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Abstract

This short paper discusses continually updated causal abstractions as a potential direction
of future research. The key idea is to revise the existing level of causal abstraction to a
different level of detail that is both consistent with the history of observed data and more
effective in solving a given task.

Overview. [1] discusses the necessity of (a) causal abstractions for effectively solving tasks
and (b) continual updates when data starts changing. [2] highlights existing approaches for
(a). [3] discusses starting points for (b).

Abbreviations. Structural Causal Model (SCM), Continual Causal Abstractions (CCA),
Cognitive Science (CogSci), Artificial Intelligence (AI).

[1]. Motivation

Both causality (as defined by Pearl (2009)) and continual learning (Hadsell et al., 2020) seem
integral for the quest of understanding (artificial) intelligence. Causality’s main contribution
has been the formalization of key ideas such as interventions, counterfactuals and structural
mechanisms. Continual learning on the other hand raised awareness for the importance of
learning stable concepts continuously over time void of access to previous experiences much
like biological systems.

Many different research directions have been explored in the realm of both areas to (a)
boost the performance and applicability of methods (Kyono et al., 2020; Zečević et al., 2021;
Nilforoshan et al., 2022; Mundt et al., 2022b) but also to (b) understand the challenges that
lie ahead of these and future methods (Schölkopf et al., 2021; Zečević et al., 2022; Mundt
et al., 2022a).

The goal of the AAAI 2023 Bridge Program on “Continual Causality” lies in finding
answers to the question of what may be found at the interesection of the two subfields
primarily studied in AI and CogSci research. This short paper envisions the extension of
existing work on causal abstractions towards a continual learning setting where the task
solving agent ought to revise its current model abstraction towards a new level of detail in
order to be consistent with the history of observed data and also find more effective decision
rules for solving the current task.
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Why Do We Need Causal Abstractions? Let’s illustrate with a simple example.
Imagine being a chemist analyzing a particular gas. Your advisor tasks you to analyze the
temperature and pressure in the volume. Using your thermo- and barometer you simply
measure the desired quantities. The first task is solved. Next, your advisor tasks you to
analyze the average velocity of a moving particle within the gas. It quickly becomes apparent
to you that the previous model of the gas becomes obsolete, since the question has shifted
from a macro- to a microscopic level of detail in which we suddenly need information on
individual particles. Put differently, we are in need of a different level of abstraction. Not just
that, we further want our new model to still be consistent with our previous observations,
that is, if we were to measure net kinetic energy of all relevant particle combinations, then we
would ideally like to see a match with the previous measurements of the thermometer. This
requirement is what is being captured by the causal part of the abstraction transformation
between the two models for each of the tasks.

Why Do We Need Continual Abstractions? Let’s illustrate again using an example.
The following example is a sneak peek into the example from the vision schematic presented
in Fig.1. Imagine being a dietitian analyzing the (causal) effect of a particular diet onto
the risk of heart disease. Your history of clients has taught you that the total cholesterol of
the patient is characteristic of whether or not the risk of heart disease for that individual
is increased or not. This is your initial, base abstraction: if the diet is balanced, the
cholesterol levels will deteriorate and the risk of heart disease decreases. Now a new client,
a sumo practioner, enters your diet program but ends up overdoing it and eating three
times the amount of items listed in the plan. To your surpise, although the cholesterol
levels of the sumo were increased, his risk of heart disease had decreased. To cope with this
new counterexample to the previous hypothesis, you decide to revise your abstraction as
you found the high- and low-density lipoproteins to be more predictive of the risk of heart
disease. For the sumo’s case, it was that the latter increased the total cholesterol levels while
still lowering the risk of heart disease. In other words, the dietitian continually updated
the current best causal abstraction to comply with the data history while still answering
the initial scientific question effectively.

[2]. Existing Work on Causal Abstractions

Definitions. The study of causal abstractions is a subfield in Pearlian causality that aims
at formalizing the philosophical concept of an abstraction such that the resulting definition
is maximally “useful in practice” (commonly taken to mean that the examples such as
that of the chemist from [1] work with the definition). Rubenstein et al. (2017) conducted
pioneering work in establishing a formalism that discusses “exact transformations” between
SCMs, which allowed the authors to (i) marginalize out ‘irrelevant’ variables, (ii) aggregate
variables into sensible groups, and even (iii) view dynamic systems in a stationary way.
Following that, Beckers and Halpern (2019) fixed several shortcomings by generalizing the
former formalism to “(strong) abstractions” that (i) work on SCMs directly opposed to
probabilistic parameterizations thereof and (ii) consider all possible interventions of an
SCM opposed to only a selected subset.

We are given the standard formulation of an SCM M = (U ,V,R,F ,Pr). The elements
ofM are exogenous variables U sometimes called ‘unmodelled’ terms that lie outside of what
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Figure 1: Vision of Continual Causal Abstractions. A schematic illustrating how
CCA could work. The scientific question (top purple box) asks about the causal
relation (or effect) of a balanced diet onto the risk of heart disease. Based on data
consisting of patient records recording various features (see right grey box for a
legend), a causal abstraction algorithm provides the initial causal abstraction
(middle box) that suggests optimal decision rules (middle left grey box) based on
the mediator variable of total cholesterol. With the incoming new example (right
teal box) the CCA algorithm provides an updated causal abstraction that uses
both HL and LL as mediator variables (middle teal box) with new optimal decision
rules (lower left grey box). In summary, the macroscopic view of cholesterol
levels in the initial abstraction was sufficient for analyzing the initial two data
points, however, the third data point required a more fine grained abstraction
that considers the levels of high- and low-density lipoproteins since an increase in
former also leads to an increase of TC but is actually lowering HD. (Best viewed
in color.)

we are modelling, endogenous variables V that we actually model (e.g. DP in Fig.1), the
range R of any of the variables, that is, the actual values they can take on (e.g. DP can be
‘balanced’), the set of structural equations F that each dictate how each endogenous variable
is caused through a given set of other variables in terms of an equation (e.g. HD = fi(TC, Ui)
where fi would be a mathematical description of the mechanism that makes TC affect HD)
and finally Pr is a probability on the values of the exogenous terms, that is R(U), which
implies a probability on the endogenous terms as well. Since the discussed abstractions
need be causal it is important for them to satisfy the causal prowess of the model pair
under inspection, where model pair refers to some low- and high-level SCMs (ML,MH) for
which we want to either prove or falsify the hypothesis that MH is an abstraction of ML.
To achieve this, typically interventions are considered as the key element that needs to be
aligned for the pair, therefore, we additionally equip our SCMs with a partially ordered set
I that describes admissible interventions. For example I = {∅,V← v} would denote that
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only two types of interventions are admissible (i) the special case ‘no intervention’ denoted
by the empty set or (ii) an intervention that sets all V variables simultaneously to some
constant vector. With that, we can now give the state of the art formalization of a causal
abstraction as:

Definition 1:
If for some low- and high-level pair of SCMs denoted (ML,MH) we have following conditions
fulfilled for functions τ : RL(VL)→ RH(VH), τU : R(UL)→ R(UH), ωτ : IL → IH :

1. all functions are surjective, ωτ further order-preserving

2. for all i ∈ IL we have τ(PriL) = Pr
ωτ (i)
H

3. for all (uL, i) ∈ UL × IL we have τ(ML(uL, i)) = MH(τU (uL), ωτ (i)),

then (τ, τU , ωτ ) describe a τ -abstraction from ML to MH .

Returning to the chemist example from [1], suitable formalizations for ML,MH can be
shown to commute via some τ -abstraction for a corresponding choice of τ, τU , and ωτ . To
improve our intuition on the concepts introduced just now in Def.1, let us examine another
toy example both formally and in more detail:

Example 1:
The low-level SCM ML consists of UL = {U1, U2, U3, U4} ⊆ R4,V = {A,B,C,D} and

FL = {A = U1, B = U2, C = A+B + U3, D = A+B + U4}

whereas the high-level SCM MH is given by UH = {V1, V2} ⊆ R2,VH = {X,Y } and

FH = {X = V1, Y = 2 ·X + V2}.

For the sake of simplicity, we will simply consider a deterministic setting ignoring Pr to
prove our τ -abstraction for (ML,MH) more quickly. The admissible intervention sets are
given by

IL = {∅, (A,B)←(a, b), (C,D)←(c, d), (A..D)←(a..d)}

and

IH = {∅, X ← x, Y ← y, (X,Y )← (x, y)}.

Then the function

τ : (A..D) 7→ (A+B,C +D),

with

τU : (U1..4) 7→ (U1 + U2, U3 + U4)

and

ωτ = {(∅ 7→ ∅), ([(A,B)← (a, b)] 7→ [X ← x]), . . . )
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form a τ -abstraction from ML to MH . It is easy to show that τ, τU , ωτ are surjective and
ωτ further order-preserving. For the sake of brevity we will skip the proofs, also for the
equalities from Def.1, and instead show a simple example calculation

(U1..4) = (2, 3, 1, 1) (V1, V2) = (5, 2)

(A..D) = (2, 3, 6, 6) (X,Y ) = (5, 12)

τU

ML MH

τ

illustrating the commutation.

Learning. To the best of our knowledge, there exist no works yet on actually learning
τ -abstractions i.e., no automation for neither the verification of whether some (ML,MH)
form an abstraction nor for actually acquiring some τ that would abstract ML to MH .
Knowing that the statement S :=“there exists a τ s.t. MH is a τ -abstraction of ML” is true
would lend itself at most to an educated guess on what τ might look like. Typically, we
don’t know whether S is true, nor do we know ML,MH .

Related Work. Javed et al. (2020) investigated an online learning paradigm for detecting
spurious features and thus learning better causal graphs. The two key differences here are (i)
that there exists no mechanism for abstracting from one causal graph to another, however,
the final graph might very well align with the revised graph abstraction, and (ii) that
abstractions operate on the SCM- and not just graph-level. Another work conducted by
Chu et al. (2020) investigated how observing new data points with each learning iteration
can help with estimating better causal effects. One of the key challenges here being the
decision function over previous representations and the aggregation procedure for revising
previous representations to a best current estimate.

[3]. Future Work: Updating Existing Abstractions

While even just learning causal abstractions as in Def.1 remains an open problem, starting
to work on continual causal abstractions poses a viable first step towards general causal
abstraction learning.

Step-by-Step Plan. The following is a high-level description of an implementation of
CCA in reference to Fig.1:

1. Get the Initial Causal Abstraction. Given our scientific question on the causal rela-
tionship of interest, that is whether the statement “∃f. Y = f(X)” holds and if so
what f is, use the available data D ∈ [0, 1]m×n of m rows of n features (that include
X,Y ) to acquire a parameterized SCM M̂L. For instance, one could train neural SCM
(see Xia et al. (2021) for a formal introduction).

2. Extract the Decision Rules. For our binary setting, further assuming deterministic
SCM for simplicity, simply take the predictions P̂ := M̂L(R(VL)) over the ranges
of the endogenous variables. Each input-output tuple will be a decision rule ri :=
(R(VL,i), P̂i), read as ‘ri,1 =⇒ ri,2’, collectively forming a decision rule set R.
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3. Detect & Discard the Inconsistency. Given a new data point d′ ∈ [0, 1]n check
whether the decision rules predict the values of the data point, that is, whether
∀(v, w)∈d′.∃ri∈R. (v, w) = ri holds. In our sumo practitioner example from Fig.1
we would observe that (TC = 1,HD = 0) = rTC=1 since rTC=1 = (1, 1). Remove
(temporarily) all rules and data columns that covered the inconsistent predictor j
(here: j = TC), creating the alternate rule- and data-sets R\j ,D\j .

4. Learn the τ -Abstraction. Optimize

τ∗ = argmaxτ L(D\j ,MH(τ))

for a suitable loss function L where MH(τ) is a neural SCM with endogenous variables
τ(VL).

Key Shortcomings. The laid out step-by-step plan lends itself to seemingly immediate
implementation. However, the two major shortcomings are (i) that we do not know how to
effectively search for τ (in our simple example we are at least able to resort to exhaustive
search) and (ii) the assumption that the n features from the initial data set will actually
contain the features that end up in the final, continually updated abstraction (for the Fig.1
example this means that we actually observed LL/HL from the start). Another drawback
is the assumption of extracting decision rules out of a learned model, which was granted in
our case since we investigated a simple binary variable model.
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