
Proceedings of Machine Learning Research 209:182–190, 2023 Conference on Health, Inference, and Learning (CHIL) 2023

Semantic match: Debugging feature attribution methods
in XAI for healthcare

Giovanni Cinà g.cina@amsterdamumc.nl
Department of Medical Informatics, Amsterdam University Medical Center, The Netherlands
Institute for Logic, Language and Computation, University of Amsterdam, The Netherlands
Pacmed, The Netherlands

Tabea E. Röber t.e.rober@uva.nl
Rob Goedhart r.goedhart2@uva.nl
Ş. İlker Birbil s.i.birbil@uva.nl
Department of Business Analytics, Amsterdam Business School, University of Amsterdam, The Netherlands

Abstract
The recent spike in certified Artificial Intelli-
gence tools for healthcare has renewed the de-
bate around adoption of this technology. One
thread of such debate concerns Explainable AI
and its promise to render AI devices more trans-
parent and trustworthy. A few voices active in
the medical AI space have expressed concerns
on the reliability of Explainable AI techniques
and especially feature attribution methods, ques-
tioning their use and inclusion in guidelines and
standards. We characterize the problem as a
lack of semantic match between explanations
and human understanding. To understand when
feature importance can be used reliably, we intro-
duce a distinction between feature importance
of low- and high-level features. We argue that
for data types where low-level features come en-
dowed with a clear semantics, such as tabular
data like Electronic Health Records, semantic
match can be obtained, and thus feature at-
tribution methods can still be employed in a
meaningful and useful way. For high-level fea-
tures, we sketch a procedure to test whether
semantic match has been achieved.

Data and Code Availability No data was used
for the paper.

Institutional Review Board (IRB) This re-
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1. Introduction

Along with the blooming of Artificial Intelligence (AI)
and the accompanying increase in model complexity,
there has been a surge of interest in explainable AI

(XAI), namely AI that allows humans to understand
its inner workings (e.g., Doshi-Velez and Kim, 2017;
Linardatos et al., 2020; Gilpin et al., 2018; Biran and
Cotton, 2017; Doran et al., 2017). This interest is
particularly keen in safety-critical domains such as
healthcare, where it is perceived that XAI can en-
gender trust, help monitoring bias, and facilitate AI
development (e.g., Doshi-Velez and Kim, 2017; Lipton,
2018). XAI has already shown to improve clinicians’
ability to diagnose and assess prognoses of diseases as
well as assist with planning and resource allocation.
For example, Letham et al. (2015) developed a stroke
prediction model that matches the performance of the
most accurate Machine Learning (ML) algorithms,
while remaining as interpretable as conventional scor-
ing methods used in clinical practice.

There is a wide variety of techniques for XAI, and
many categorizations have been proposed in the liter-
ature. Techniques can roughly be grouped into local
vs. global, and model-specific vs. model-agnostic
approaches. Local methods aim to explain model
outputs for individual samples, while global methods
focus on making models more explainable at an ag-
gregate level. Model-specific methods are tailored to
explain a specific type of model, while model-agnostic
methods can be applied to a range of different models.
Many of the well-known techniques yield post-hoc ex-
planations, meaning that they generate explanations
for already trained, so-called ‘black-box’, models. Al-
ternatively, there exist approaches that are considered
inherently explainable, also known as white-box (or
glass-box) models, such as decision trees and linear
regression models. A detailed taxonomy is beyond the
scope of this paper; for an extensive overview we refer
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the reader to Carvalho et al. (2019), Molnar (2022),
and Ras et al. (2022).
A group of XAI techniques that has enjoyed sub-

stantial fame is the set of feature attribution methods,
namely techniques that assign to each feature a mea-
sure of how much it contributes to the calculation of
the outcome according to the model. Popular tech-
niques produce such explanations in a local fashion,
and famous ones include SHAP (Lundberg and Lee,
2017), LIME (Ribeiro et al., 2016), saliency maps
(Selvaraju et al., 2017), and integrated gradients (Sun-
dararajan et al., 2017). To give a sense of the success
of these techniques, it suffices to say that some of them
are now integrated as default explainability tools in
widespread cloud machine learning services, while in
areas such as natural language processing, researchers
are starting to use such methods as the gold stan-
dard against which they judge the quality of other
explanations (Mohankumar et al., 2020).

Despite the enthusiasm and a growing community of
researchers devoting energy to XAI, there is currently
no consensus on the reliability of XAI techniques,
and several researchers have cast serious doubts on
whether XAI solutions should be incorporated into
guidelines and standards, or even deployed at all (e.g.,
Lipton, 2018; McCoy et al., 2021; Ghassemi et al.,
2021; Neely et al., 2022).

Undoubtedly, there is an inherent tension between
the desire for machines performing better than hu-
mans, and the requirement for machines to provide
human-understandable explanations. Together with
their super-human capacities – such as the ability
to juggle dozens or hundreds of factors – the sub-
symbolic character of statistical learning techniques
contributes to rendering many ML models opaque to
humans. Simply put: humans cannot ‘read off’ what
a neural network has learned just by looking at the
matrix of weights.

The internal or ‘latent’ representation of a machine,
namely the way in which the machine encoded the
patterns found in the data, is what we would like
to explain to the human, together with the way in
which this internal representation interacts with a
single data point to generate an output. The solution
presented by feature attribution methods is also sub-
symbolic, in the sense that an explanation also takes
the form of a vector or matrix of values, and here
lies the source of the problem. As different scholars
pointed out (Ghassemi et al., 2021; Rudin, 2019),
the assignment of meaning to such explanations can
be tricky, sometimes lulling the humans into a false

Figure 1: An example of visual explanation by
heatmap for a medical image. Image courtesy of
Rajpurkar et al. (2017).

sense of understanding while the explanations are in
fact flawed or misleading. This issue is particularly
sensitive when such explainability techniques are used
in high-stakes environments such as healthcare.

Does this mean that feature attribution methods
are altogether unreliable? In this article we argue that
existing criticism on the viability of post-hoc local
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Figure 2: While the explanation of the first classification seems intuitive, this impression is put into question
when a similar explanation is offered for an absurd classification. Figure borrowed from Rudin (2019) with
author’s permission.

explainability methods throws away the baby with the
bathwater by generalizing a problem that is specific
to unstructured data such as images. We characterize
the issue with feature attribution methods as a lack
of semantic match between explanations and human
understanding. To understand when semantic match
can be obtained reliably, we introduce a distinction
between feature importance of low- and high-level
features. We argue that in the case of data types
for which low-level features come endowed with clear
semantics, such as tabular data like Electronic Health
Records (EHRs), semantic match is enabled and thus
feature attribution methods can still be employed in a
meaningful and useful way. As for high-level features,
we present a conceptual procedure to verify whether
semantic match is achieved, paving the way for future
operationalization of this test.

The criticism on local feature
attribution methods

In this section we expand on the problem that feature
attribution methods are confronted with. Applied to
images, explanations generated by feature attribution
methods present themselves as heatmaps or colored
overlays, indicating the contribution of specific pixels
to the prediction of the model on the input at hand.
Intuitively, highlighted regions comprise pixels which
were considered ‘important’ by the model. Prima
facie, one might be led to believe that this allows
humans to check that the model is paying attention to
the right elements of the image, therefore increasing
our trust in the specific prediction and in the model
more generally.

In Rajpurkar et al. (2017), the authors developed
an algorithm to predict the probability of pneumonia
from chest X-rays with the performance exceeding
those of practising radiologists. To interpret the out-
come, the authors use a heatmap to visualize the areas
of the image that are most indicative for the predic-
tion using class activation mappings. Figure 1, taken
from said paper, shows an example of an X-ray image
for which the algorithm predicts pneumonia with a
probability of 85%. The heatmap shows which area
of the image contributes most to the prediction of the
model.

However, when a certain area of an image is high-
lighted we simply do not know if what we recognize,
say the shape of a kidney or the beak of a bird, is the
same as what the AI recognizes. As several researchers
have pointed out, e.g., Ghassemi et al. (2021) and
Lipton (2018) among others, what look like plausible
explanations at first may turn out to be ungrounded
or spurious explanations when subjected to closer
scrutiny. Rudin (2019) exemplifies this mishap with
the example in Figure 2. A classification model was
trained to classify images into some classes, one of
which is ‘Siberian husky’ and another one is ‘trans-
verse flute’. The evidence for the animal being a
Siberian husky seems intuitive and would probably
let us believe our model looks at the right places (the
snout and paw of the dog) to make the classification.
However, the evidence for the animal being a trans-
verse flute looks almost identical. This shows that
heatmaps display what parts the model is looking at,
which does not necessarily translate to what we look
at on a conceptual level. This opens the door for
different kinds of biases, both on the side of the user,
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who can project their beliefs erroneously onto the ma-
chine, and on the side of the XAI, which might provide
feature attribution information that is inconsistent or
misleading.
The root of the problem, we maintain, lies in the

inability of humans to attribute meaning to a sub-
symbolic encoding of information. What is needed is
a systematic way to translate sub-symbolic represen-
tations to human-understandable ones, in a way that
respects how we assign meaning. This is represented
schematically in Figure 3. We call such a commuting
diagram a semantic match. An ideal explanation
would provide content of the bottom-left node and
a suitable translation in order to obtain a semantic
match: the explanation of a certain sub-symbolic rep-
resentation encoded by the machine should have (i)
a clearly defined meaning and (ii) an unambiguous
way to translate to human terms with the same (or
very similar) meaning. Semantic match, which is
a crude simplification of complex cognitive and lin-
guistic phenomena, offers a handy conceptual tool to
debug explanations.

Figure 3: The diagram representing a semantic match.

Indeed, just as we are unable to understand a latent
representation, we are unable to relate to a heatmap
unless it comes paired with a well-defined meaning as-
signment and translation, as illustrated in the diagram.
Overlaying the heatmap to an image encourages us
to use our visual intuition as translation, but alas
this last step is an ill-advised one, since it gives us
the illusion of a semantic match while in fact the ex-
planations do not conform to expectations. Figure 4
exemplifies a failed semantic match. In this scenario a
heatmap is generated as an explanation for the behav-
ior of the model on an image. From the image, it may
appear that the machine ‘recognizes’ a certain feature
(a dog’s head), and therefore classifies the image as
a specific class (‘dog’). However, another spurious

input generates the same heatmap, and hence the
translation is invalid and unreliable. To replicate the
uncanny observation of Figure 2, one can construct
another scenario where states of the world are pairs
of input images and predictions. These are cases of
semantic mismatch: the states of the world in which
the heatmap is produced do not correspond to the
states where one would plausibly use the concept of
dog’s head to classify a dog image.

This criticism seems to undercut the utility of such
local feature attribution methods: if they are po-
tentially misleading and bring no clear added value,
should they be used at all?

Figure 4: A scenario depicting a semantic mismatch.
The images eliciting a certain explanation do not
comply with our recollection of the explanation.

Distinguishing low- and high-level
features

In order to understand the utility of such methods,
one needs to step back and consider what are the
characteristics of the examples that give rise to the
problem, and assess whether they generalize. Not
unsurprisingly, most of the debate revolves around
images, given the astounding success of deep learning
in the realm of computer vision. Images are a prime
example of what is sometimes called ‘unstructured
data’, namely data that does not come equipped with
additional structure and is akin to raw sensory data.
Note that this is a misnomer, since such data typically
is endowed with a rich structure (in the mathematical
sense) deriving from the notion of distance defined
between pixels or between parts of an ordered se-
quence. We will nonetheless adopt this terminology
to facilitate readability, since it is ubiquitous.
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One of the defining characteristics of images – and
unstructured data more generally – is that a single
feature has no intrinsic meaning: a certain color value
of a pixel means nothing by itself. Only a pattern
of values for a group of features can be attributed
meaning, e.g., a cloud of pixels with the shape and
color of a dog’s head. In other words, we recognize
properties or entities in an image by matching acti-
vation patterns with our visual intuitions. Following
a widespread habit in the ML community, we will
refer to patterns in groups of features as ‘high-level
features’, while single features, namely the entries
of the vector representing an input, will be dubbed
‘low-level features’ by contrast. With this terminology,
we can succinctly state that in images only high-level
features can be attributed meaning while low-level
features cannot.
On the contrary, in structured data each feature

is usually conferred specific meaning; e.g., in EHR
data a certain value might contain the information
pertaining to the blood pressure of a patient at a
certain time. When such low-level features are not
defined with a specific protocol – such as the ones
for measurements of vital signs in clinical settings –
they refer to standard concepts in natural language.
We can, therefore, easily interpret what these low-
level features mean regardless of the values of the
other features. For instance, a value of 180 in the
feature corresponding to systolic blood pressure gives
us a piece of information that we can understand and
process, even without knowing other features of a
patient.

Surely, there are also high-level features in the case
of structured data. Continuing with the example of
EHRs, if low-level features comprise eGFR and serum
creatinine, a high-level feature could be a pattern of
values eGFR and serum creatinine indicating stages
of kidney damage. In short, also in tabular data any
concept emerging from the combination of low-level
features qualifies as a high-level feature. Hence, the
crucial difference between structured and unstructured
data is that the former has clear meaning for the low-
level features, while on the high-level features the two
data types behave similarly.
We maintain that the usage of a post-hoc feature

attribution method hinges on the application of the
corresponding semantic match diagram. Without a
rigorously defined meaning and translation, a heatmap
remains a matrix of values without rhyme or reason.
We cannot extract information from such a matrix
just as we cannot fathom what is encoded in the latent

space of a neural network by eyeballing the value of a
point in said space. So far the attribution of meaning
to a heatmap-explanation has been carried out in an
intuitive way, which, as previous scholars argued, is
prone to error and a false source of confidence.

Saving feature importance for
low-level features

The distinction between low-and high-level features
helps untangle the cases in which semantic match
works out-of-the box from those in which it fails. A
post-hoc local feature attribution method can be used
appropriately on low-level features when they have
a predefined translation, as is the case for medical
tabular data. For example, suppose a risk prediction
model is trained on EHR data. When a patient is
presented to the model, the model might provide a risk
score associated with feature importance values for the
patient’s lab values. Suppose systolic blood pressure
is marked as the most important factor increasing
the risk of a specific patient. In this case, there is
no ambiguity: such level of importance is attributed
to systolic blood pressure and nothing else, and any
user with sufficient training knows what systolic blood
pressure is. Note that this has nothing to do with
how the importance is calculated (e.g., if it takes
into account feature interactions) or if it is a sensible
level of importance; all we are stating is that the user
can unambiguously understand what the importance
is attributed to. In other words, the importance is
attributed to something which semantically matches
our concept of ‘systolic blood pressure’.

The user of such a model can then engage with the
feature importance and assess whether it is sensible,
while addressing questions like “Is this level of risk
reasonable given a high importance of systolic blood
pressure?” Such a question may be answered in the
positive, if the clinician believes the value of systolic
blood pressure is concerning, or in the negative, if for
example, the clinician knows that the value of systolic
blood pressure is a byproduct of medications they can
control. An example of such an approach is displayed
in Figure 5, where the top features contributing to
clinical risk are displayed along with a color code
indicating if they are risk increasing or decreasing.
Crucially, semantic match allows the user of an

explanation to engage with it, and to decide whether
it is agreeable or not. In contrast, when the same risk
prediction is trained on image data, this reasoning falls
apart. What feature attribution can highlight are just
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(a) The user-interface of Pacmed Critical for a single patient (in Dutch).

(b) A close-up of the right side of the interface, displaying feature attribution for low-level
features (in Dutch).

Figure 5: An example of the front-end of Pacmed Critical, a medical device currently used in the Amsterdam
University Medical Center for the prediction of adverse outcomes after ICU discharge. Courtesy of Pacmed;
for background on the prediction model see (Thoral et al., 2021; de Hond et al., 2022). The displayed patient
data is synthetic.
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high-level features, e.g., the portion of an image with a
kidney shape. But lacking a semantic match, clinicians
cannot trust whether what they see in a heatmap
matches the machine’s internal representation.

Debugging feature importance for
high-level features

Does this mean that we have to give up feature attri-
bution for high-level features? Not in our view. In
fact, what we need is a procedure to test whether
semantic match is present or if it is violated. In what
follows we present such procedure at a conceptual
level.

Suppose a ML model f has been trained on labeled
data of the shape (x, y), where x represent an input
vector and y an output. We denote a local feature
attribution method withM and say thatM(f, x, y) =
e is the explanation furnished by the model f on such
pair of input and output. We are interested in testing
whether we have semantic match with the explanation
e, or in other words, if what we ‘see’ in the explanation
is indeed what the explanation captures.
At an intuitive level, what we want to ascertain

is that an explanation matches our translation of it.
This is encoded in the commutation of the semantic
match diagram, namely that all the data points giving
rise to a certain explanation are also complying to our
translation hypothesis, which we will indicate with θ,
and vice versa. We are thus looking at answering two
questions:

• Is every input-output pair that generates an ex-
planation similar to e also an example in which
θ is the case?

• Is every input-output pair in which θ is satisfied
going to generate an explanation that is similar
to e?

To exemplify the procedure, suppose one has de-
veloped an algorithm to classify pictures of animals.
Presented with a picture classified as a dog and an
explanation e, one formulates the translation hypoth-
esis θ that the explanation highlights the tail of the
animal. To answer the aforementioned questions, one
would need to take images that generate explanations
similar to e and check whether the explanations of
those samples highlight tails. For the second question,
one would need to take images of animals with tails
and consider how similar their explanations are to e.

Note that in this procedure one may also select
data points whose label is different from y. This may
not be an issue, since the high-level feature used for
the prediction of x as y may in theory also be used
on another data point and another label (and hence
be highlighted in the explanation). In the animal
classification example, one may collect images of a
panther in which a tail is displayed, and rule that the
explanations correctly highlights tails in those images.

Discussion

In this article we have reviewed the reliability problem
of feature attribution methods and have proposed to
diagnose the issue by means of the semantic match
diagram. We have argued that without clear meaning
and translation, semantic match cannot be obtained
for high-level feature importance. A corollary of this
statement is that current methods for feature attri-
bution may not be appropriate for unstructured data
unless semantic match is verified. While a full-fledged
test for semantic match remains to be developed, we
have moved the first steps by sketching a procedure
on how to measure such quantity.
Even without such a test, structured data may

still benefit from feature attribution, since for this
data type low-level features have an in-built semantic
match with human concepts. This allows humans
to engage with explanations and exercise that all-
important oversight that is required to spot failure
modes of ML applications. Recent fairness concerns
in the realms of human resources, healthcare, and law
enforcement underscore the need for continued human
control over semi-automated decisions.
When it comes to the limit of this analysis, it is

important to remark that, even in the presence of
semantic match, explanations can still fail to deliver
on their promise. If an explanation is not faithful to
the model, that is, it does not consistently represent
the machine’s behavior, the user may not leverage the
explanation to agree or disagree with the machine’s
output; recent work on this point shows a concerning
divergence in explanations (Neely et al., 2022). It
should also be added that not all data types neatly
fall into the categories of structured and unstructured
data. Textual data, for example, contains both tokens
that have intrinsic meaning and tokens that have only
contextual meaning, and therefore sits somewhat in
the middle. Time series data is in a similar spot,
exhibiting sequences whose single values may have
defined meaning but whose evolution over time is
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harder to grasp. In these cases explanatory methods
should be employed with caution and awareness of
potential semantic mismatch. In the same vein, it
should be recognized that, before the advent of neural
networks that could process raw data, there was a
long tradition of image processing by hand-crafting
meaningful image features (see for example Street
et al. (1993)). In essence, such approaches build fea-
tures with an intrinsic semantic match by encoding
expert knowledge with feature engineering, turning
an unstructured dataset into a structured one. These
approaches may be rediscovered as ways to attribute
meaning to explanations in consultation with domain
experts. Finally, semantic match is a user-dependent
concept: while users with the relevant background
may correctly interpret an explanation, others may
not, and in healthcare settings it is crucial to clearly
identify user groups and provide proper training.
Beside expanding and refining the procedure we

introduced in the previous sections, future work aim-
ing to obviate problems deriving from failed semantic
match could direct attention to generating explana-
tions that comply with human categories by design,
possibly even with special categories employed by
the targeted user. One direction of future research
explores the possibility to capture information on ma-
chine behavior in a symbolic manner by means of
hybrid models (Sarker et al., 2021). Another option
might contemplate combining visual explanation with
image segmentation, to fix the semantics of entities
used in the explanation. Finally, more elaborate ex-
planations may require access to ontologies regulating
the relationship between entities (as in e.g., Lecue and
Wu (2018); Liartis et al. (2021)), which should them-
selves match ontologies used – more or less implicitly
– by humans.

When it comes to medical AI, we want clinicians to
be able to interact with machines in a meaningful way,
namely with the right tools to adjudicate when the
machine’s advice is worth following. Framing the prob-
lem in terms of semantic match helps shedding light
on the issue that explanations are still too ambiguous
and too far from clinicians’ reasoning. We should
be building explanations in the clinician’s language,
rather than asking clinicians to rely on intuition or to
learn to think like a computer scientist.
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