal learning tools, the addition of continual learning may mitigate the
fragility of causal models to data distribution shifts with partially available information, as
well as provide benefits to learning from temporal structure of streams of data.

In turn, causal tools present an opportunity to aid continual learning algorithms. Despite
continual learning research considering a plethora of practical measures (e.g. memory,
compute, model size) and nuanced temporal assessment (e.g. forward transfer, backward
transfer, forgetting), the causal structure seems to be yet missing from the picture (see e.g.
the evaluation and desiderata of Kudithipudi et al. (2022); Mundt et al. (2022) ). Yet, causal
models can provide a framework to improve a continual learner’s capabilities by discovering
and describing the underlying system beyond the statistical relationships learned from a
stream of data received from the environment. Thus, causality presents an opportunity
to further improve not only a continual model’s explainability and effectiveness in decision
making, but also, by placing causal modeling in a more naturalistic, continuous setting, our
human understanding of continual learning and causality alike.
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Despite a few recent attempts (Javed et al., 2020; Chu et al., 2020; Gong et al., 2022;
Kancheti et al., 2022), it is presently not clear how to incorporate the advances of causal
inference with those of continual learning and vice versa. Thus, the interface between
these fields remains a relatively unexplored research area. It is our thesis of the bridge
program that by placing these disciplines under a conceptual and theoretical umbrella, their
intersection will help catalyze advances in prediction and explanation in machine learning,
thus taking another step towards building general-purpose artificial intelligence. Through
the bridge program, the first steps towards a unified treatment have been taken.

1.2. Specific initial open questions

Causal modeling and inference are well aligned with human-like cognition in terms of i) as-
sociation (“recognition”), ii) intervention (“thought experiments”), and iii) counterfactuals
(“reflection”). Due to this alignment, causal models are vulnerable to pitfalls that humans
suffer from, such as limited memory, leading to difficulties in learning multiple concepts
continuously. Since continual learning systems learn from continuous streams of data, an-
swering the question of “how to continually learn and exploit causal systems in dynamic
non-stationary environments” has been posed as the initial major focus of the inaugural
bridge. The question naturally allows for a chain of interesting thoughts and immediate
outcomes, with the prospect of mutually advancing the fields. The following imminent re-
search items have been formulated, comprised of aspects that were expected to start the
continual causality bridge, opening up the potential for more advanced questions later:

1. Define and react to catastrophic interference and knowledge transfer in learning causal
models in the context of a continuous, non-stationary stream of data.

2. Understand effective ways for the causal structure to aid in leveraging the accumulated
knowledge of a continual learning system and interpret distributional shifts.

3. Develop next-generation benchmarks that go beyond the re-purposing of existing
datasets to adequately support the above items and further essential research ques-
tions towards a symbiosis of continual learning and causality.

2. The Continual Causality Bridge

As a two-day event, the Continual Causality bridge offered a varied set of activities that have
supported education and discussion at various levels of expertise. Educational activities
involved two traditional tutorials, as an entry to the respective fields of continual learning
and causality, for both newcomers and experts that are only familiar with either of them.
Similarly, two software labs have provided respective hands-on experience, based on the
popular emerging software tools Avalanche1 (Lomonaco et al., 2021) and DoWhy2.

To complement these educational activities, a set of vision and contributed talks have
provided initial positions on how the fields of continual learning and causality can be brought
further together, why a necessity for the latter exists, and what respective challenges may

1. https://avalanche.continualai.org
2. https://py-why.github.io/dowhy
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need to be faced in the imminent future. Finally, the invited vision talks and contributed
position works have served as a basis for a panel and interactive breakout sessions. Par-
ticipants of the bridge have not only received the chance to network but also to discuss
presented ideas and to delve into a deeper exchange in a more detailed conversation. The
various outcomes of these sessions have been collected and are disseminated in the final
section of this retrospective paper, serving the role of a foreword to the bridge’s full pro-
ceedings, see next section.

2.1. Call for papers

Following the bridge’s spirit of presenting visions and tangible ideas to connect the fields of
continual learning and causality, a call for papers had been issued several months prior to
the inaugural event. Two-page paper contributions (AAAI dual-column format, excluding
references) were solicited to outline challenges that need to be overcome, highlight synergies,
and propose future steps. Following a rigorous double-blind peer-review review process on
OpenReview, authors were allowed to incorporate any received feedback for the proceedings
in an extra page, resulting in up to six pages in the single-column proceedings format.

The rationale behind the call for papers was for prospective community members to voice
diverse views that have the potential to advance AI through an ongoing cross-disciplinary
exchange. We have therefore not imposed strict constraints on the exact sub-topics of
submissions, as long as they had targeted the overall goal of bridging the fields. Submissions
were free to focus on a single particularly interesting synergy, take an angle from a specific
scientific discipline, or sketch a grander view. To provide some initial inspiration, a few
pointers had been given, including but not limited to:

• Continual learning and exploitation of causal systems in dynamic non-stationary
environments

• Catastrophic interference and knowledge transfer in learning causal models in the
context of continuous streams of data

• Effective ways for the causal structure to aid in leveraging the accumulated knowledge
of a continual learner

• Leveraging causal tools to interpret distributional shifts in continual learning

• Next-generation benchmarks that go beyond re-purposing of existing datasets to ad-
equately support the above items and further essential research questions towards a
symbiosis of continual learning and causality

Overall, the call has resulted in 13 accepted papers, featuring an incredible breadth of
topics. Accepted papers were able to concisely and clearly articulate general visions on
linking fields, propose tangible mechanisms, highlight prospects for various applications,
and already suggest first benchmarks. These papers have been collected in Volume 208 of
the Proceedings of Machine Learning (PMLR), for which this retrospective serves as the
foreword. All accepted papers were extended an invitation to participate in a poster session
at the inaugural bridge event. Additionally, a limited number of papers with an outstanding
degree of clarity were selected to present their perspectives in contributed talks.
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2.2. Bridge schedule at a glance

Materials available at: https://www.continualcausality.org

Tutorials

Putting the Continual in Continual Causality
Keiland Cooper and Martin Mundt

Putting the Causality in Continual Causality
Devendra Singh Dhami and Adele Ribeiro

Software Labs

Avalanche: An End-to-End Library for Continual Learning
Antonio Carta

DoWhy: Causal Inference in Python
Peter Götz and Patrick Blöbaum

Vision Talks

The Neuro-Symbolic Continuum between Language, Knowledge and Reasoning
Yejin Choi

Continual Learning with Real-World Impact: Beyond Catastrophic Forgetting
Christopher Kanan

Going beyond the here and now: Counterfactual simulation in human cognition
Tobias Gerstenberg

Memory, Invariance and Reasoning: Pillars of the Causal-Continual Bridge
Vineeth Balasubramanian

Panel

Challenges and Opportunities of Continual Causality
Panelists: Christopher Kanan, Vineeth Balasubramanian, Dhireesha Kudithipudi, Moritz Grosse-
Wentrup
Moderator: James Smith

Contributed Talks

Modeling Uplift from Observational Time-Series in Continual Scenarios
Sanghyun Kim, Jungwon Choi, NamHee Kim, Jaesung Ryu, Juho Lee

From IID to the Independent Mechanisms assumption in continual learning
Oleksiy Ostapenko, Alexandre Lacoste, Laurent Charlin

Never Ending Reasoning and Learning: Opportunities and Challenges
Sriraam Natarajan, Kristian Kersting

Towards Causal Replay for Knowledge Rehearsal in Continual Learning
Nikhil Churamani, Jiaee Cheong, Sinan Kalkan, Hatice Gunes

3. Discussion Insights and the Way Forward

The Continual Causality bridge featured several avenues for interactive discussion, moti-
vated by the breadth of original visions and stemming from an expectation that a first effort
is required to strive towards an initial consensus on the next steps. For this purpose, vision
talks have summarized four fundamentally different interdisciplinary approaches to pinpoint
relevant factors for continual causality. A panel, featuring a subset of vision speakers and
further experts in the fields of continual learning and/or causality, has then continued to
discuss select key questions and practical considerations. Ultimately, following contributed
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talks from exceptionally well-articulated paper submissions, the interactive discussion has
been broadened to the full audience and virtual attendees through the formation of break-
out groups. Here, each group has been balanced to be equally comprised of researchers
attributing their research focus more towards continual learning or causality respectively.
Each group has been confronted with the challenging task of narrowing down their im-
pressions to the formulation of only one crucial challenge and direction, which they deem
particularly worthy of immediate pursuit. We summarize the essence of these three discus-
sion paths in the following.

3.1. Vision Talks

We briefly distill the essence of the vision talks and their impact on bridging continual
causality, however, would like to defer the reader to the full materials available online to let
appropriate credit remain with the speakers and the citations within their talks. Beyond
a large amount of technical in-depth content, the four ensuing highlights illustrate the
diversity aggregated by the bridge program.

In summary, an argument on the crucial role of knowledge and reasoning (to be inte-
grated into continual learning), can perhaps best be attributed to directly paraphrasing an
example: “Birds in a vacuum, even when supplied with oxygen, cannot fly is something no
one has likely ever said to you, but you nevertheless know it’s true” (Yejin Choi). This
”dark matter” of language models, commonsense reasoning, remains a key open question in
the development of language models and more generally in AI (Choi, 2022). A complemen-
tary perspective has nicely supplemented this fundamental insight by arguing that humans
are capable, as experimentally evidenced, of counterfactual simulation. Correspondingly,
our prospective causal continual learning should be able to mimic this behavior, by equip-
ping them with mechanisms that can simulate what could happen. Stimulated by current
continual learning practice, a position has been presented that benchmarks need to be re-
considered in continual learning, and more specifically, that computation and memory need
to be key design elements. Intuitively, continual learning should naturally lend itself to var-
ious real-world applications due to these factors, yet academic papers seem to still largely
focus on constructed examples. Lastly, a perspective on how to integrate causal mechanisms
into the three pillars of alleviating catastrophic forgetting in continual learning: rehearsal,
regularization, and dynamic architectures (Hadsell et al., 2020), has been illuminated. For
instance, commonly used biologically inspired memory buffers (Hayes et al., 2021) could be
extended to encompass examples that capture causal structure, continuous model regular-
ization by distilling knowledge that respects causal properties (Hu et al., 2021; Kancheti
et al., 2022), or linking dynamically growing architectures to causal discovery.

3.2. Panel Discussion

Practicality matters: is forgetting itself “solved”?

Continual learning algorithms have performed well using traditional approaches, such as
memory buffers, to solve standard benchmarks. As the continual learning field moves away
from its signpost in tackling catastrophic forgetting and into other field-related issues and
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domains, the integration of causal modeling may aid new and growing sub-fields, such as
continual one-shot learning, learning composable features, or transfer learning. With these
challenges, standard approaches to overcome interference may prove to be wanting, and may
present a new opportunity for the integration of novel models to solve novel challenges. To
get there, potential gaps in performance and knowledge will become apparent through the
development of new benchmarks which holistically test models, for example, by prioritizing
that continual learning algorithms should be resource aware by design.

Should causality imply being “actionable”?

Although causality in machine learning has grown exponentially in recent years with stu-
pendous success in simple and synthetic environments, the question of it being useful in
complex real world problems remains open. Concurrently, another critical open question is
that of actionability. Whereas learning the underlying causal structure for a given problem
is interesting, is it also profitable beyond a mere understanding if this learned causal struc-
ture cannot be acted upon? Continual causal models may naturally fit into this perspective,
as they should focus on meaningful interventions and consecutive actions that have either
led to a shift in data or will respectively induce changes. This can answer the question of
actionability, since continual causality models should learn to act upon the learned causal
structure in a dynamic fashion and could thus move the goalpost of the underlying models
to be both more introspective and more retrospective.

Should ecological sustainability be at the forefront?

The successes of attaining top performance on a host of benchmarks by scaling model pa-
rameters has become a rapidly growing research area. Yet, these performance gains come
with ecological and economical costs. To mitigate these shortcomings, as new models are
developed in continual learning, causality, or their intersection, model and inference effi-
ciency should not be an afterthought of development. Continual learning itself provides a
solution to the issue of costs due to model retraining, by providing the tools needed to up-
date existing models with new data without retraining ab initio. However, we should also
acknowledge that our developments are often hardware specific or that particular made
advances are at the very least more tailored towards the latter than some of the presently
less popular hypothesized mechanisms. A symbiotic development with hardware, or respec-
tive exploration of alternate compute platforms beyond graphical processing units (GPUs),
may be crucial to the evolution of continual learning, causality, and their interface. Ad-
ditionally, improvements to benchmarks and datasets themselves may help models scale
sustainably, through the development of smaller datasets which capture the main principals
and advantages that larger datasets provide.

3.3. Interactive Breakout Discussions

Shareable knowledge and similarity in graphs

Traditionally, causal graphs are formed across a single dataset or domain. Yet, navigating
real world tasks often would be aided by (or requires) leveraging learned causal structure
from experience. To mitigate this issue, a continual learning agent may directly benefit from
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sharing its causal knowledge across tasks. This approach offers an immediate relationship
between both continual learning and causal models, and exploits the similarity across many
tasks. Learned knowledge may be shared forward in time, leveraging its past knowledge to
solve similar or even novel tasks, and/or backwards in time, leveraging new data to validate,
update, or refute previously learned causal associations. Across multiple tasks, a continual
learner will in effect “meta-learn” a single or a core set of shared causal graph(s), refining
core causal assumptions and facilitating performance across settings.

“Side-by-side” problems and benchmarks

An additional direction of further study is to look for existing areas where continual learning
and causal discovery are already aligned. This may be through a shared structure of the
problem at hand, or through shared domains. For example, medical data is already a
topic of great research interest in both fields. In causal modeling and discovery, through a
host of datasets to derive key variables and their relationships, and in continual learning,
through learning models when access to the data is limited due to access or privacy and thus
models are unable to be retrained. As new benchmarks to assess the progress of integrating
the fields are developed, synergies should be identified, whereby leveraging areas where
there is existing research, interest, and knowledge across both fields may prove to facilitate
collaboration, interpretation, and integration.

Causal discovery and task ordering/curricula

Often, continual learning agents are agnostic to the order in which tasks are learned or there
is little forethought into how specific knowledge from one task may directly affect (beneficial
or otherwise) downstream learning. Causal discovery may aid this issue: by examining the
structure of the tasks themselves, a continual learning researcher (or the agent itself) may
have the tools to answer whether an optimal ordering exists for a sequence of tasks. From
the standpoint of an agent, this approach may provide an automated method, based on
explicit criteria drawn from existing continual learning metrics, to derive its own curricula,
and to decide which information to learn when. From a research standpoint, this approach
may help elucidate key principles of not only how multiple datasets are to be learned
continually, but to perhaps provide a framework to answer a more stimulating question of
what information needs to be extracted and retained from a prior task.

4. Conclusions

Whereas the differences between causality and continual learning may appear to be a gap
too large to bridge, through the ideas, discussions, and collaborations of researchers across
both fields, it is our conclusion that the possible benefits garnered by investigation into both
field’s intersection show mutually beneficial potential. For this, we are grateful to those who
submitted manuscripts, the invited speakers, AAAI-23 organizers, and all attendees of the
Continual Causality bridge program. We look forward to future discussions, collaborations,
and research with this newfound community.
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