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Abstract

Although recent advances in scaling large language
models (LLMs) have resulted in improvements on
many NLP tasks, it remains unclear whether these
models trained primarily with general web text are
the right tool in highly specialized, safety critical
domains such as clinical text. Recent results have
suggested that LLMs encode a surprising amount of
medical knowledge. This raises an important ques-
tion regarding the utility of smaller domain-specific
language models. With the success of general-
domain LLMs, is there still a need for specialized
clinical models? To investigate this question, we con-
duct an extensive empirical analysis of 12 language
models, ranging from 220M to 175B parameters,
measuring their performance on 3 different clinical
tasks that test their ability to parse and reason over
electronic health records. As part of our experiments,
we train T5-Base and T5-Large models from scratch
on clinical notes from MIMIC III and IV to di-
rectly investigate the efficiency of clinical tokens. We
show that relatively small specialized clinical models
substantially outperform all in-context learning ap-
proaches, even when finetuned on limited annotated
data. Further, we find that pretraining on clinical
tokens allows for smaller, more parameter-efficient
models that either match or outperform much larger
language models trained on general text. We release
the code and the models used under the PhysioNet
Credentialed Health Data license and data use agree-
ment.1

1. https://github.com/elehman16/clinical˙llm

1. Introduction

Large language models (LLMs) have shown strong per-
formance on a wide variety of natural language processing
(NLP) tasks. State-of-the-art LLMs are pretrained on bil-
lions of tokens scraped from a mixture of general sources,
varying widely in both subject matter and quality. With
relatively little task-specific training data, these models
can be adapted to new tasks by finetuning the model’s
weights on labeled data (Devlin et al., 2019) or by includ-
ing examples of the task in-context (Kaplan et al., 2020;
Wei et al., 2022). This has made them a promising tool
for many different applications.

Recent findings have shown that LLMs with over
100B+ parameters contain embedded clinical knowledge
(Singhal et al., 2022). For example, Agrawal et al. (2022)
found that GPT-3 competes with or outperforms smaller
models on a small set of clinical tasks including acronym
disambiguation, co-reference resolution, and medication
extraction. Similarly, ChatGPT achieved passing scores
on the US Medical Licensing Exam (Kung et al., 2022).
From a performance standpoint, these findings raise an
important question about the role of smaller models that
are specifically tailored for clinical text (Alsentzer et al.,
2019; Li et al., 2022). With the success of LLMs, is there
still a need for specialized clinical models?

To answer this question, we take the perspective of a
reasonably equipped healthcare system that is attempt-
ing to automate a clinical task involving electronic health
record (EHR) notes. For example, suppose a hospital
wishes to implement semantic search of clinical notes.
Without automation, a doctor at the hospital would have to
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Figure 1: We consider three options for how a healthcare system with access to clinical notes might approach a clinical
problem. First, the healthcare system could use a specialized language model pretrained on clinical notes. This model
could be pretrained from scratch (Row 1) or from a publicly available checkpoint of a LM pretrained on general text
(Row 2). Alternatively, the healthcare system could directly finetune a publicly available general-purpose language
model to perform the clinical task (Row 3). Finally, the healthcare system could use a state-of-the-art LLM such as
GPT-3, without any additional finetuning, by prompting the LLM to perform the clinical task (Row 4).

manually review all of a patient’s previous notes to under-
stand their patient’s medical history. A language model,
however, would allow the hospital to automatically extract
answers to questions about a patient’s medical history, us-
ing hundreds of past clinical notes as source material. A
hospital would have three reasonable options for applying
a language model to address this type of clinical problem
(Figure 1):

1. Create a specialized clinical model by pretraining a
language model on in-house clinical notes and fine-
tuning it for a specific downstream task2 (Figure 1,
first and second rows).

2. Finetune a publicly available pretrained language
model, which has largely been pretrained on non-
clinical text (Figure 1, third row).

3. Use a state-of-the-art LLM, such as GPT-3, which is
made available through an API, and adapt the model
to the task using in-context learning (Figure 1, last
row).

In this paper, we ask whether there is still a need
for specialized clinical language models, even with the

2. Hospitals could also use a model pretrained on MIMIC.

availability of impressive domain-agnostic LLMs. To an-
swer this question, we perform an extensive experimental
evaluation of 12 different LMs on 3 different clinical tasks
that use EHR notes. In addition, we train T5-Base and
T5-Large from scratch on clinical notes written primarily
in English from the Medical Information Mart for Inten-
sive Care (MIMIC)-III and MIMIC-IV databases (John-
son et al., 2016, 2023). Our results show that relatively
small specialized clinical models (345M parameters) sub-
stantially outperform all in-context learning approaches
that we evaluate, even when finetuned on limited anno-
tated data. We further find that pretraining on clinical to-
kens allows for smaller, more parameter-efficient models
that either match or outperform much larger LMs trained
on general text. We will release the code and models from
our experiments under the PhysioNet Credentialed Health
Data license and data use agreement.

2. Background & Related Work

We specifically focus on clinical tasks that use EHR notes.
These notes, which are written by clinicians, contain im-
portant information about a patient’s past medical his-
tory, lab results, medications, and current clinical pre-
sentation. The text in clinical notes differs substantially
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Context: ... FINDINGS: The emergency room clinicians requested a second read on
this C-spine CT. There is no evidence of evidence of fracture or subluxation. The height
of the vertebral bodies of the C-spine is preserved. There is no soft tissue swelling.
Here are moderate-to-severe multilevel degenerative changes, most severe at C3-C4,
C5-C6, and C6-C7 with mild-to-moderate narrowing of bilateral neural foramina and
mild effacement of the thecal sac secondary to posterior osteophytes at those levels.
There is mild emphysema of the lungs and opacification of the right upper lobe. There
is a large right thyroid nodule with calcifications consistent with thyroid goiter.
Question: Are there any abnormalities in the cspine?

MedNLI

LLM

Premise: She emerged vigorous with Apgar of 7 and 8.

Hypothesis: She had low APGAR scores

He has a follow-up neck CTA and appointment with [ **Month/Year ( 2 ) 1106** ] surgery
on 1978-10-18 , with possible subsequent carotid stenting procedure to follow . .

moderate-to-severe multilevel
degenerative changes, most severe
at C3-C4, C5-C6, and C6-C7 with

mild-to-moderate narrowing of
bilateral neural foramina and mild

effacement of the thecal sac
secondary to posterior osteophytes

Contradiction

Appointment-related, Imaging-
related, Procedure-related followups

RadQA

CLIP

Figure 2: An example of the tasks we consider in this paper. In MedNLI, the goal is determine if the two sentences
entail, contradict or are neutral to each other. RadQA is an extractive question answering task over radiology reports.
In CLIP, the goal is to identify the different types of patient follow-up information in each sentence of a discharge
summary (if any). These examples illustrate the difficulty of parsing clinical text.

from the general-domain text found in LM training cor-
puses. Some of these differences are highlighted in Fig-
ure 2: EHR notes often contain grammatical errors (“no
evidence of evidence of fracture”), include abbreviations
not defined in the context (APGAR, CTA), and reference
domain-specific terminology (carotid stenting, subluxa-
tion). These peculiarities also lead to substantial differ-
ences between clinical text and biomedical text (such as
PubMed). Despite the overall shared domain of medicine,
biomedical text is otherwise fluent, edited, and polished.
This makes clinical tasks that involve these notes particu-
larly challenging. In this section, we briefly describe the
three different approaches that one could use for applying
a LM to a clinical task (Figure 1).

2.1. Specialized Clinical Models

We define a specialized clinical model to be a model pre-
trained over clinical notes, and refer to models trained on
mostly open-domain web text as general-purpose mod-
els. A specialized clinical model can be trained from
scratch, or it can be initialized from a previous checkpoint
of a biomedical or general-domain model and pretrained
further on clinical data in a process known as domain-
adaptive pretraining (DAPT, Gururangan et al. 2020).
Models pretrained on clinical notes have shown improved
performance compared to their domain-agnostic equiva-
lents (Alsentzer et al., 2019; Lewis et al., 2020; Li et al.,
2022; Yang et al., 2022). The semi-structured and ab-
breviated text found in clinical notes may negatively im-

pact the performance of models pretrained on grammat-
ical biomedical and general text. Further pretraining on
clinical text may help these more general models adapt to
this domain-shift.

However, pretraining a LM on clinical notes incurs a
high upfront cost. This expense may not be justified if
it results in only minimal improvements on downstream
clinical tasks. Additionally, there is a concern that special-
ized clinical models pretrained on hospital records may
retain sensitive patient information (Carlini et al., 2018;
Lehman et al., 2021). For example, Yang et al. (2022)
train but do not release multi-billion parameter models
using notes from the University of Florida Health system,
likely due to the unknown risk of the models emitting pre-
viously seen protected health information.

2.2. Finetuning General Purpose LLMs for Clinical
Tasks

As an alternative to pretraining a specialized clinical
model, ML practitioners can finetune a general-purpose
LM such as the GPT family of models (Radford and
Narasimhan, 2018) or T5 (Raffel et al., 2020), on the clin-
ical task. The capabilities of these models have been well
established in the literature: finetuned general-purpose
models are effective at clinical question-answering (Pam-
pari et al., 2018), protected health information (PHI)
de-identification (Alsentzer et al., 2019), and relation-
extraction (Wei et al., 2020). Using a finetuned domain-
agnostic model may be necessary in settings where pre-
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training a language model from scratch is too costly.
While finetuning a general-purpose LM eliminates the
cost of pretraining altogether, it may lead to more expen-
sive inference-time costs compared to specialized models
if the general model must be larger to obtain the same
performance. Furthermore, these models may still re-
quire regular re-finetuning if the data distribution of the
EHR shifts, which may happen if, for example, the hos-
pital system changes how medical personnel write notes
(Payne et al., 2010; Blease et al., 2020). This requires
substantially more infrastructure and technical expertise
to maintain as model sizes grow. There is ongoing re-
search into methods for parameter efficient training (Li
and Liang, 2021; Singhal et al., 2022), which reduce the
computational cost of finetuning. However, in this work,
we only consider finetuning of the entire model and leave
exploration of these techniques to future work. Finally, in
addition to these concerns, models pretrained on text from
the general web likely contain additional unexpected and
harmful biases towards protected classes and other groups
(Bender et al., 2021).

2.3. Using In-Context Learning

A cheaper alternative to finetuning a LM is to use in-
context learning (ICL). In this setting, examples of the
task are included in the input prompt to the model, and no
weights are modified. ICL has many potential advantages
for the clinical domain because there is often a limited set
of labeled data due to the high level of expertise needed
for annotation.

In-context learning, paired with LLMs like GPT-3, has
shown strong performance on a number of tasks (Brown
et al., 2020). Agrawal et al. (2022) found that GPT-
3 competes with or outperforms smaller models on sev-
eral clinical tasks, including acronym disambiguation, co-
reference resolution, and medication extraction. Due to
OpenAI’s data policies,3 Agrawal et al. (2022) are only
able to directly test GPT-3’s ability on a restricted set of
tasks. Similarly, Kung et al. (2022) found that ChatGPT
was able to achieve passing scores on all three stages of
the US Medical Licensing Exam (USMLE). However, it
is unclear whether such performance on tasks requiring
clinical knowledge translates to tasks that require parsing
semi-structured, abbreviation-laden clinical notes.

In practice, ICL performs best in very large models
(Singhal et al., 2022) or in models explicitly trained for

3. When Agrawal et al. (2022) was released, OpenAI stored all in-
puts to be used as training data, which violated MIMIC’s data use
agreement. As of January 16, 2023, it is now possible to use Ope-
nAI models via Microsoft Azure’s HIPAA certified platform (Boyd,
2023).

ICL (Wei et al., 2021a). These models perform as well
as — or better than — many finetuned models on several
language tasks, which makes ICL a quick and easy option
for many NLP problems. However, GPT-scale models are
typically accessible only through APIs hosted by private
companies, which may add additional concerns about se-
curity and data privacy. Additionally, these models have a
tendency to generate realistic, but factually incorrect con-
tent, which may be especially problematic in the safety-
critical medical domain. We exclude ChatGPT and GPT-4
from our analysis due to the ambiguity surrounding model
size, architecture and details about which datasets were
included in their training procedure. For these reasons, it
is difficult to draw any conclusions about the performance
of these models.

3. Experimental Setup

We examine the performance of 12 different LMs on three
different clinical tasks derived from MIMIC (Figure 2).

3.1. Tasks

We select tasks that test the ability to parse and reason
over clinical notes. We describe these tasks below:

• MedNLI (Romanov and Shivade, 2018) is a natu-
ral language inference task in which the goal is to
determine whether a hypothesis written by a doctor
can be inferred from a premise taken directly from
a clinical note (multi-class classification with labels
entailment, neutral, or contradiction). We measure
performance using accuracy.

• RadQA (Soni et al., 2022) is a question-answering
(QA) task on radiology reports. Doctors were pro-
vided text describing the clinical reason for the imag-
ing and were instructed to ask questions about the
radiology report. The answers, if available, were ex-
tracted from the report. We measure performance us-
ing token-level F1 and exact string match metrics.

• CLIP (Mullenbach et al., 2021) is a multi-
label classification task in which the goal is
to identify key-sentences that contain some
follow-up information in discharge summaries.
Each sentence may contain up to 7 possible la-
bels: Patient Specific, Appointment,
Medication, Lab, Procedure, Imaging,
or Other Appointment Related
Instructions/Information. We mea-
sure performance using micro and macro F1-Score.
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Model Size Architecture General PTT BioMed PTT Clinical PTT
T5-Base 220M Encoder-Decoder 34B 0.5B –
Clinical-T5-Base-Ckpt 220M Encoder-Decoder 34B 0.5B 13B
Clinical-T5-Base 220M Encoder-Decoder – – 40B
RoBERTa-Large 345M Encoder Only 2200B – –
BioClinRoBERTa 345M Encoder Only – 2037B 65B
GatorTron 345M Encoder Only 40B 92B 1570B
T5-Large 770M Encoder-Decoder 34B 0.5B –
Clinical-T5-Large 770M Encoder-Decoder – – 38B
PubMedGPT 2.7B Decoder Only – 300B –
T5-XL 3B Encoder-Decoder 34B 0.5B –
Flan-T5-XXL 11B Encoder-Decoder 34B 0.5B –
GPT-3 175B Decoder Only ? ? ?

Table 1: We show all the models used in this paper, as well as their size, architecture and make up of pretraining data.
We are unable to provide any information on GPT-3. We focus only on pretraining data, and ignore any finetuning
data. PTT stands for pretraining tokens. We use ? for GPT-3, as details about its training have not been released.

3.2. Models

We experiment with two existing clinical models, Bio-
ClinRoBERTa4 (Lewis et al., 2020) and GatorTron (Yang
et al., 2022), which are both 345M parameter encoder-
only models based on the BERT-Large architecture (De-
vlin et al., 2019). GatorTron was trained on a combina-
tion of Wikipedia, PubMed, MIMIC-III, and notes from
the University of Florida Health system, whereas Bio-
ClinRoBERTa was trained exclusively over PubMed and
MIMIC-III. One additional difference between these two
models is that GatorTron is trained using the objective
function presented in Lan et al. (2019), while BioClin-
RoBERTa is trained using the techniques described in Liu
et al. (2019).

Relative to the general and biomedical domains, there
are only a small number of available clinical LMs, primar-
ily due to the paucity of publicly available clinical notes.
To supplement our experiments using specialized clini-
cal models, we train three different clinical T5 models on
MIMIC III and MIMIC IV, which total ≈ 1.2B words (2B
tokens). The T5 models are encoder-decoder LMs that are
trained with a generative masked language modeling loss
(Devlin et al., 2019). Raffel et al. (2020) pretrain several
T5 models of varying size (T5-Base, T5-Large, T5-XL,
etc.) on text from the general web. We describe our pre-
trained models below and provide an extensive detail on
training method, data preprocessing, and model hyperpa-
rameters in Appendix A:

4. We rename the model (RoBERTa-large-PM-M3-Voc) from Lewis
et al. (2020) to be BioClinRoBERTa.

• Clinical-T5-Base-Ckpt: We initialize from the T5-
Base (220M) checkpoint and train on MIMIC for
13B tokens. This would classify as a Specialized
Clinical Model (DAPT) in row two of Figure 1.

• Clinical-T5-Base: We randomly initialize T5-Base
from scratch and train on MIMIC for 40B tokens.
This would classify as a Specialized Clinical Model
(Scratch) in row one of Figure 1.

• Clinical-T5-Large: We randomly initialize T5-
Large (770M) from scratch and train on MIMIC for
38B tokens. This would classify as a Specialized
Clinical Model (Scratch) in row one of Figure 1.

To ground the results of the specialized clinical models,
we compare to several different general domain models
(Table 1), including RoBERTa (Liu et al., 2019), T5-Base,
and T5-Large. RoBERTa shares the same architecture
as GatorTron and BioClinRoBERTa, while T5-Base and
T5-Large share the same architecture as Clinical-T5-Base
and Clinical-T5-Large, respectively. However, RoBERTa,
T5-Base and T5-Large are trained exclusively on general-
domain text.

In order to examine how specialized clinical mod-
els compare to significantly larger, non-clinical mod-
els, we compare to PubMedGPT (Bolton et al., 2022)
and T5-XL, as these are the largest models that we are
able to fully finetune. All finetuning hyperparameters
are reported in Appendix B. Additionally, we examine
how these specialized clinical models compare to LLMs
used with ICL. For these experiments, we use GPT-3
(text-davinci-003, Ouyang et al. 2022) and T5-
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Flan-XXL (Chung et al., 2022). We explore using a num-
ber of different prompts (∼10-20) and report additional
details in Appendix D.

4. Clinical Models Are Parameter Efficient

In this section, we study how smaller specialized clini-
cal models compare to larger models trained on the gen-
eral domain. We fix the model architecture and com-
pare models pretrained on general data (T5-Base, T5-
Large, T5-XL) versus clinical data (Clinical-T5-Base-
Ckpt, Clinical-T5-Base, Clinical-T5 Large). We find
that Clinical-T5-Base-Ckpt and Clinical-T5-Base outper-
form their general domain counterpart, T5-Base, while
Clinical-T5-Large outperforms T5-Large (Table 2). This
is despite the fact that we pretrain for several epochs
(15+) on the relatively small set of tokens present in
MIMIC, which Raffel et al. (2020) shows negatively im-
pacts performance relative to pretraining on unique text
for less than one epoch. Furthermore, we find that pre-
training from scratch on clinical data yields the largest
performance gains. While domain adaptive pretraining
of T5-Base on clinical data improves performance over
T5-Base, training from scratch is more effective, lead-
ing to +3% and +5% gains over Clinical-T5-Base-Ckpt on
RadQA and CLIP, respectively. The weaker performance
of Clinical-T5-Base-Ckpt could be explained by a sub-
optimal learning rate. Selecting a continuation learning
rate is a known challenge of domain-adaptive pretraining
(Hoffmann et al., 2022).

While there is substantial evidence that specialized
clinical models can outperform their similarly sized gen-
eral domain equivalents (Lewis et al., 2020; Liu et al.,
2019; Alsentzer et al., 2019), it is less clear whether spe-
cialized clinical models can outperform larger general-
domain models. We investigate this by comparing T5
models of varying sizes. We find that Clinical-T5-Base
slightly outperforms T5-Large (3.5× larger) on all three
tasks, but fails to outperform T5-XL (13.5× larger).
Similarly, Clinical-T5-Large slightly outperforms or per-
forms similarly to T5-XL (3.5× larger). This compari-
son between models trained on in-domain data and larger
domain-agnostic models demonstrates that specialized
clinical models can achieve comparable or better per-
formance with significantly fewer computational re-
sources. This is particularly important for hospital sys-
tems, which often lack the infrastructure necessary to run
computationally intensive models. By training models
specifically on in-domain data, hospitals can still benefit
from state-of-the-art LLMs, but with a smaller, more man-

ageable model that can operate in computationally con-
strained environments.

4.1. When Is Pretraining From Scratch More
Efficient?

Pretraining a specialized clinical model from scratch has a
high initial one-time cost. However, performing this pre-
training, as our results above suggest, enables the model
to be significantly smaller than a general-purpose model
while still exhibiting similar downstream performance.
This means that despite a high initial cost, the cost of both
finetuning and running inference on a specialized clinical
model greatly decreases. In this section, we determine
at what point it is more computationally expensive to
use a larger domain-agnostic model versus pretraining a
smaller specialized model from scratch. We measure the
cost of a model in terms of FLOPs (Kaplan et al., 2020),
which is a function of model size and number of pretrain-
ing tokens. We compare the costs of pretraining, fine-
tuning, and performing inference on specialized clinical
models versus finetuning and performing inference on an
existing general domain model. We assume here that the
entire model is updated during the finetuning process.

The training cost Ct and inference cost Ci of a model
are a function of the number of parameters P in the model
and the number of tokens T that are processed (Kaplan
et al., 2020):

Ct (P, T ) = 6PT (1)
Ci (P, T ) = 2PT (2)

The number of tokens T in the above cost func-
tions depend on the vocabulary and tokenization pro-
cess. One additional benefit of training from scratch is
that it enables use of an in-domain vocabulary: words
previously broken up into word-pieces by a general to-
kenizer may now be treated as a single token. We
find that for every 1 clinical token, there are ≈
1.12 general tokens.5 We model this using an ad-
ditional token cost weight w, with wc = 1.0, wg = 1.12
for clinical and general-domain tokenizers, respectively.
Using Tpt pretraining tokens, Tft finetuning tokens (both
fixed), and Ti inference tokens, we can write the total cost
required to pretrain, finetune, and perform inference as
follows:

5. We calculate this by running the T5-Base tokenizer over all of
MIMIC, as compared to Clinical-T5-Base (same vocabulary size).
There is roughly a 65% overlap between the two vocabularies.
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MedNLI RadQA CLIP

Size Model Acc. EM F1 Micro F1 Macro F1

220M T5-Base 0.818 0.479 0.662 0.767 0.594
Clinical-T5-Base-Ckpt 0.852 0.507 0.689 0.772 0.605
Clinical-T5-Base 0.855 0.531 0.710 0.793 0.652

770M T5-Large 0.849 0.537 0.700 0.779 0.629
Clinical-T5-Large 0.872 0.550 0.745 0.800 0.663

3B T5-XL 0.869 0.568 0.729 0.780 0.640

Table 2: We compare the performance of T5-models with varying pretraining setups. Performance is based on the
mean of 3 seeds. Specialized clinical models can outperform larger, general-purpose models like T5-XL.

Cm (P, Ti, Tpt, Tft, w)

= Ct (P,wTpt) + Ct (P,wTft) + Ci (P,wTi)

= 6Pw (Tpt + Tft) + 2PwTi (3)

We can now compare the cost of a small, specialized clin-
ical model of size Pc with a larger, general-domain, pre-
viously pretrained (i.e. Tpt = 0) model of size Pg , with
Pc < Pg . Assuming the same amount of finetuning to-
kens, Tft, the costs of both models (Cc and Cg) to run
inference over Ti tokens becomes:

Cc (Pc, Tpt, Tft, Ti, wc) = 6Pcwc (Tpt + Tft)

+ 2PcwcTi (4)

Cg (Pg, Tpt = 0, Tft, Ti, wg) = 6PgwgTft

+ 2PgwgTi (5)

Equating (4) and (5) and solving for the number of infer-
ence tokens, Ti, we find the point at which the costs of
running inference with the clinical and the general model
become equal:

Ti,breakeven =
3 [wcPc (Tpt + Tft)− wgPgTft]

wgPg − wcPc
(6)

Ignoring finetuning costs and using Clinical-T5-Large
and T5-XL as our comparison models, it would take
∼40B tokens of inference to recover the costs of pretrain-
ing from scratch on clinical data. For reference, we es-
timate that University of Florida Health, which is a large
health system with over 1000 beds, records ∼15B tokens
per year (Yang et al., 2022). While it would take ∼2.5

years to recover the cost of a specialized clinical model
for a single task that runs over each note once, in prac-
tice, such a model would be used for numerous tasks and
potentially operate over multiple years of clinical notes.
Given that the two models perform similarly, these re-
sults suggest that training a smaller specialized clinical
model would allow hospitals to leverage the benefits of
LMs, without the higher inference-time and environmen-
tal costs of running significantly larger models.

5. In-Domain Tokens Are More Valuable

In Section 4, we examine performance based on a fixed
model architecture. In this section, we expand the models
we consider to include two more specialized clinical mod-
els (GatorTron, BioClinRoBERTa), as well non-clinical
models that were trained for a similar number of FLOPs
(RoBERTa, PubMedGPT). We aim to explore how per-
formance changes as a function of the amount of general,
biomedical and clinical FLOPs used during pretraining.

BioClinRoBERTa and GatorTron achieve the highest
performance on all tasks (Table 3). This is despite the
fact that both of these models are less than 12% of the
size of T5-XL, suggesting that model size alone does
not guarantee state-of-the-art performance. Another hy-
pothesis is that the total number of FLOPs drives per-
formance; notably, both BioClinRoBERTa and GatorTron
were trained for significantly more FLOPs than T5-XL.
However, we find that RoBERTa, which is trained for
more total FLOPs than GatorTron and BioClinRoBERTa
and shares the same BERT-Large architecture, fails to out-
perform both of these models. This suggests that the high
performance of GatorTron and BioClinRoBERTa stems
from the makeup of their training data, rather than the to-
tal number of FLOPs.
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Compute FLOPs MedNLI RadQA CLIP

Size Model General BioMed Clinical Acc. EM F1 Micro Macro

220M T5-Base 4.5E+19 6.6E+17 – 0.818 0.479 0.662 0.767 0.594
Clinical-T5-Base – – 5.3E+19 0.855 0.531 0.710 0.793 0.652

345M RoBERTa 4.6E+21 – – 0.852 0.521 0.684 0.793 0.677
BioClinRoBERTa – 4.2E+21 1.4E+20 0.900 0.604 0.759 0.805 0.707
GatorTron 1.4E+19 1.9E+20 3.3E+21 0.883 0.583 0.759 0.791 0.690

770M T5-Large 2.6E+19 2.3E+18 – 0.849 0.537 0.700 0.779 0.629
Clinical-T5-Large – – 1.8E+20 0.872 0.550 0.745 0.800 0.663

2.7B PubMedGPT – 4.9E+21 – 0.870 0.512 0.698 0.819 0.666
3B T5-XL 1E+20 9E+18 – 0.869 0.568 0.729 0.780 0.640

11B Flan-T5-XXL 3.7E+20 5.5E+18 – 0.808 0.300 0.602 0.164 0.178
175B GPT-3 ? ? ? 0.805 0.362 0.619 0.154 0.146

Table 3: A comparison of clinical and general models trained with varying FLOPs on the three clinical tasks. We only
evaluate the ICL methods on 25% of the test set for CLIP due to the time required for inference on the dataset. We
report the mean performance over 3 random seeds. GatorTron and BioClinRoBERTa obtain the highest performance
on all metrics except Micro F1 on CLIP. EM stands for exact-match. Macro and Micro stand for Macro and Micro F1
respectively.

Similarly, we find that PubMedGPT, which is trained
on PubMed for the largest number of total FLOPs, fails to
outperform significantly smaller clinical models. This is
especially striking considering that PubMedGPT achieves
a high performance on the United States Medical Licens-
ing Exam (USMLE), a set of standardized tests required
for medical licensure in the United States (Bolton et al.,
2022). In fact, we find that GatorTron scores 10 points
worse than PubMedGPT on the USMLE, suggesting that
there is a difference between the ability to leverage con-
ventional medical knowledge and parse a clinical note.

As we saw in Section 4, clinical models outperform
their domain-agnostic equivalents. Figure 3 additionally
highlights that domain-agnostic models do so with fewer
parameters. Furthermore, given a fixed level of perfor-
mance, we see that clinical models are more computation-
ally efficient than general-domain models. For example,
Clinical-T5-Large and T5-XL achieve comparable perfor-
mance on MedNLI, yet T5-XL requires 3.5 times as many
FLOPs. While model architecture differences make a di-
rect comparison difficult, we see that these trends hold
for the non-T5 models as well. These results suggest
that increasing the number of biomedical and clinical
FLOPs, as opposed to the number of parameters or

total FLOPs, is the most promising approach for im-
proving performance on tasks based on clinical text.

6. In-Context Learning Underperforms
Task Specific Models

Recent works have shown that LLMs can be adapted
to new domains simply through ICL (Wei et al., 2022;
Li’evin et al., 2022; Agrawal et al., 2022; Sanh et al.,
2021). This type of approach is especially appealing in
settings where there is a limited amount of labeled data.
To properly compare ICL to specialized clinical mod-
els and general-purpose models, we simulate a setting in
which we have access to very limited data, even as low as
< 100 samples. Concretely, we finetune RoBERTa, Bio-
ClinRoBERTa, GatorTron, Clinical-T5-Large and Pub-
MedGPT on 1%, 5%, 10%, 25% and 100% of the avail-
able finetuning data for each task and compare the fine-
tuned models to ICL with GPT-3 and Flan-T5-XXL.

We find that models finetuned on all available data
significantly outperform any ICL approach for all of
our tasks (Figure 4). This is consistent with prior results,
which compared ICL with parameter-efficient finetuning
(Liu et al., 2022). These findings are particularly relevant
to the safety critical clinical domain, where ML practi-
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tioners may be willing to gather additional finetuning data
for improved performance in high-risk settings.

The utility of specialized clinical models in the few-
shot setting varies across datasets. On MedNLI, both
BioClinRoBERTa and GatorTron outperform GPT-3 in
all resource-restricted settings. On RadQA, GPT-3 and
Flan-T5-XXL outperform the smaller specialized clinical
models, but only when the specialized models are trained
on 1% (49 question-answer pairs) of training data. It is
worth noting that GPT-3 and Flan-T5-XXL are finetuned
on question-answering style tasks (Ouyang et al., 2022;

Chung et al., 2022), albeit it is unlikely that these tasks
are from the clinical domain.

We find that all models outperform GPT-3 and
Flan-T5-XXL on CLIP, even when only 5 discharge
summaries are used for training data. We believe
that this can be attributed to the aggressive sentence-
segmentation of the discharge summaries in the CLIP
dataset, as well as the lack of specificity of the task
labels.6 For example, GPT-3 struggles to catego-

6. The aggressive sentence-segmentation leads to sentences like “Dis-
charge Instructions:”. If important follow-up information follows a
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rize labels of type Other Appointment Related
Instructions, which significantly lowers its over-
all performance on CLIP. Further, unlike RadQA and
MedNLI, the label space of this task is different from the
type of tasks that GPT-3 and Flan-T5-XXL were finetuned
on.

On two of the three datasets, the 11B Flan-T5-XXL
model outperforms the much larger 175B GPT-3 model.
Flan-T5-XXL is publicly available and can be run with
ICL locally on a single GPU, particularly with the aid of
libraries such as DeepSpeed (Rajbhandari et al., 2019),
making it a promising option for ICL when compute is
limited.

We can also examine the gap in performance be-
tween clinical (GatorTron, BioClinRoBERTa, Clinical-
T5-Large) and non-clinical (RoBERTa, PubMedGPT)
pretrained models. For RadQA and CLIP in particular,
there is a clear gap in performance between clinical and
non-clinical models. This gap is largest in limited data set-
tings (5% and 10%), and slowly diminishes as the amount
of finetuning data increases. This suggests that pretraining
on in-domain data can be especially advantageous when
there is a low amount of text available for finetuning.

7. Limitations & Future Work

In this paper, we test 12 different LMs on 3 different
clinical tasks. We specifically select tasks that test the
ability to reason over and parse clinical notes. However,
we do not test the ability of these models to reason over
long text, which is a considerable challenge when work-
ing with clinical notes. We also do not consider tasks
that require generating clinical text (e.g. summarization),
which would likely be challenging for encoder-only mod-
els. Further, this work does not consider the various tech-
niques that can be used to reduce model size (e.g., distil-
lation (Hinton et al., 2015), pruning (Janowsky, 1989)) or
perform parameter-efficient training (e.g., prompt-tuning
(Li and Liang, 2021)). Another limitation is that we make
some comparisons across different architectures. While
this is still a valuable comparison, we cannot attribute im-
provements in performance to the pretraining data dis-
tribution versus the model architecture. Lastly, we do
not use any instruction-tuned models (Wei et al., 2021b),
which are finetuned on a collection of tasks described via
instructions, in our finetuning experiments, and we do not
compare against ChatGPT or GPT-4 because the model

header sentence, then the header is also marked with the label of the
following sentence. This makes it particularly challenging to do in
an ICL setting; however, it is possible that extensive heuristics may
help alleviate this issue.

size, architecture, and training data are unknown. Future
work is needed to evaluate ChatGPT and GPT-4 on pri-
vate EHR datasets that are unlikely to be included in the
training data. In the future, we would also like to compare
to these models and develop instruction-tuned models tai-
lored to the clinical domain.

8. Conclusion
In this paper, we explore whether there is still a need
for smaller specialized clinical language models. To an-
swer this question, we conduct an extensive experimental
analysis of 12 models, ranging from 220M to 175B pa-
rameters, on 3 different clinical tasks that test the ability
to parse and reason over electronic health records. Our
results suggest that smaller models, specifically tailored
for clinical text, are more parameter efficient than larger
domain-agnostic models. Further, we find that using in-
context learning with extremely large language models,
like GPT-3, is not a sufficient replacement for finetuned
specialized clinical models. These findings highlight the
importance of developing models for highly specialized
domains such as clinical text.

Data and Code Availability We use the MIMIC-III
(Johnson et al., 2016) and MIMIC-IV (Johnson et al.,
2023) datasets in this paper for training and evaluating
specialized clinical models. We experiment with several
tasks, including MedNLI (Romanov and Shivade, 2018),
RadQA (Soni et al., 2022), and CLIP (Mullenbach et al.,
2021). All of these datasets are available on PhysioNet
(Goldberger et al., 2000 (June 13). In the appendix, we
also report results on the n2c2 2010 (Uzuner et al., 2011),
2012 (Sun et al., 2013), and 2014 (Stubbs et al., 2015)
challenges. We plan to make our code and models avail-
able upon paper acceptance.

Institutional Review Board (IRB) This work solely
leverages de-identified clinical notes from PhysioNet and
the n2c2 challenges and therefore does not require IRB
approval. All authors who interacted with the data were
credentialed PhysioNet and n2c2 users.
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Appendix A. MIMIC Preprocessing and
Model Training

In this section, we walk through the steps required to pre-
train the T5 specialized clinical models.

A.1. Data Preprocessing

We use notes from both MIMIC-III & MIMIC-IV for pre-
training. These datasets are not entirely disjoint, as a por-
tion of the notes that appear in MIMIC-III also appear in
MIMIC-IV. However, MIMIC-IV only contains discharge
summaries and radiology reports. We take the union of
MIMIC-III and MIMIC-IV notes such that patient records
are not repeated (Table 4). This includes notes from all
CAREVUE patients and all notes that are not discharge
summaries or radiology reports. We also remove patients
that overlap with the tasks we consider in this paper (ex-
cept for MedNLI). This is important because it is unlikely
that models will be pretrained on the same data used at
inference time in a realistic deployment scenario.

We remove duplicates of notes from MIMIC-III using
charttime, storetime and cgid. Duplicate notes
can occur when clinicians draft and later edit a note; these
duplicates generally differ by 1-2 words. After this pre-
processing, there are 430M words in MIMIC-III (Table 4).

A.2. Tokenization of DEID Tokens

All data in MIMIC is fully de-identified. In MIMIC-
III, protected health information (PHI) is replaced with
special deidentification tags (e.g, [**First Name
123**]), and in MIMIC-IV PHI is replaced with the
generic placeholder . While these de-identification
tags can be informative, tokenizers typically break each
tag into multiple subwords, dramatically increasing the
number of tokens. We find that replacing all DEID tags
with several special DEID tokens (e.g., [NAME]), which
we add to the tokenizer vocabulary, reduces the size of
MIMIC from 2,400,714,781 tokens to 2,335,573,220 to-
kens. To perform this replacement on MIMIC-IV, we
were granted special access to a file that maps PHI loca-
tions to the type of PHI it is. Using this mapping, we add
the appropriate DEID tokens to MIMIC-IV text so that
the DEID information is stored in a similar manner across
both datasets.

We experimented with 3 different tokenization methods
prior to pretraining our specialized clinical models. To
select the best tokenizer, we pretrained 3 different mod-
els for 10 epochs initializing from T5-Base. In the first
model, which we use in the paper, we add special DEID
tokens and replace the existing ones in MIMIC. For the
second model, we do not modify the tokenizer at all. In
the last model, we replace all DEID tags with realistic
PHI. We frame the problem as a masked language model-
ing task and query a T5-Large model to generate realistic
PHI (e.g. patient names, hospital names, etc.). We eval-
uated each model on the n2c2 2012 challenge (Sun et al.,
2013), and we found that the performance of these mod-
els was comparable. Using the evaluation script provided
by Paolini et al. (2021), we found that n2c2 2012 scores
were 0.800, 0.803, 0.802, for the first, second, and third
model, respectively. These models can be made available
upon request.

A.3. Model Pretraining

We train and test three different T5 models, following the
original T5 training pretraining scheme where possible.
We describe the process for training each below.

1. Clinical-T5-Base: We pretrain the model from
scratch on MIMIC notes for 310K steps, which is
roughly 40B tokens worth of pretraining. The model
was trained for 200K steps on a TPU before an error
with the TPU caused us to switch training to a GPU
cluster. The batch size was 32 per TPU/GPU. Due
to an issue in the code, the model uses a lowercased
vocabulary. All other models are cased.
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Name # Patients #Notes #Words
MIMIC-III 46K 2M 429M
MIMIC-IV 246K 2.6M 921M
MIMIC-III + MIMIC-IV 291K 4.1M 1.2B

Table 4: We break down the MIMIC-III and MIMIC-IV datasets. There is an overlap in notes between MIMIC-III &
MIMIC-IV.

2. Clinical-T5-Base-Ckpt: We initialize the model with
T5-Base and trained the model for an additional
100K steps on the MIMIC notes. The model was
trained on 8xA6000 (48GB) GPUs with a batch-size
of 32 per GPU. Each epoch took roughly 6 hours.
We used 40K warm-up steps (compared to 10K in
the original T5 paper) because we were training the
model on a fewer number of tokens. We suspect that
this was too many warm-up steps and may have neg-
atively impacted performance.

3. Clinical-T5-Large: We train this model from scratch
on MIMIC notes for 780K steps or approximately
38B tokens. We use a TPU v3.8 cluster with a batch
size of 12 per TPU. The cost of training was approxi-
mately 1,800 USD, and the training process took ap-
proximately 220 hours.

Appendix B. Detailed Model Training and
Performance

In the following section, we describe our process for fine-
tuning language models on MedNLI, RadQA, and CLIP.
Due to space limitations, we only show results for 12
models in the main body of the paper. However, in this
expanded appendix, we report the performance of 16 dif-
ferent general, biomedical, and clinical language models,
adding results for ClinicalBERT (Alsentzer et al., 2019),
ClinicalLongformer (Li et al., 2022), SciFive (Phan et al.,
2021), and SciFive Large. All of these models were
trained use DAPT. ClinicalBERT was initialized from
BioBERT and further pretrained over MIMIC-III. Simi-
larly, ClinicalLongformer was initialized from the Long-
former (?) and trained over MIMIC-III. Lastly, SciFive
and SciFive-Large were initialized from T5-Base and T5-
Large, respectively, and trained over PubMed.

B.1. Hyperparameter Tuning

We largely follow the guidance of Raffel et al. (2020) for
finetuning all of the T5 models. Raffel et al. (2020) sug-
gest using a constant learning rate of 1e-3 for all finetun-
ing experiments (with adafactor optimizer).We found that

this was too large and that 1e-4 performed significantly
better across all tasks.

For PubMedGPT, we follow Bolton et al. (2022) and
train using AdamW with a learning rate of 2e-6. We
experimented with 2e-5, but found that 2e-6 performed
much better. For ClinicalBERT, GatorTron, and Clinical-
Longformer, we do a hyperparameter search over learning
rates of 2e-5, 3e-5 and 5e-5. For RoBERTa and BioClin-
RoBERTa, we follow the guidence of Lewis et al. (2020),
and use a learning rate of 1e-5. We select whichever learn-
ing rate works best on the validation set. The optimal
learning rate varies for each task. We use the AdamW
optimizer (Loshchilov and Hutter, 2017).

To train T5-XL and PubMedGPT with limited GPU re-
sources, we leverage the DeepSpeed library (Rajbhandari
et al., 2019). This enables the models to be trained on
32GB GPUs by using CPU offloading at the expense of
increasing train run time.

We train until convergence for all tasks. The time to
convergence differs across tasks. Generally, we find that
T5-XL converges much faster than the other T5 models.
On MedNLI, for example, T5-XL converges within 15
epochs whereas Clinical-T5-Large needs roughly 30-40
epochs to converge. We ran all experiments with an ef-
fective batch size of 64. We select the optimal hyperpa-
rameters according to the performance on the vaidation
set for each task (accuracy for MedNLI, F1 for RadQA,
and Macro F1 for CLIP).

B.2. Computational Resources and Run-Time

We used a wide-range of GPUs for our experiments, in-
cluding 80GB V100s, 48GB A6000, 32GB V100, and
12GB 2080Tis. The encoder-only models take around 20-
40 minutes to run on MedNLI and RadQA and 3 hours
to run on CLIP. We find that the T5-Base models take
around an hour to run on MedNLI and RadQA and 4 hours
on CLIP (these models are trained for additional epochs
compared to the encoder-only models because they are
slower to converge). The T5-Large models take around
1.5 hours to run on MedNLI and RadQA and roughly
10 hours to run on CLIP. PubMedGPT and T5-XL take
around 6 hours to run on MedNLI and RadQA. For CLIP,
this took roughly 40 hours to run (on 4x48GB GPUs). The
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Model Size General PTT BioMed PTT Clinical PTT Unique PTT
ClinicalBERT 110M 137B 46B 0.6B 3.4B / 32B / 0.6B
Clinical LongFormer 150M 2200B – 15B 55B / – / 0.8B
T5-Base 220M 34B 0.5B – 34B / 0.5B / –
Clinical-T5-Base-Ckpt 220M 34B 0.5B 13B 34B / 0.5B / 2.3B
Clinical-T5-Base 220M – – 40B – / – / 2B
RoBERTa-Large 345M 2200B – – 55B / – / –
BioClinRoBERTa 345M – 2037B 65B – / 32B / 0.8B
GatorTron 345M 40B 92B 1570B 4B / 9B / 157B
T5-Large 770M 34B 0.5B – 34B / 0.5B / –
Clinical-T5-Large 770M – – 38B – / – / 2B
SciFive 220M 34B 27B – 34B / 27B / –
SciFive-Large 770M 34B 14B – 34B / 14B / –
PubMedGPT 2.7B – 300B – – / 50B / –
T5-XL 3B 34B 0.5B – 34B / 0.5B / –
Flan-T5-XXL 11B 34B 0.5B – 34B / 0.5B / –
GPT-3 175B – – – –

Table 5: PTT stands for pretraining tokens. All of the models tested and considered for the project. We show the
models, their size, what they were initialized from, and the make up of their pretraining data. We are, of course,
unable to provide any information on GPT-3. We focus only on pretraining data, and ignore any instruction tuning
data.

use of the DeepSpeed library increased the time required
for finetuning PubMedGPT and T5-XL.

B.3. Task-Specific Details

We produce answers with the T5 models by generating the
label or extracted text with beam search. For the encoder-
only models and PubmedGPT, we add a task-specific lin-
ear layer on top of the base model. We next outline fine-
tuning details that are specific to each task.
MedNLI. We train the encoder-only models and Pub-
MedGPT for 20 epochs, and we train T5-XL for 15
epochs. All clinical and general-domain T5-Base and T5-
Large models are trained for 40 epochs. For all T5 mod-
els, we use a beam search width of 3.
RadQA. As before, we train the encoder-only models and
PubMedGPT for 20 epochs, and we train T5-XL for 15
epochs. We trained all T5-Base and T5-Large models for
50 epochs. For all T5 models, we use a beam search width
of 1. We found that increasing the beam-search width did
not consistently improve performance; we experimented
with beam search widths of 3, 5, and 10, and found that it
increased exact-match at the expense of F1-Score.
CLIP. Again, we train the encoder-only models and Pub-
MedGPT for 20 epochs, and we train T5-XL for 15
epochs. We trained all T5-Base and T5-Large models

for 40 epochs. For all T5 models, we use a beam search
width of 5. We did not experiment with different beam
search widths for CLIP. To generate multiple labels for
each sentence, we ask the T5 models to produce a comma-
delimited list of labels, ordered alphabetically. We use
a context window of 256 for all experiments with CLIP.
This resulted in a slightly lower performance compared to
the results presented in Mullenbach et al. (2021), which
used a window of 512 tokens.

Appendix C. Additional Discussion of
Model Performance

C.1. MedNLI

We report results for all models in Table 7. We find
that ClinicalBERT performs similarly to T5-Base, while
ClinicalLongFormer performs similarly to T5-Large. We
additionally test SciFive and SciFive-Large (Phan et al.,
2021), which outperform T5-Base and T5-Large, respec-
tively. However, these models fail to outperform Clinical-
T5-Base and Clinical-T5-Large. This may be because
SciFive and SciFive-Large are trained via DAPT, while
Clinical-T5-Base and Clinical-T5-Large are trained from
scratch. Further, SciFive and SciFive-Large are trained on
biomedical tokens, rather than clinical tokens.
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Task Type Labels Max Sequence Length Train / Val / Test Units
MedNLI NLI 3 256 11K / 1K / 1K Sentence Pairs
RadQA QA – 1024 4.8K / 1K / 1K Question + Answer Pairs
CLIP CLS 7 256 107K / 10K / 10K Sentences

Table 6: We summarize some task statistics. CLS stands for classification.

Model Size BioMed PT Clinical PT Accuracy Std.
ClinicalBERT 110M ✗ ✓ 0.815 0.008
ClinicalLongFormer 150M ✗ ✓ 0.846 0.003
T5-Base 220M ✗ ✗ 0.818 0.006
SciFive 220M ✗ ✗ 0.835 0.003
Clinical-T5-Base-Ckpt 220M ✗ ✓ 0.852 0.007
Clinical-T5-Base 220M ✗ ✓ 0.855 0.004
GatorTron 345M ✓ ✓ 0.883 0.002
RoBERTa 345M ✗ ✗ 0.852 0.002
BioClinical RoBERTa 345M ✓ ✓ 0.900 0.003
T5-Large 770M ✗ ✗ 0.849 0.008
SciFive Large 770M ✓ ✗ 0.857 0.005
Clinical-T5-Large 770M ✗ ✓ 0.872 0.008
PubmedGPT 2.7B ✓ ✗ 0.870 0.009
T5-XL 3B ✗ ✗ 0.869 0.004
Flan-T5-XL 11B ✗ ✗ 0.808 –
GPT-3 175B – – 0.807 –

Table 7: We show the performance of all models considered on MedNLI. Results are based on at least 3 seeds.
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We also show how performance changes depending on
the number of DAPT steps (Table 8). We find that training
Clinical-T5-Base-Ckpt for 20K pretraining steps gives a
reasonable boost in performance over T5-Base. Training
from 20K to 80K steps does not seem to provide any addi-
tional performance gains. However, we find that training
for 100K steps does improve performance versus training
for 80K steps. This is likely due to the learning rate sched-
uler. It is possible that at 40K to 80K steps, the learning
rate is too large.

C.2. RadQA

We report results for all models in Table 9. We
find that ClinicalBERT performs extremely poorly on
RadQA, while the ClinicalLongformer performs similar
to Clinical-T5-Base-Ckpt. Similar to MedNLI, SciFive
and SciFive-Large outperform T5-Base and T5-Large, re-
spectively. However, both of these models fail to outper-
form their clinical equivalents.

C.3. CLIP

We report results for all models in Table 10. We find that
ClinicalBERT and ClinicalLongformer perform very well
on this task, performing comparably to or outperform-
ing the much larger T5-XL model. This is likely due to
the fact that the the T5 models generate answers, which
is challenging for a multi-label classification task. As
we saw in other experiments, SciFive and SciFive-Large
underperform their clinical-domain counterparts. Pub-
MedGPT has the highest Micro F1 performance, outper-
forming both GatorTron and BioClinRoBERTa, which ex-
celled across all other tasks.

Appendix D. Additional Details about In
Context Learning Experiments

In this section, we provide additional information about
our approach for performing in context learning with
GPT-3 and Flan-T5-XXL.

We experiment with approximately 10-20 different
prompts for each task, crafting prompts to reflect the
prompts used during instruction tuning of Flan-T5 and
GPT-3. We pair each prompt with one to three randomly
sampled examples for in-context learning. We select the
best prompt based on the performance on a random sam-
ple of 200 examples from the validation set. We use a
temperature of 0 and a beam search width of 1.

For MedNLI and CLIP, we found that the performance
of the models was largely stable, regardless of the input

prompt. For example, GPT-3 was achieving 70%+ ac-
curacy on all of the MedNLI prompts given to it. For
RadQA, there was more variation in it’s performance, as
the model needed to be “pushed” towards correctly iden-
tifying unanswerable questions.

There are two options for generating labels for CLIP,
which is a multi-label classification task. The model can
either generate predictions for each label independently or
all at once. We experiment with both options using Flan-
T5-XXL and find that both approaches perform similarly.
However, independently prompting the model for each la-
bel results in higher inference time costs. Therefore, we
ask the model to generate predictions for all labels at once
for GPT-3.

We list the prompts that were used on the test set below.
Note that we only include the prompt itself and do not
include the in-context examples.

• MedNLI - T5-Flan-XXL & GPT-3: Answer
entailment, contradiction or
neutral. Premise: {Premise}
Hypothesis: {Hypothesis}

• RadQA - GPT-3 & GPT-3: Context:
{Context}, {Question} Answer N/A
if there is no answer or give a
quote from the context:

• CLIP - T5-Flan-XXL:

1. Context: {Context}. Does
the above sentence contain
information about current or
future appointments? Options:
-Yes -No

2. Context: {Context}. Does
the above sentence contain
information about medications?
Options: -Yes -No

3. Context: {Context}. Does
the above sentence contain
any important actionable
information? Options: -Yes
-No

4. Context: {Context}. Does the
above sentence contain any
information about laboratory
tests? Options: -Yes -No

5. Context: {Context}. Does the
above sentence contain any
information about what to do
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Model Clinical PTT Accuracy Std.
T5-Base – 0.818 0.006
Clinical-T5-Base-Ckpt-20K 2B 0.831 0.001
Clinical-T5-Base-Ckpt-40K 5B 0.831 0.002
Clinical-T5-Base-Ckpt-60K 8B 0.836 0.007
Clinical-T5-Base-Ckpt-80K 10B 0.836 0.002
Clinical-T5-Base-Ckpt 13B 0.852 0.007

Table 8: We report the performance of Clinical-T5-Base-Ckpt on MedNLI when trained on an increasing number of
tokens from MIMIC. We find that pretraining for a high warmup initially boosts performance by 1%.

Model Size BioMed PT Clinical PT Exact Match F1
ClinicalBERT 110M ✗ ✓ 0.457 ± 0.002 0.626 ± 0.008
ClinicalLongformer 150M ✗ ✓ 0.518 ± 0.036 0.689 ± 0.018
T5-Base 220M ✗ ✗ 0.479 ± 0.014 0.662 ± 0.010
SciFive 220M ✓ ✓ 0.506 ± 0.010 0.697 ± 0.007
Clinical-T5-Base-Ckpt 220M ✗ ✓ 0.505 ± 0.014 0.684 ± 0.009
Clinical-T5-Base 220M ✗ ✓ 0.531 ± 0.013 0.710 ± 0.005
RoBERTa 345M ✗ ✗ 0.521 ± 0.014 0.684 ± 0.004
BioClinical RoBERTa 345M ✗ ✗ 0.604 ± 0.012 0.759 ± 0.029
GatorTron 345M ✓ ✓ 0.583 ± 0.008 0.759 ± 0.008
T5-Large 770M ✗ ✗ 0.537 ± 0.019 0.700 ± 0.012
SciFive-Large 770M ✓ ✗ 0.541 ± 0.016 0.704 ± 0.013
Clinical-T5-Large 770M ✗ ✓ 0.550 ± 0.018 0.745 ± 0.008
PubMedGPT 2.7B ✓ ✗ 0.512 ± 0.005 0.698 ± 0.004
T5-XL 3B ✗ ✗ 0.568 ± 0.007 0.729 ± 0.005
Flan-T5-XXL 11B ✗ ✗ 0.300 0.602
GPT-3 175B ✗ ✗ 0.362 0.620

Table 9: Performance of all models on RadQA. We report the mean performance and standard deviation of models
trained with at least 3 random seeds.

Model Size BioMed PT Clinical PT Micro F1 Macro F1
ClinicalBERT 110M ✗ ✓ 0.777 ± 0.006 0.649 ± 0.007
ClinicalLongformer 150M ✗ ✓ 0.790 ± 0.003 0.659 ± 0.008
T5-Base 220M ✗ ✗ 0.767 ± 0.008 0.594 ± 0.011
SciFive 220M ✓ ✓ 0.769 ± 0.008 0.603 ± 0.004
Clinical-T5-Base-Ckpt 220M ✗ ✓ 0.772 ± 0.005 0.605 ± 0.009
Clinical-T5-Base 220M ✗ ✓ 0.793 ± 0.001 0.652 ± 0.009
RoBERTa 345M ✓ ✗ 0.793 ± 0.001 0.677 ± 0.008
BioClinRoBERTa 345M ✓ ✗ 0.805 ± 0.005 0.707 ± 0.007
GatorTron 345M ✓ ✗ 0.791 ± 0.003 0.690 ± 0.010
T5-Large 770M ✗ ✗ 0.779 ± 0.008 0.629 ± 0.011
SciFive-Large 770M ✓ ✗ 0.774 ± 0.008 0.630 ± 0.011
Clinical-T5-Large 770M ✗ ✓ 0.800 ± 0.008 0.663 ± 0.007
PubMedGPT 2.7B ✓ ✗ 0.819 ± 0.003 0.666 ± 0.003
T5-XL 3B ✗ ✗ 0.780 ± 0.021 0.640 ± 0.022
Flan-T5-XXL 11B ✗ ✗ 0.164 0.178
GPT-3 175B ✗ ✗ 0.154 0.146

Table 10: Performance of all models on CLIP. We report the mean performance and standard deviation of models
trained with at least 3 random seeds. T5-Flan-XXL and GPT-3 are based on a sample of 25% of the test data.

596



DO WE STILL NEED CLINICAL LANGUAGE MODELS?

post-discharge? Options: -Yes
-No

6. Context: {Context}. Does the
above sentence contain any
information about procedures
(e.g., surgeries)? Options:
-Yes -No

7. Context: {Context}. Does the
above sentence contain any
information about an imaging
followup? Options: -Yes -No

• CLIP - GPT-3: Context:
{Context}. Label the above
sentence as one or more of the
following, delimited by comma:
Options: -Appointment-related
followup information
-Medication-related followup
information -Lab-related followup
information -Case-specific
instructions for the patient
-Procedure-related followup
information -Imaging-related
followup information -None of the
above

We will make all of our prompts available, along with
their validation set performance scores. Consistent with
prior literature, we find that the performance of these
models is extremely dependent on the prompt (Chung
et al., 2022). For example, when evaluating Flan-T5-XXL
on MedNLI, we find that using the following prompt
leads to a drop in accuracy from 83.5% to 62% on the
validation set: Answer entailment, neutral
or contradiction. Premise: Premise
Hypothesis: Hypothesis. Answer:’.

Post-processing was required to map the text gener-
ated by GPT-3 and Flan-T5-XXL to the label space. For
MedNLI, we check if the string contains the word en-
tailment, contradiction or neutral. If none of these three
words appear, we predict neutral. For CLIP, we search
the generated string for the label types. This allows for
the models to generate predictions in any order. GPT-3
and Flan-T5-XXL sometimes produce answers to RadQA
questions that cannot be extracted directly from the radi-
ology report. In such cases, we calculate F1-score regard-
less. Had we enforced that the model produce a string
directly from the text, the F1-score would have dropped
to ∼40 for both models.

Finally, we report the exact performance metrics shown
in Figure 4 in Table 11, Table 12 and Table 15. We

also report Exact Match on RadQA in Table 13 and Mi-
cro F1 on CLIP in Table 14. We initially experimented
with GPT-Neo-X (Black et al., 2022) in addition to GPT-
3 and T5-Flan-XXL. However, in our initial experiments,
we found that its performance on MedNLI was less than
40%. Therefore, we dropped it from our remaining exper-
iments.
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Model 1% 5% 10% 25% 100%
PubMedGPT 0.597 +/- 0.011 0.717 +/- 0.011 0.807 +/- 0.011 0.845 +/- 0.006 0.870 +/- 0.009
GatorTron 0.811 +/- 0.001 0.817 +/- 0.005 0.837 +/- 0.023 0.858 +/- 0.001 0.883 +/- 0.002
RoBERTa 0.718 +/- 0.008 0.759 +/- 0.010 0.786 +/- 0.008 0.809 +/- 0.004 0.852 +/- 0.002
BioClinRoBERTa 0.824 +/- 0.025 0.852 +/- 0.004 0.862 +/- 0.004 0.882 +/- 0.006 0.900 +/- 0.003
Clinical-T5-Large 0.581 +/- 0.029 0.742 +/- 0.033 0.801 +/- 0.003 0.838 +/- 0.007 0.872 +/- 0.008

Table 11: Accuracy on MedNLI for models finetuned with varying amounts of annotated data. Percentages refer to
fraction of the training set for the task. We report the mean and standard deviation over three random seeds. We always
evaluate on the full test set.

Model 1% (F1) 5% (F1) 10% (F1) 25% (F1) 100% (F1)
PubMedGPT 0.291 +/- 0.017 0.461 +/- 0.002 0.564 +/- 0.012 0.672 +/- 0.014 0.729 +/- 0.005
GatorTron 0.315 +/- 0.027 0.620 +/- 0.011 0.666 +/- 0.001 0.718 +/- 0.008 0.759 +/- 0.008
RoBERTa 0.202 +/- 0.014 0.355 +/- 0.015 0.544 +/- 0.006 0.613 +/- 0.008 0.684 +/- 0.004
BioClinRoBERTa 0.369 +/- 0.001 0.370 +/- 0.011 0.619 +/- 0.021 0.717 +/- 0.011 0.759 +/- 0.029
Clinical-T5-Large 0.284 +/- 0.024 0.541 +/- 0.027 0.600 +/- 0.021 0.679 +/- 0.012 0.745 +/- 0.008

Table 12: F1 score on RadQA for models finetuned with varying amounts of annotated data. Percentages refer to
fraction of the training set for the task. We report the mean and standard deviation over three random seeds. We
always evaluate on the full test set.

Model 1% (EM) 5% (EM) 10% (EM) 25% (EM) 100% (EM)
PubMedGPT 0.231 +/- 0.004 0.332 +/- 0.012 0.362 +/- 0.009 0.476 +/- 0.013 0.512 +/- 0.005
GatorTron 0.263 +/- 0.022 0.482 +/- 0.010 0.507 +/- 0.004 0.554 +/- 0.012 0.583 +/- 0.008
RoBERTa 0.187 +/- 0.021 0.295 +/- 0.004 0.415 +/- 0.009 0.462 +/- 0.009 0.521 +/- 0.014
BioClinRoBERTa 0.322 +/- 0.009 0.322 +/- 0.009 0.479 +/- 0.016 0.561 +/- 0.019 0.604 +/- 0.012
Clinical-T5-Large 0.206 +/- 0.015 0.358 +/- 0.016 0.435 +/- 0.024 0.495 +/- 0.006 0.550 +/- 0.018

Table 13: Exact Match performance on RadQA for models finetuned with varying amounts of annotated data. Per-
centages refer to fraction of the training set for the task. We report the mean and standard deviation over three random
seeds. We always evaluate on the full test set.

Model 1% (Micro) 5% (Micro) 10% (Micro) 25% (Micro) 100% (Micro)
PubMedGPT 0.580 +/- 0.006 0.706 +/- 0.010 0.740 +/- 0.006 0.789 +/- 0.003 0.819 +/- 0.003
GatorTron 0.686 +/- 0.010 0.725 +/- 0.009 0.759 +/- 0.006 0.785 +/- 0.002 0.793 +/- 0.001
RoBERTa 0.703 +/- 0.014 0.726 +/- 0.002 0.739 +/- 0.001 0.768 +/- 0.006 0.791 +/- 0.003
BioClinRoBERTa 0.692 +/- 0.007 0.714 +/- 0.003 0.739 +/- 0.003 0.770 +/- 0.001 0.805 +/- 0.005
Clinical-T5-Large 0.616 +/- 0.004 0.716 +/- 0.016 0.743 +/- 0.013 0.777 +/- 0.000 0.800 +/- 0.008

Table 14: Micro F1 score on CLIP for models finetuned with varying amounts of annotated data. Percentages refer
to fraction of the training set for the task. We report the mean and standard deviation over three random seeds. We
always evaluate on the full test set.

Model 1% (Macro) 5% (Macro) 10% (Macro) 25% (Macro) 100% (Macro)
PubMedGPT 0.203 +/- 0.010 0.332 +/- 0.014 0.426 +/- 0.001 0.585 +/- 0.020 0.666 +/- 0.003
GatorTron 0.296 +/- 0.006 0.317 +/- 0.007 0.407 +/- 0.015 0.588 +/- 0.014 0.677 +/- 0.008
RoBERTa 0.388 +/- 0.014 0.404 +/- 0.003 0.520 +/- 0.043 0.658 +/- 0.007 0.690 +/- 0.010
BioClinRoBERTa 0.310 +/- 0.004 0.417 +/- 0.015 0.524 +/- 0.018 0.648 +/- 0.006 0.707 +/- 0.007
Clinical-T5-Large 0.356 +/- 0.007 0.465 +/- 0.047 0.548 +/- 0.012 0.620 +/- 0.008 0.663 +/- 0.007

Table 15: Macro F1 score on CLIP for models finetuned with varying amounts of annotated data. Percentages refer
to fraction of the training set for the task. We report the mean and standard deviation over three random seeds. We
always evaluate on the full test set.

598


	Introduction
	Background & Related Work
	Specialized Clinical Models
	Finetuning General Purpose LLMs for Clinical Tasks
	Using In-Context Learning

	Experimental Setup
	Tasks
	Models

	Clinical Models Are Parameter Efficient
	When Is Pretraining From Scratch More Efficient?

	In-Domain Tokens Are More Valuable
	In-Context Learning Underperforms Task Specific Models
	Limitations & Future Work
	Conclusion
	MIMIC Preprocessing and Model Training
	Data Preprocessing
	Tokenization of DEID Tokens
	Model Pretraining

	Detailed Model Training and Performance
	Hyperparameter Tuning
	Computational Resources and Run-Time
	Task-Specific Details

	Additional Discussion of Model Performance
	MedNLI
	RadQA
	CLIP

	Additional Details about In Context Learning Experiments

