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Abstract
Time-to-event modelling, known as sur-
vival analysis, di↵ers from standard regres-
sion as it addresses censoring in patients
who do not experience the event of in-
terest. Despite competitive performances
in tackling this problem, machine learn-
ing methods often ignore other compet-

ing risks that preclude the event of inter-
est. This practice biases the survival es-
timation. Extensions to address this chal-
lenge often rely on parametric assumptions
or numerical estimations leading to sub-
optimal survival approximations. This pa-
per leverages constrained monotonic neu-
ral networks to model each competing sur-
vival distribution. This modelling choice
ensures the exact likelihood maximisation
at a reduced computational cost by using
automatic di↵erentiation. The e↵ective-
ness of the solution is demonstrated on one
synthetic and three medical datasets. Fi-
nally, we discuss the implications of consid-
ering competing risks when developing risk
scores for medical practice.

Data and Code Availability Experiments
are performed on publicly available datasets:
Primary Biliary Cholangitis1 (Therneau et al.,
2000), Framingham2 (Kannel and McGee, 1979),
Synthetic3 (Lee et al., 2018), and the Surveil-
lance, Epidemiology, and End Results Program4.

1. Available in the R survival package.
2. Available in the R riskCommunicator package.
3. Available at https://github.com/chl8856/DeepHit
4. Available at https://seer.cancer.gov/

The code to reproduce the proposed model and
the presented results is available on GitHub5.

Institutional Review Board (IRB) This re-
search does not require IRB approval as it relies
on publicly available datasets from previous stud-
ies.

1. Introduction

1.1. Motivation

Survival analysis involves modelling the time to
an event of interest, which plays a critical role
in medicine to understand disease manifestation,
treatment outcomes, and the influence of di↵er-
ent risk factors on patient health (Selvin, 2008).
This analysis di↵ers from standard regression set-
tings as patients may not experience the outcome
of interest over the study period. These censored
patients inform this regression as they participate
in the study event-free until exiting the study.
Multiple approaches have been proposed to take
advantage of these patients by maximising the
likelihood of the observed data.

Often, in medical data, patients may expe-
rience events, known as competing risks, that
preclude the observation of the event of inter-
est. For instance, in modelling the time to car-
diac events, patients who die from another con-
dition during the observation period exit the
study because of a competing risk. Competing

5. https://github.com/Jeanselme/NeuralFineGray
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risks remain overlooked despite their prevalence
in medicine (Koller et al., 2012; Austin et al.,
2016b). Particularly, practitioners frequently
consider competing risks as censoring (Austin
and Fine, 2017a). This practice breaks the
common assumption of non-informative censor-
ing, i.e., censored patients must leave the study
for reasons independent of the outcome of inter-
est. Considering competing risks as censoring,
therefore, results in misestimating the risk of the
event of interest (Fisher and Kanarek, 1974; Le-
ung et al., 1997).

To better tackle the problem of competing
risks, one can explicitly model them through
the marginal probability of observing each risk,
known as the Cumulative Incidence Function
(CIF). Estimation of these functions often re-
lies on proportional hazards, parametric assump-
tions, or numerical integration, potentially re-
sulting in the optimisation of a sub-optimal tar-
get misrepresenting the true underlying survival
distribution.

1.2. Contribution

This work introduces a novel machine learning
model to tackle the problem of competing risks.
This approach generalises Rindt et al. (2022)
to competing risks, leveraging monotonic neu-
ral networks to model cumulative incidence func-
tions. The proposed method tackles the limita-
tions of existing strategies by an exact computa-
tion of the likelihood at a lower computational
cost.

First, we explore the existing literature before
introducing in detail our proposed model. Sub-
sequently, we demonstrate the advantages and
limitations of our approach as applied to one
synthetic and three real-world medical datasets.
Finally, we further investigate the Framingham
dataset to underline the importance of consider-
ing competing risks in cardiovascular disease risk
estimation.

2. Related work

This section summarises the recent progress in
machine learning for survival analysis.

2.1. Time-to-event modelling

Survival analysis is an active field of research
in the statistical community (Kartsonaki, 2016).
Non-parametric (Ishwaran et al., 2008) and para-
metric (Cox, 2008; Royston, 2001; Cox et al.,
2007) models have been introduced to model sur-
vival outcomes. Despite these multiple alterna-
tives and considerable proposed extensions, the
original Cox proportional-hazards model (Cox,
1972) remains widely used in the medical liter-
ature (Stensrud and Hernán, 2020). This semi-
parametric approach estimates the impact of co-
variates on the instantaneous risk of observing
an event, i.e., hazard. The model assumes the
hazard to take the form of the product of a non-
parametric estimate of the population survival
and a parametric covariate e↵ect. This assump-
tion is known as proportional hazards and ren-
ders tractable the model optimisation for covari-
ate e↵ect estimation.

The machine learning community has extended
the Cox model for unknown parametric forms of
covariate e↵ect. Specifically, DeepSurv (Katz-
man et al., 2018) replaces this otherwise para-
metric component with a neural network. How-
ever, this model still assumes proportional haz-
ards that may not hold in real-world medical
settings (Stensrud and Hernán, 2020). To relax
this assumption, DeepCox (Nagpal et al., 2021c)
identifies subgroups using independent Cox mod-
els. Each subgroup is characterised by its own
non-parametric baseline and covariate e↵ect. At
the intersection between DeepCox and paramet-
ric models, Nagpal et al. (2021b) model each sub-
group with a Weibull distribution parameterised
by neural networks to allow end-to-end training.
Jeanselme et al. (2022) abandon the parametric
and proportional hazards assumption with un-
constrained distributions learnt through mono-
tonic networks.

With a focus on predictive performance, Deep-
Hit (Lee et al., 2018) approaches survival as a
classification problem where survival prediction
time is discretised. The associated task is to pre-
dict the interval at which a patient experiences
the event. The model’s training procedure con-
sists of a likelihood and a ranking penalty which
favours temporally coherent predictions. Extrap-
olation of this model to infinite time discretisa-
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tion resembles an ordinary di↵erential equation
(ODE), as proposed in Danks and Yau (2022).

The models above approximate the underly-
ing survival likelihood either through parametric
assumptions, discretisation or numerical integra-
tion. Recently, Rindt et al. (2022) proposed to
overcome this challenge of likelihood estimation
by deploying a constrained neural network with a
monotonically increasing outcome to obtain the
survival function, and, therefore, the exact like-
lihood. In addition, to show improved perfor-
mance, the authors demonstrate that one should
prefer likelihood optimisation over discrimina-
tive performance as the optimal likelihood is ob-
tained for the true underlying survival distribu-
tion, i.e., the likelihood is a proper scoring rule.
Our study is a generalisation of this work to com-
peting risks, harnessing monotonic neural net-
works to directly model CIFs.

2.2. Modelling competing risks

Using the aforementioned models without consid-
eration of competing risks would lead to a mis-
estimation of the risk associated with the event
of interest (Schuster et al., 2020). To tackle
this issue, one can independently estimate each
competing-risk-specific model and combine them
to estimate the risk associated with a specific
outcome given the non-observation of the other
risks, as formulated in the cause-specific Cox
model (Prentice et al., 1978). This independent
estimation describes how covariates impact each
event risk (Austin and Fine, 2017b) but may
misrepresent the relative e↵ect of these covari-
ates on outcomes (Austin et al., 2016b) and lead
to sub-optimal predictive performance. Alterna-
tively, Fine and Gray (1999) propose to model
the sub-hazards, i.e., the probability of observ-
ing a given event if the patient has not experi-
enced this event until t, under an assumption of
proportionality analogous to the one made in the
Cox proportional-hazards model. While provid-
ing insights into the link between covariates and
risk particularly suitable for prediction (Austin
and Fine, 2017b), this model su↵ers from two
shortcomings: (i) the proportionality assumption
impairs its real-world applicability; (ii) this ap-
proach can result in an ill-defined survival func-
tion (Austin et al., 2021).

Machine learning approaches have been ex-
tended to jointly model competing risks. Deep-
Hit’s time-discretisation results in a straight-
forward extension in which the output dimen-
sion is multiplied by the number of risks (Lee
et al., 2018). Similarly, hierarchical discreti-
sation (Tjandra et al., 2021) has been pro-
posed. As parametric distributional assump-
tions result in a closed-form likelihood, Nagpal
et al. (2021b) propose to extend their mixture
of Weibull distributions and Bellot and Schaar
(2018) introduce a Bayesian mixture of Gener-
alised Gamma distributions to tackle compet-
ing risk. Under more complex non-parametric
likelihoods, numerical integration (Danks and
Yau, 2022; Aastha and Liu, 2020) and pseudo-
value approximations (Rahman et al., 2021) have
been proposed. Finally, non-likelihood-based ap-
proaches have been introduced such as boosted
trees (Bellot and van der Schaar, 2018) or sur-
vival trees (Schmid and Berger, 2021). However,
these methods are optimised towards a Brier-
score-like loss.

While survival analysis has received consider-
able attention in the machine learning commu-
nity, the problem of competing risks is less well
studied (Wang et al., 2019) and even less ap-
plied (Monterrubio-Gómez et al., 2022), despite
being central to medical applications. The exist-
ing methodologies to tackle competing risks rely
on parametric assumptions, likelihood approxi-
mation, or optimise for a score that may misrep-
resent the true underlying survival distribution.
This paper o↵ers a novel competing risk model
relying on constrained networks to obtain CIFs as
a derivative instead of an integral. This approach
results in the exact maximisation of the likeli-
hood by leveraging automatic di↵erentiation.

3. Proposed approach

This section formalises the problem of survival
analysis and introduces the proposed model.

3.1. Notation

We model a population of the form {xi, ti, di}i
with xi the covariates for patient i, ti 2 R+ the
time of end of follow-up and di 2 [[0, R]] its as-
sociated cause. If di 2 [[1, R]], the patient left
the study due to one of the R considered risks.
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Otherwise, the patient is right-censored, i.e., the
patient left the study for an unrelated reason be-
fore any of the events of interest were observed.
In this work, we focus on right-censoring, but the
model can easily be extended to left-censoring.
Note that we assume that experiencing one event
precludes the observation of any other.

3.2. Survival quantities

Single risk. In settings with no competing
risk, i.e., R = 1, one aims to estimate the sur-
vival function S, the probability of not observing
the event of interest before time t, i.e.:

S(t|x) := P(T � t|x)

Equivalently, one aims to estimate the cumu-
lative hazard function ⇤(t|x) related to S as fol-
lows:

S(t|x) := exp [�⇤(t|x)] = exp


�

Z t

0

�(u|x)du

�

where �(t|x) = lim�t!0

P(t<T<t+�t,|T�t,x)
�t is the

instantaneous hazard of observing the event of
interest, assuming no previous event(s).
Estimating this quantity may rely on maximis-

ing the likelihood of the observed data. The as-
sumption of non-informative censoring, i.e., event
and censoring times are independent given the
covariates, is necessary to express the likelihood.
Specifically, each patient i with an observed
event contributes to the likelihood, the proba-
bility of experiencing the event at ti without
previous events, i.e., �(ti|xi)S(ti|xi). The like-
lihood associated with each censored patient is
the probability of not experiencing the event un-
til ti, i.e., S(ti|xi). This results in the following
log-likelihood:

l =
X

i,di 6=0

log �(ti|xi)�
X

i

⇤(ti|xi) (1)

Competing risks. In the context of compet-
ing risks R > 1, a patient may leave a study
for reasons correlated with the event of interest.
Practitioners often consider these events as cen-
soring and rely on single-risk models. However,
this practice breaks the common assumption of
non-informative censoring and results in mises-
timation of the survival function. When other

events may be observed, S(t | x) is defined as the
probability of observing none of the competing
risks before time t, i.e.:

S(t|x) = 1�
X

r2[[1,R]]

Fr(t|x)

where Fr, the Cumulative Incidence Function
(CIF) for the event r denotes the probability of
observing the event r before time t without prior
occurrence of any competing event(s), i.e.:

Fr(t|x) = P(T < t, risk = r|x) (2)

with T , the random variable denoting the time
of observation of any event. Note that the CIF
can be expressed as an integral of observing the
event in an infinitesimal interval given that no
other event was observed until t:

Fr(t|x) =

Z t

0

�r(u|x)e
�

R t
0

P
r �r(s)dsdu (3)

with �r(t|x) = lim�t!0

P(t<T<t+�t, risk=r|T�t, x)
�t ,

the cause-specific hazard, i.e., the instantaneous
risk of observing the event r, with no other pre-
vious event.

A final quantity of interest is the cause-specific
survival Sr(t|x) that expresses the probability of
not observing a given outcome r by time t, i.e.,

Sr(t|x) = P((T � t) [ (T < t, risk 6= r)|x)

= 1� Fr(t|x)

Similar to the single-risk settings, we maximise
the likelihood to estimate Fr. Importantly, we as-
sume non-informative censoring once controlled
on all identified competing risks. While this as-
sumption is more likely to hold once all com-
peting risks are accounted for, practitioners sus-
pecting its implausibility should perform sensi-
tivity analysis for this assumption (Jackson et al.,
2014). Under this assumption, the likelihood
can be expressed analogously to (1): patients
with an observed event contribute to the likeli-
hood as the probability of observing the event
di at ti without observing any events until ti,
i.e., �r(ti|xi)S(ti|xi). This quantity is the par-
tial derivative of Fr with respect to t evaluated
at ti. Remaining censored patients influence the
likelihood as the probability of observing no event
until ti, i.e., S(ti|xi). The competing risks log-
likelihood can, therefore, be expressed as:
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Figure 1: Neural Survival Analysis Architecture. E embeds the covariate(s) x, which are then in-
putted in the monotonic networks M and balancing network B to estimate the CIFs.

l =
X

r2[[1,R]]

X

i,di=r

log
@Fr(u|xi)

@u

����
u=ti

(4)

+
X

i,di=0

log[1�
X

r

Fr(ti|xi)]

One may extend existing models to the
competing risks setting by performing the inte-
gration in (3). For instance, the cause-specific
Cox model (Prentice et al., 1978) consists of
Cox models independently trained on each
risk, i.e., treating all other outcomes as censored.
Then one evaluates the CIF through (3) using
the estimated hazards. However, this staged
modelling does not jointly consider the outcomes
and may misestimate the covariate e↵ects (Van
Der Pas et al., 2018). Fine-Gray (Fine and
Gray, 1999) overcomes this issue by directly
modelling the sub-distribution hazards hr(t|x) =

lim�t!0

P(t<T<t+�t, risk=r|(T�t) [ (T<t \ risk 6=r), x)
�t ,

relying on a proportionality assumption of these
quantities.
Likewise, one can extend machine learning ar-

chitecture to enable the integration of the CIF
and maximise the associated likelihood in (4).
However, in the absence of a closed-form expres-
sion, this would necessitate numerical integra-
tion. This approximation may impact perfor-
mance with added computational costs for train-
ing and predictions. Integration is computation-
ally expensive, whereas derivation can be com-
puted exactly in one backward pass by automatic

di↵erentiation – available in most machine learn-
ing libraries. Therefore, our approach reduces
the computational cost of the likelihood estima-
tion by modelling Fr and di↵erentiating it to ob-
tain �rS, resulting in the exact computation of
all the previously described quantities of interest.

3.3. Architecture

Neural Fine-Gray, illustrated in Figure 1, aims to
model [Fr]r2[[1,R]] without relying on numerical
integration to tackle the problem of competing
risks. We decompose Fr as:

Fr(t|x) = P(risk = r|x) · P(T  t|risk = r, x)

= B(E(x))r · [1� exp(�t⇥Mr(t, E(x)))]

Embedding network (E). A first multi-layer
perceptron E with inter-layer dropout extracts
an embedding x̃ from the covariates x.

Sub-distribution networks ([Mr]r2[[1,R]]).

The embedding x̃ is inputted in R posi-
tive monotonic networks [Mr]r2[[1,R]] rep-
resenting a lifetime distribution condi-
tioned on one risk r, through the relation
1�exp(�t⇥Mr(t, x̃)) = P(T  t|x, risk = r). A
positive monotonic neural network is a network
constrained to have its outcome monotonic and
positive given its input (see Daniels and Velikova
(2010) for theoretical analysis and Lang (2005)
for proof of universal approximator). Enforcing
these constraints may rely on di↵erent transfor-
mations of the neural networks’ weights (Omi
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et al., 2019; Rindt et al., 2022; Chilinski and
Silva, 2020). In our work, we enforce all the
neural networks’ weights to be positive through
a square function and use a final SoftPlus layer
to fulfil these constraints. Enforcing positive
weights ensures that the outcome increases with
the time dimension t. Additionally, enforcing a
smooth function ensures a low computational
cost and stable optimisation. Note that for
model flexibility, we used R monotonic net-
works. We explore in Appendix B how using
one network with R outcomes would impact
performance.

Balancing network (B). A multi-layer per-
ceptron B with a final SoftMax layer leverages
x̃ to balance the probability of observing each
risk B(x̃) := [P(risk = r|x)]r. This weighting
ensures that the survival function is correctly
specified, i.e.,

P
r2[[1,R]]

Fr(t|x)  1.

The proposed approach directly models Fr

by multiplying the outputs of the distribution
and balancing networks. Automatic di↵erenti-
ation of the model’s output results in the deriva-

tive @Fr(u|xi)

@u

����
u=ti

. The model can then be

trained end-to-end by maximising the exact log-
likelihood proposed in Equation (4). By jointly
modelling the competing risks, this proposed
model is reminiscent of the Fine-Gray approach.
The following equation exhibits the link between
sub-distribution hazards and CIFs, i.e., between
the standard and neural Fine-Gray models:

hr(t|x) =
1

1� Fr(t|x)
·
@Fr(u|x)

@u

����
u=t

Remark 1 Shchur et al. (2020) raise a
limitation of monotonic neural networks that
may attribute non-null density to negative
times, i.e., Fr(t = 0|x) 6= 0. In contrast to Omi
et al. (2019); Rindt et al. (2022), we model
P(T  t|risk = r, x) as 1 � exp(�t ⇥ Mr(t, x̃))
instead of Mr(t, x̃) to address this issue.

Remark 2 The proposed methodology is a
generalisation of the survival model Sumo-
Net (Rindt et al., 2022) that estimates S in the
single-risk setting. If R = 1, then Fr = 1�S and
Br = . In this context, the proposed approach
results in Sumo-Net. Moreover, the architecture

resembles the one proposed in DeSurv (Danks and
Yau, 2022) while avoiding numerical integration.

3.4. Computational complexity

Our modelling choices result in the exact com-
putation of the likelihood. However, the other
methodologies relying on integral approximation
and outcome discretisation converge towards Fr

in the upper limit, i.e., when increasing the num-
ber of point estimates, or using a finer discreti-
sation. One may therefore question the advan-
tage of the proposed methodology. In this sec-
tion, we compare the complexity in estimating
the CIF and likelihood for DeSurv (Danks and
Yau, 2022), the closest method to our proposed
model, and NeuralFG.

DeSurv (Danks and Yau, 2022). This ap-
proach models Fr(t|x) as Tanh(v(x, t)) with
v being the solution to the ODE defined as
@v(x,u)

@u

����
u=t

= g(x, t) and v(x, 0) = 0 with

g, a neural network. For e�ciency, the au-
thors propose a Gauss-Legendre quadrature to
solve the ODE and obtain v. This approxi-
mation necessitates n evaluations of g at de-
fined times [tj(t)]j2[[1,n]] weighted by the asso-
ciated [wj ]j2[[1,n]] (see Press et al. (2007) for a
detailed description of Gauss-Legendre quadra-

ture). Each forward pass estimates @v(x,u)
@u

����
u=tj(t)

at the points used to approximate the integral,
then

F̂r(t|x) = Tanh

0

@ t

2

X

j2[[1,n]]

wjg(x,
t

2
tj(t))

1

A

DeSurv’s computational cost. Computa-
tion of Fr relies on n forward passes through
the network. Moreover, the estimation of
@F̂r(u|xi)

@u

����
u=ti

necessary to compute the compet-

ing risk likelihood is g(x, ti)(1�Tanh(F̂r(ti|x))2),
i.e., n + 1 forward passes. The likelihood has
a O(nN) computational complexity with N the
number of patients in the study.

NeuralFG’s computational cost. Fr is esti-

mated in one forward pass and @F̂r(u|xi)

@u

����
u=ti

in
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Dataset Observations Features Primary Competing risk Censored

PBC 312 25 Death (44.87 % ) Transplant (9.29 %) 45.83 %
Framingham 4,434 18 CVD (26.09 %) Death (17.75 %) 56.16 %
Synthetic 30,000 12 * (25.33 %) * (24.67 %) 50.00 %
SEER 658,354 23 BC (16.51 %) CVD (5.69 %) 77.80 %

Table 1: Datasets characteristics

one backward pass. Assuming the same compu-
tational cost for forward and backward passes,
the likelihood estimation has a O(2N) com-
plexity. Our proposed methodology, therefore,
presents more than an n/2 computational gain
compared to DeSurv in estimating the likelihood
used for training, and an n gain in inferring Fr.

4. Experiments

This section introduces the datasets and experi-
mental settings.

4.1. Datasets

We explore the model performance on four
datasets with competing risks:

• PBC (Therneau et al., 2000) comprises 25
covariates in 312 patients over a 10-year ran-
domised control trial to measure the im-
pact of D-penicillamine on Primary Biliary
Cholangitis (PBC). Death on the waiting list
is the primary outcome with transplant be-
ing a competing risk.

• Framingham (Kannel and McGee, 1979) is
a cohort study gathering 18 longitudinal
measurements over 20 years. Our analysis
focuses on the first observed covariates of
4,434 patients to model cardiovascular dis-
ease (CVD) risk. Death from other causes is
treated as a competing risk.

• Synthetic (Lee et al., 2018), this dataset con-
sists of 30,000 synthetic patients with 12
covariates following exponential event time
distributions, non-linearly dependent on the
covariates.

• SEER6: the Surveillance, Epidemiology, and
End Results Program gathers covariates and

6. https://seer.cancer.gov/

outcomes of patients diagnosed with breast
cancer between 1992 and 2017. Following
the preprocessing proposed by Lee et al.
(2018); Danks and Yau (2022), we select
658,354 patients and 23 covariates describing
the patient demographics and disease char-
acteristics at diagnosis. Death from breast
cancer (BC) is our primary outcome, with
CVD, a competing risk.

Table 1 summarises the datasets’ characteris-
tics with the respective proportion of outcome
and censoring.

4.2. Baseline models

The proposed Neural Fine-Gray (NeuralFG)
was compared against six strategies. First,
we considered the well-established cause-specific
Cox model (CS Cox Prentice et al. (1978)) and
Fine-Gray model (Fine and Gray, 1999) with
a linear parametric form for the covariate e↵ect.
The cause-specific Cox model models each cause
independently using a Cox proportional-hazards
model, while Fine-Gray models the sub-hazard
functions assuming proportional sub-hazards.

Thereafter, we compare state-of-the-art com-
peting risk survival neural networks proposed in
the machine learning literature. First, Deep Sur-
vival Machine (DSM, Nagpal et al. (2021b)) con-
sists of a mixture of Weibull distributions param-
eterised by neural networks. Each point is then
assigned to these distributions through an assign-
ment network. Using parametric distributions re-
sults in a closed-form likelihood in the competing
risks setting. DeepHit (Lee et al., 2018) discre-
tises the survival horizon and leverages a multi-
head network to associate each patient to the in-
terval corresponding to its observed event time
and type. Each head of the network is associ-
ated with one cause as in the proposed NeuralFG.
The time-discretisation results in a discrete like-
lihood further penalised by a C-index-like regu-
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R
is
k

Model
C-Index (Larger is better) Brier Score (Smaller is better)

q0.25 q0.50 q0.75 q0.25 q0.50 q0.75

P
B
C

D
ea
th

NeuralFG 0.810 (0.079) 0.795 (0.114) 0.762 (0.123) 0.099 (0.028) 0.140 (0.020) 0.169 (0.050)
DeepHit 0.822 (0.099) 0.844 (0.036) 0.782 (0.033) 0.090 (0.030) 0.132 (0.013) 0.180 (0.021)
DeSurv 0.821 (0.089) 0.837 (0.050) 0.815 (0.068) 0.088 (0.022) 0.113 (0.011) 0.136 (0.047)
DSM 0.867 (0.065) 0.864 (0.037) 0.828 (0.052) 0.091 (0.039) 0.124 (0.015) 0.161 (0.022)

Fine-Gray 0.831 (0.136) 0.852 (0.045) 0.816 (0.059) 0.091 (0.042) 0.103 (0.009) 0.150 (0.038)
CS Cox 0.833 (0.125) 0.851 (0.040) 0.811 (0.065) 0.091 (0.038) 0.102 (0.008) 0.148 (0.038)

F
ra
m
in
gh

am

C
V
D

NeuralFG 0.872 (0.024) 0.812 (0.029) 0.782 (0.018) 0.050 (0.003) 0.095 (0.010) 0.128 (0.004)
DeepHit 0.855 (0.026) 0.781 (0.026) 0.743 (0.014) 0.053 (0.003) 0.102 (0.007) 0.141 (0.002)
DeSurv 0.872 (0.027) 0.807 (0.031) 0.775 (0.022) 0.049 (0.005) 0.095 (0.009) 0.129 (0.003)
DSM 0.866 (0.023) 0.806 (0.023) 0.778 (0.014) 0.057 (0.005) 0.104 (0.006) 0.141 (0.002)

Fine-Gray 0.842 (0.025) 0.794 (0.024) 0.772 (0.015) 0.057 (0.006) 0.099 (0.007) 0.131 (0.003)
CS Cox 0.845 (0.020) 0.798 (0.022) 0.774 (0.015) 0.056 (0.006) 0.098 (0.007) 0.131 (0.003)

S
yn

th
et
ic

1

NeuralFG 0.791 (0.013) 0.754 (0.013) 0.715 (0.011) 0.068 (0.003) 0.125 (0.004) 0.192 (0.005)
DeepHit 0.783 (0.012) 0.747 (0.013) 0.714 (0.008) 0.079 (0.003) 0.136 (0.002) 0.212 (0.003)
DeSurv 0.793 (0.013) 0.756 (0.014) 0.714 (0.014) 0.068 (0.002) 0.124 (0.004) 0.192 (0.004)
DSM 0.776 (0.013) 0.742 (0.013) 0.710 (0.013) 0.073 (0.002) 0.139 (0.002) 0.220 (0.003)

Fine-Gray 0.611 (0.014) 0.587 (0.007) 0.568 (0.009) 0.078 (0.002) 0.159 (0.003) 0.241 (0.002)
CS Cox 0.609 (0.015) 0.586 (0.006) 0.568 (0.009) 0.078 (0.002) 0.159 (0.003) 0.240 (0.002)

S
E
E
R

B
C

NeuralFG 0.893 (0.002) 0.855 (0.001) 0.815 (0.001) 0.038 (0.000) 0.069 (0.001) 0.101 (0.000)
DeepHit 0.899 (0.002) 0.860 (0.001) 0.818 (0.001) 0.038 (0.000) 0.070 (0.000) 0.102 (0.001)
DeSurv 0.892 (0.003) 0.852 (0.002) 0.813 (0.001) 0.038 (0.000) 0.070 (0.000) 0.102 (0.001)
DSM 0.884 (0.001) 0.842 (0.002) 0.805 (0.002) 0.039 (0.000) 0.076 (0.001) 0.112 (0.000)

Fine-Gray 0.836 (0.003) 0.786 (0.003) 0.742 (0.002) 0.043 (0.001) 0.081 (0.000) 0.118 (0.000)
CS Cox 0.837 (0.003) 0.786 (0.003) 0.742 (0.002) 0.042 (0.001) 0.081 (0.000) 0.118 (0.000)

Table 2: Comparison of model performance by means (standard deviations) across 5-fold cross-
validation. Best performances are in bold, second best in italics. NeuralFG is the model
introduced in this paper.

larisation for model training. Closer to our work,
DeSurv (Danks and Yau, 2022) approaches Fr

as the solution to an ODE.

4.3. Experimental settings

The analysis relies on 5-fold cross-validation with
10% of each training set left aside for hyper-
parameter tuning. Random search is used on the
following grid over 100 iterations: learning rate
(10�3 or 10�4), batch size (100, 250, except for
SEER: 1, 000 or 5, 000), dropout rate (0, 0.25, 0.5
or 0.75), number of layers ([[1, 4]]) and nodes (25
or 50). All activation functions are fixed to Tanh
to ensure a properly defined derivative – note
that any C

1 activation would work. All models
are optimised using an Adam optimiser (Kingma

and Ba, 2015) over 1, 000 epochs, with an early
stopping criterion computed on a 10% left-aside
subset of the training set.

Other methods are optimised over the same
grid (if applicable). Additionally, we explore
both Log-Normal and Weibull distributions for
DSM and use 10, 000 warm-up iterations to es-
timate the parametric form closest to the av-
erage survival as proposed in the original pa-
per (Nagpal et al., 2021b). For DeSurv, we fol-
lowed the original paper’s recommendation of
a 15-degree Gauss-Legendre quadrature to esti-
mate the CIFs. In Appendix C.1, we further
investigate how increasing the number of point
estimates impacts performance. We use a sim-
ilar approximation for DeepHit with a 15-split
time discretisation. Finally, for a fair compari-
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Death Model
C-Index (Larger is better) Brier Score (Smaller is better)

q0.25 q0.50 q0.75 q0.25 q0.50 q0.75

CVD
Competing 0.872 (0.024) 0.812 (0.029) 0.782 (0.018) 0.050 (0.003) 0.095 (0.010) 0.128 (0.004)

Non-Competing 0.862 (0.029) 0.807 (0.032) 0.780 (0.020) 0.053 (0.004) 0.099 (0.011) 0.129 (0.005)

Death
Competing 0.745 (0.055) 0.717 (0.038) 0.713 (0.022) 0.027 (0.003) 0.070 (0.004) 0.112 (0.005)

Non-Competing 0.741 (0.053) 0.718 (0.045) 0.719 (0.025) 0.027 (0.003) 0.071 (0.002) 0.109 (0.004)

Table 3: Modelling competing risk - means (standard deviations) across the 5-fold cross-validation.

son, we double the number of possible layers for
architectures without embedding networks.

4.4. Evaluation metrics

As per current practice in survival literature,
we used the time-dependent Brier score (Graf
et al., 1999) to quantify calibration, and the C-
index (Antolini et al., 2005) for discrimination at
the dataset-specific 0.25, 0.5 and 0.75 quantiles of
the uncensored population event times (See Ap-
pendix A.1 for data characteristics, A.2 for fur-
ther description of the metrics and A.4 for the
cumulative version of these metrics). Means and
standard deviations are computed over the 5 folds
of cross-validation.

5. Results

Table 2 summarises the calibration and discrim-
inative performance of the analysed models on
the primary outcome (see Appendix A.3 for the
performances on the competing risk).

5.1. Model’s strengths

NeuralFG demonstrates lower or equal Brier
scores than other state-of-the-art machine learn-
ing models across the majority of datasets and
time horizons.
While DSM presents good discriminative per-

formances, this edge is not reflected in its cal-
ibration. This observation indicates that para-
metric assumptions may result in estimated sur-
vival functions discriminative of the outcome but
further from the underlying survival distribution.
Deep-Hit penalisation results in better C-Index
values but hurts model calibration, with mis-
aligned discrimination and calibration through-
out the di↵erent datasets.

Finally, performances are comparable to
DeSurv. However, DeSurv’s likelihood approx-
imation multiplies its computational cost by
the numerical integration complexity (see Ap-
pendix C.2 for a comparison of training speed
on the Framingham dataset). NeuralFG, there-
fore, achieves state-of-the-art performance while
avoiding computationally-expensive approxima-
tions.

5.2. Model’s limitations

The proposed methodology has lower perfor-
mance on the PBC dataset, which notably com-
prises a limited amount of data. In small-data
settings, practitioners should prefer simpler mod-
els to avoid overfitting.

For instance, the linear Fine-Gray and CS Cox
models result in competitive performances on
PBC. However, this linearity assumption hurts
performance under more complex covariate ef-
fects as in the SEER and Synthetic datasets.
Note that leveraging domain expertise could en-
hance performance through the addition of in-
teractions and the use of alternative models.
However, these approaches deviate from the au-
tomated discovery of interactions facilitated by
neural networks. Similarly, the parametric as-
sumption of DSM results in the best discrimina-
tion in PBC, but it under-performs under more
complex survival distributions.

Furthermore, the DeSurv model performs bet-
ter than the proposed methodology on PBC. This
may reflect that approximating the likelihood can
regularise model training, which is beneficial in
the context of small data.
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5.3. Modelling vs ignoring competing

risks

This last section explores the importance of
modelling competing risks in the Framingham
dataset. First, we present the performance di↵er-
ences between the proposed model in comparison
to the same architecture maximising the cause-
specific likelihoods. Then, we explore which
subgroups of the population most benefit from
this modelling. Finally, we study how guidelines
would di↵er under the proposed NeuralFG and
its non-competing alternative.

Why account for competing risks? To
measure how modelling competing risks impacts
performance, while ensuring the same number of
parameters, we propose to use the same architec-
ture presented in Section 3.3 whilst maximising
the sum of the cause-specific likelihoods, i.e.:

l =
X

r

2

4
X

i,di=r

log �r(ti|x̃i)�
X

i

⇤r(ti|x̃i)

3

5

Each monotonic network, therefore, models the
cumulative hazard function for risk r, ⇤r, by
maximising the likelihood of one cause whilst
considering the rest of the population as cen-
sored, relying on a shared embedding x̃. Au-
tomatic di↵erentiation outputs [�r]r2[[1,R]]. Ta-
ble 3 summarises the discrimination and cali-
bration di↵erences in the non-competing survival
e�⇤r(t|x) obtained with this model and the pre-
viously described NFG’s cause-specific survival
1�Fr(t|x). Note how modelling competing risks
significantly improves performance for the pri-
mary outcome of interest, CVD, without signifi-
cant di↵erences for the competing risk. Since pa-
tients who die from other causes during the study
period do not present the same risk of CVD as
patients remaining in the study, not accounting
for all-cause mortality results in a misestimation
of CVD risk.

Who may benefit? One can explore which
subgroups benefit the most from modelling com-
peting risks. Intuitively, patients who are the
most likely to su↵er from competing risks may
benefit the most from this modelling. Table 4 il-
lustrates this with older patients benefiting the
most from modelling death as a competing risk.

Age
Brier Score Di↵erence

q0.25 q0.50 q0.75

< 40 -0.000 (0.000) -0.001 (0.002) 0.000 (0.005)
40-50 -0.001 (0.001) -0.002 (0.003) -0.002 (0.001)
50-60 -0.003 (0.005) -0.004 (0.003) -0.006 (0.007)
60+ -0.013 (0.011) -0.022 (0.018) -0.007 (0.024)

Table 4: Calibration di↵erences - Means and
standard deviations over 5-fold cross-
validation. Larger negative values cor-
respond to better calibration for the
competing risk model.

What is the impact on medical practice?

The Framingham dataset was used to model the
eponymous 10-year cardiovascular disease (CVD)
risk score (Wilson et al., 1998). This score guides
clinical practice in preventatively treating pa-
tients, usually with a combination of cholesterol-
lowering therapy, e.g., statins, and holistic treat-
ment of other CVD risk factors (Bosomworth,
2011). To minimise overtreatment and adverse
side e↵ects, accurate risk estimates are critical
for targeting the population most at risk so as to
maximise the benefit-risk ratio (Mangione et al.,
2022). However, the original Framingham score
relies on a non-competing risk model (Mangione
et al., 2022; van Kempen et al., 2014).

Clinical treatment often relies on a discretisa-
tion of this risk (Bosomworth, 2011): low, in-
termediate and high risk, at < 10%, 10 � 20%
and > 20% chance, respectively, of observing
a CVD event in the following 10 years. Cur-
rent guidelines in the United States suggest plac-
ing all patients with � 10% risk on cholesterol-
lowering drugs (Mangione et al., 2022). Fur-
thermore, in the US alone, several million pa-
tients are on these medications (Wall et al.,
2018). Therefore, even modest shifts in patient
risk classification could, at scale, amount to con-
siderable numbers either inappropriately receiv-
ing preventative treatment or inappropriately re-
ceiving none. To demonstrate how considering
competing risks can fundamentally alter such risk
profiling, we present in Table 5 the reclassifica-
tion matrices of risk levels given competing and
non-competing NeuralFG di↵erentiated by ob-
served outcomes for patients aged 50 or over. For
instance, note that 251 deemed intermediate-to-
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Table 5: Reclassification matrices between competing and non-competing risk scores for patients
older than 50. Red (resp. blue) shows when the competing risks score is less aligned with
the 10-year observed outcome than the non-competing model (resp. more aligned). Note
that censored patients are ignored.

(a) Patients with no event in the 10-year
follow-up.

Non - Competing
Risk Low Inter. High Total

C
om

p
. Low 502 228 23 753

Intermediate 2 189 229 420
High 0 9 314 323

Total 504 426 566 1496

(b) Patients with an observed event during
the 10-year follow-up.

Non - Competing
Risk Low Inter. High Total

C
om

p
. Low 23 28 5 56

Intermediate 1 37 41 79
High 2 4 248 254

Total 26 69 294 389

high risk by the non-competing risks model are
reclassified as lower risk by the competing-risks
model, who, in turn, could have avoided the initi-
ation of therapy. These results echo the medical
literature’s findings of risk misestimation due to
the non-consideration of competing risks in this
risk score (Lloyd-Jones et al., 2004; van Kem-
pen et al., 2014). More accurate simulations to
estimate the potential lives saved and harmed
through such reclassification is beyond the scope
of this article but could provide insight into the
possible consequences of considering competing
risks. In summary, using a non-competing risk
score would have important clinical consequences
of over- and under-treatment (Schuster et al.,
2020). More predictive models accounting for
competing risks must be preferred to ensure bet-
ter care.

6. Conclusion

This work provides a solution to address com-
peting risks that preclude the observation of the
outcome of interest, often present in medical ap-
plications. We introduce Neural Fine-Gray, a
monotonic neural network architecture, to tackle
the problem of competing risks in survival mod-
elling. The model outputs the cumulative in-
cidence functions and, consequently, allows the
exact likelihood computation. Importantly, this
architecture choice achieves competitive perfor-
mance while avoiding the parametric assump-
tions or computationally expensive approxima-
tions made by state-of-the-art survival neural

networks. Further analysis of the Framingham
dataset contributes to the literature, inviting
practitioners to use competing-risk modelling in
risk score development for improved care (Abdel-
Qadir et al., 2018; Austin et al., 2016a; Lloyd-
Jones et al., 2004; Schuster et al., 2020).

Our future work will (i) extend this architec-
ture to model other modalities such as time series
as in Nagpal et al. (2021a) and, (ii) explore med-
ically interpretable survival clusters as presented
in Jeanselme et al. (2022); Nagpal et al. (2022a).
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