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Current machine learning algorithms are successful in learning clearly defined tasks from
large i.i.d. data. Continual learning (CL) requires learning without iid-ness and developing
algorithms capable of knowledge retention and transfer, the latter can be boosted through
systematic generalization. Dropping the i.i.d. assumption requires replacing it with another
hypothesis. While there are several candidates, here we advocate that the independent
mechanism assumption (IM) (Scholkopf et al., 2012) is a useful hypothesis for representing
knowledge in a form, that makes it easy to adapt to new tasks in CL. Specifically, we review
several types of distribution shifts that are common in CL and point out in which way a
system that represents knowledge in the form of causal modules may outperform monolithic
counterparts in CL. Intuitively, the efficacy of IM solution emerges since (i) causal modules
learn mechanisms invariant across domains; (ii) if causal mechanisms must be updated,
modularity can enable efficient and sparse updates.

Setup. We consider the observation space consisting of variables X and 7. We think
of T as a subset of observed input variables that carry information about the task to be
performed (e.g. operations in a math equation), while X caries contextual information (e.g.
input digits) that can be thought of as an argument to the underlying causal mechanisms.
Here we assume the setting of supervised learning, where the label Y must be predicted from
X and T — each observation is a tuple (X,Y,T). Observations are sampled from the joint
that factorizes as p (Y, X, T) = p(Y|X, T)pe(X,T) = >, p(Y|X,T, Z)ps(X, T, Z), where
Z denotes a set of potentially unobserved attributes and ¢ is the time/task index. Such
setting can be instantiated in the math equations domain similar to Mittal et al. (2022):
X1, Xo ~ RI=MUand T describe the math operations to be performed (+/-/* etc.) (one or
many operations per equation).

The Independent mechanisms (IM) assumption states that in the causal factor-
ization of the joint, the mechanism p(Y|X, T, Z) contains no information about the causes
pe(X, T, Z) and VV (Scholkopf et al., 2012). Hence, the true causal mechanism p(Y|X, T, Z)
is invariant across tasks and environments. For simplicity, here we assume the independence
of X, Z and T: py(X, T, Z) = p(X)pe(T)pe(Z).

The IM assumption can be extended to the mechanism p(Y'| X, T'), which can be thought
of as a composition of autonomous modules that operate independently from each other
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(Parascandolo et al., 2018; Goyal et al., 2019). That is, it can be approximated with a
learnable function fy(-) that is compositional. The most general definition of composition-
ality is that the meaning of the whole is a function of the meanings of its parts (Hirst,
1992). We envision a model fy(-) parameterized with a set of M modules that compete
with each other for explaining the current observation. The benefit of such a system for CL
is discussed next.

Different distribution shifts. Compositional solutions can be useful under different
types of distribution shifts in CL.

Domain shift: shift in the joint p(X,Y,T) caused by shift in p(X). Domain shift
can be leveraged for learning causal mechanisms, that is the mechanism invariant across
domains, under some structural assumptions (i.e. sparse change in the underlying graph).
This principle is used by Arjovsky et al. (2019) for learning invariant (causal) representa-
tions. Perry et al. (2022) showed that domain shifts can provide useful learning signals
for identifying causal structures if the shift in the underlying causal graph is sparse. Im-
portantly, domain annotation is needed for such learning, which is natural in CL. — every
detected distribution shift signals a new domain. Once the true mechanism is learned,
faster generalization to new domains is possible. Importantly, leveraging domain shift for
learning causal mechanisms likely requires storing samples from seen domains in a replay
buffer (Rolnick et al., 2019).

New tasks: shift in the joint p(X,Y,T) caused by a shift in p(7") that introduces a
new causal mechanism (e.g. math operation) to be learned by a new module. Existing CL
methods like regularization (Kirkpatrick et al., 2017) or replay (Rolnick et al., 2019) applied
to monolithic networks may perform on par with modular solutions under this shift in terms
of forgetting. Later, however, should achieve better transfer and faster learning under the
assumption that tasks share mechanisms (i.e. “+” is used in combination with two other
distinct operations in two different tasks). Additionally, monolithic architectures have been
shown to lose plasticity throughout CL (Dohare et al., 2021) — a drawback that may be
mitigated through modularity.

Hidden shift: shift in the joint p(X,Y,T) caused by shift in p(Z). Consider an exam-
ple, where the task is to interpret the meaning of a nodding gesture at some geographical
location, that is unknown. When moving e.g from Canada to India the meaning of the
nodding gesture can change while the meanings of other gestures (supposedly) may remain
identical. In the example of math equations, a new environment can hypothetically change
the meaning of the multiplication operation to, say, subtraction while not affecting other
operations. Since Z is unobserved, this drift requires sparse knowledge of a single mecha-
nism without affecting other operations. Standard CL methods are likely to underperform
in this setting, as old and new tasks become contradictory.

Data amount shift: knowledge about previously seen mechanisms needs to be updated
as more training data becomes available. Modular architecture may be able to sparsely
update only the affected modules, while a monolithic solution, with entangled mechanisms,
would suffer from forgetting if no measures to prevent it are taken.

Spurious correlation shift: attributes correlate under p; but not under py, t # k.
For example, operation “+” has been seen together in the same equation with “-” in task
t, which may result in the routing mechanism of modular solutions to mistakenly associate
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the high-level variable “+” with the mechanism of subtraction. For modular solutions, this
shift might require updating only the routing mechanism, while the monolithic one would
require updating the whole net. The problem of spurious features in the context of CL has
been recently studied by Lesort (2022).

How to learn modules representing true causal mechanisms is hence an impor-
tant open question. While several attempts have been made to design systems capable of
discovering the true underlying data generative modules that comprise p(Y'|X,T) (Goyal
et al., 2019, 2021; Parascandolo et al., 2018), there is no clear receipt to do it yet. Several
inductive biases have been proposed, that facilitate learning of independent composable
mechanisms, including competition (Parascandolo et al., 2018), information bottlenecks
such as attention (Goyal et al., 2019) or functional bottlenecks (i.e. limiting the number
of inputs a module can take) (Goyal et al., 2021; Ostapenko et al., 2022), or restricting
modular communication to discrete variables (Liu et al., 2021).

Preliminary result with Mixture of Experts (MoE). Here, we design a simple
attention-based MoE model and train it continually on two streams of 5 and 7 tasks. In
both streams, X is sampled uniformly from RIEL and the corresponding T (here task
description is represented by a single variable) is samples uniformly from a set of prede-
fined math operations. Labels Y are generated by applying sampled mechanisms 7" to the
inputs X. Stream 1 represents the new task shift (i.e. new operations are introduced with
operations overlapping across tasks) and consists of 5 tasks (¢ = 0...5). The first 5 tasks of
Stream 2 are identical to Stream 1, tasks 5 to 7 simulate the hidden shift. For example, the
operation encoded in the input of ¢ = 5 is addition, which is identical to t = 0 and t = 1,
but the meaning of addition has changed from x; + z2 to (z; + z2)/5, which is reflected in
the training data of these tasks. The modular continual learner (MCL) receives as input a
set of 3 entities: z1, x2, and an operation (e.g. addition, subtraction, multiplication, etc.).
All three variables are first projected into a vector space, thereby we use a fixed embedding
table for the operations and an encoder, that is only trained during the first task, for z; and
9. MCL performs module selection using a key-value attention mechanism and a functional
bottleneck similar to NPS (Goyal et al., 2021) (MCL is an adapted version of NPS for CL).
We formulate these tasks as regression problems. We test on novel randomly sampled z’s.
We use 20,000 samples per task for training and 2,000 for testing.
In Figure 1 we plot the average mean
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MCL is able to perform well on this stream. EWC performs well up until Ty as it is able to
alleviate forgetting. After Ty, when the mechanisms shifts, EWC’s regularization strategy,
aimed at reducing plasticity, prevents the model from incorporating knowledge about the
shift in the mechanism reflected in the new training data of tasks 5 to 7. MCL is able to
sparsely update only the modules which are specialized in the shifted mechanisms. Impor-
tantly, MCL can mitigate forgetting solely through routing samples to correct modules.

Conclusion. We advocate for the usefulness of IM hypothesis in CL (it is not mutually
exclusive with i.i.d). This may open a door for developing algorithms with better transfer
and efficiency. We point out the potential advantages of such solutions under different
distribution shifts and show in simple toy experiments that the IM principle can address
some problems of CL in practice. Open challenges include determining useful inductive
biases and further assumptions for designing modular solutions beyond MoE, where causal
mechanisms can be discovered when modules are applied in superposition resulting in a
more fine-grained task decomposition (Ostapenko et al., 2022).
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