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Abstract

Given the complexity of trauma presentations,
particularly in those involving multiple areas of
the body, overlooked injuries are common dur-
ing the initial assessment by a clinician. We
are motivated to develop an automated trauma
pattern discovery framework for comprehen-
sive identification of injury patterns which may
eventually support diagnostic decision-making.
We analyze 1,162,399 patients from the Trauma
Quality Improvement Program with a disentan-
gled variational autoencoder, weakly supervised
by a latent-space classifier of auxiliary features.
We also develop a novel scoring metric that
serves as a proxy for clinical intuition in ex-
tracting clusters with clinically meaningful in-
jury patterns. We validate the extracted clus-
ters with clinical experts, and explore the pa-
tient characteristics of selected groupings. Our
metric is able to perform model selection and
effectively filter clusters for clinically-validated
relevance.

Data and Code Availability We use data from
the Trauma Quality Improvement Program (TQIP)
for the years 2017 to 2019 (Committee on Trauma).
This dataset of over 1 million patients in trauma
centers across the US is available to researchers for
“informational and research purposes” upon appli-
cation through their website. The anonymized ver-
sion of the code used in this paper can be accessed
at https://anonymous.4open.science/r/trauma_

injury_clean-CF53.

Institutional Review Board (IRB) Our re-
search does not require IRB approval.

1. Introduction

Trauma injury is one of the leading causes of death
in the United States for the population under 45
years old (CDC, 2023). In 2020 alone, there were
over 200,000 unintentional deaths, with unintentional
falls and motor vehicle traffic accidents leading these
statistics (CDC, 2021a). Trauma management is
difficult because certain injuries may be more fre-
quently overlooked despite standardized frameworks
to assess trauma patients; approximately 15% to
22.3% of missed trauma injuries were clinically sig-
nificant (Pfeifer and Pape, 2008). Primary and sec-
ondary surveys are carried out to assess and treat
life-threatening injuries rapidly. Trauma programs
often perform a tertiary survey to identify any missed
injuries during the initial evaluation. Earlier identifi-
cation of injuries can help avoid long-term injury and
guide adequate treatment.

The medical literature has identified numerous
trauma injuries that occur in groups or as patterns.
For example, if a patient has a severe deceleration in-
jury after a motor vehicle accident, along with an un-
stable “seatbelt” spine fracture, then the incidence of
co-occurring intra-abdominal injuries can be as high
as 89% (Tyroch et al., 2005). While there are injury
patterns such as above that are well known in the
clinical community, there has not been to date a com-
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prehensive identification of trauma injury patterns.
Historically, trauma pattern discovery has been an
ad-hoc process based on the intuition and experience
of a surgeon, primarily conducted within a small co-
hort at a single institution using classical statistics
or rule-based methods. In addition to the low like-
lihood of identifying complex or rare patterns, the
status quo suffers from small sample size and hos-
pital and system bias, limiting the clinical relevance
and generalizability of the identified patterns.

In this paper, we investigate the identification of
injury patterns from the Trauma Quality Improve-
ment Program (TQIP) – a large national trauma care
database with over 1 million trauma patients col-
lected from more than 875 participating trauma cen-
ters across the US (Committee on Trauma). Identifi-
cation is a challenging problem as such patterns are
unknown, and must be identified from retrospective
sources for clinical validation. We pair an unsuper-
vised disentangled variational autoencoder (β-VAE)
with a multi-label classifier in the latent space, to
efficiently create a latent space embedding. We use
clinical diagnoses as input for reconstruction, and im-
portant clinical features such as age, mechanism of
injury, correlation of the injury with mortality, and
the Glasgow Coma Scale (GCS) as weak supervision.
We use multilayer perceptron (MLP) classifiers to en-
force self-organization in the latent space, i.e., such
that groups with similar injury patterns will be clus-
tered together.

After latent space clustering, we use a novel metric
designed as a proxy for clinical relevance to extract
injury patterns from identified subgroups. In clin-
ical validation, our approach successfully identifies
subgroups with known strongly associated patterns,
such as the high occurrence of traumatic brain injury
(TBI) in fall-related injuries with head injuries (Jager
et al., 2000) and the combination of TBI and acetab-
ular (hip-joint) fractures in motor vehicle collisions
(Vella et al., 2017).

The main contributions of our work are:

1. We provide the first comprehensive exploration
of injury patterns in the 2017-2019 TQIP patient
cohort, developing a weakly supervised approach
with auxiliary tasks that create a meaningful la-
tent representation.

2. We demonstrate the utility of our proposed clini-
cal relevance score (CR score) for effective model
selection and filtering of clustering results.

3. We identify six subgroups of high clinical value,
and analyze the associated injury patterns
within the context of their typical mechanism of
injury and other patient characteristics.

2. Related Works

2.1. Unsupervised and Weakly-supervised
Representation Learning

Unsupervised representation learning seeks to iden-
tify patterns in the data without explicit labels.
Weakly-supervised representation learning seeks to
incorporate the added influence of some limited or
imprecise signal. Specifically, we consider the β-VAE,
a model proposed by Higgins et al. (2017) as a mod-
ification of the original VAE (Kingma and Welling,
2013) to encourage more disentanglement in the la-
tent space. It has since been widely applied to au-
tomate the discovery of interpretable latent struc-
tures within data (Higgins et al., 2021; Li et al.,
2021; Krajewski et al., 2018). The β-VAE is of-
tentimes enhanced with auxiliary features to learn
in a weakly-supervised manner (Xie and Ma, 2019;
Satheesh et al., 2021; Crespi et al., 2021; Sá and
Roditi, 2021; Hsu and Lin, 2023). Our work seeks to
identify clinically relevant trauma injury subgroups
within the unlabeled data using the β-VAE frame-
work augmented with weakly-supervised auxiliary
classification features.

2.2. Domain-Guided Score

Evaluation of discovered clusters is difficult due to the
lack of ground truth labels. Correctly interpreting the
importance of a cluster oftentimes requires domain
knowledge. Past works have addressed this challenge
by incorporating scores measuring usefulness or rele-
vance into clustering algorithms (Chang et al., 2017;
Andreeva et al., 2020; Wenz et al., 2021). Specifi-
cally, Chang et al. (2017) used a polygenic risk score
as the domain-specific score to guide their clustering
of chronic obstructive pulmonary disease patients.

In the trauma care domain, the Glasgow Coma
Scale (GCS), revised trauma score (RTS), injury
severity score (ISS), and abbreviated injury scale
(AIS) are widely used in the assessment of trauma
patients during triage and the improvement of care
(Lecky et al., 2014). However, most of the established
scores require patient-specific assessment by clinical
experts, which is time-consuming and laborious work
for the experts. Many scores are also not capable
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of identifying co-occurring injuries. In light of the
shortcomings of established scores, we develop our
own cluster relevance score with the aid of domain
experts (see Sec. 4.4). In contrast to prior works, we
use the score as a means for evaluation and model
selection, instead of a constraint during clustering.

2.3. Pattern Discovery in Traumatic Injuries

Trauma data is often high-dimensional and consists of
complex and heterogeneous clinical and demographic
information, making it difficult to identify meaningful
patterns directly. The identification of trauma injury
patterns is oftentimes conducted in cohorts with a
small sample size (≤ 5, 000), for a specific trauma pa-
tient population (DGU et al., 2015; Chichom-Mefire
et al., 2018). For instance, association rule mining
has also been used to identify 77 individual-based in-
jury patterns in multi-trauma road users (Fagerlind
et al., 2022). Ensemble classifiers have been used to
detect vascular injury in trauma care (Metzger et al.,
2015). The closest previous work to ours is the un-
supervised mining of temporal injury patterns in the
larger dataset of general trauma patients (∼ 500,000)
with restricted Boltzmann machine (Mehrabi et al.,
2015). The focus of this work differs from ours, how-
ever, as we are not interested in the progression of
the patient’s condition over time. To the best of our
knowledge, weakly-supervised representation learn-
ing has not been applied to conduct general injury
pattern discovery in such a large, heterogeneous co-
hort of trauma patients.

3. Data and Preprocessing

3.1. Cohort Selection

We include patients from the 2017-2019 TQIP
database. As we do not detect any significant tempo-
ral shift in the data, we aggregate the patient cohorts
across the years (Section E.4). Patients are excluded
when they (1) are younger than 16 years of age at
the time of record, or (2) are reported dead on ar-
rival. The selected cohort consists of n = 1,162,399
patients, with a 78-22 split into train set (ntrain =
903,267) and test set (ntest = 259,132). Each patient
record is uniquely included in either set.

3.2. Preprocessing of Injury Codes and
Auxiliary Features

An International Classification of Disease (ICD) code
is a seven-character, globally used code to categorize
disease. We truncate ICD-10 trauma codes (codes
that start with an ‘S’ or a ‘T’) to the first four char-
acters, thus including the highest level of their sub-
category. Non-trauma ICD-10 codes are shortened
to their main category (first three characters). After
truncation, we have a set of 1,317 unique codes. The
top 500 most frequent codes are selected, in order to
exclude the more uncommon diagnoses (Section B).
The highest frequency injury code is “Multiple frac-
tures of ribs” with a prevalence of 15.9% and the low-
est frequency code is “Hypertensive heart and chronic
kidney disease” with a prevalence of 0.03%. For each
patient, the set of diagnosed conditions is binarized
to form the input feature vector x.

We refer readers to Appendix A for a detailed de-
scription of how the auxiliary features of age, the
mechanism of injury, GCS, and high-risk injuries are
preprocessed to the feature vector c. The mechanism
of injury consists of eight categories describing the
mechanism by which the patient was injured (Ta-
ble 4). GCS is a measure of patient responsiveness
and serves as a proxy for the degree of traumatic
brain injury (Table 5). High-risk injuries are injuries
that are highly associated with mortality, and are
thus important to be identified early (Table 7).

4. Methods

Suppose we have a dataset of n patients, each with an
input binary feature vector x of injury codes. We also
have a normalized vector c of the auxiliary features
per patient.

4.1. Disentangled Variational Autoencoder

We use a standard β-VAE framework (Higgins
et al., 2017) for learning the latent representations
of trauma injuries. The encoder compresses input
information into a latent representation, which the
decoder samples from and seeks to reconstruct the in-
put. Specifically, distribution qϕ(z|x) encodes x to la-
tent vector z, while distribution pθ(x|z) decodes sam-
pled z to reconstructed xrecon. ϕ and θ parameterize
their respective distributions. We use an isotropic
unit Gaussian N (0, 1) as the latent prior p(z). VAEs
are trained by maximizing the evidence lower bound
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Figure 1: Our β-VAE Classifier framework for injury pattern discovery consists of five components: (1)
the β-VAE learns a latent space, (2) a classifier of auxiliary features provides weak supervision,
(3) clustering is performed on the latent space (4) the CR score selects clusters with clinically
interesting injury patterns, (5) selected injury patterns are validated by clinical experts.

(ELBO). In practice, we train the model to minimize
the objective function:

ELBO = −Eqϕ(z|x) log pθ(x|z)+βDKL

(
qϕ(z|x)||p(z)

)
We implement the encoder qϕ(z|x) as a two-layer

MLP that learns the mean µ and variance σ of the dis-
tribution qϕ(z|x). We implement the decoder pθ(x|z)
as a two-layer MLP with sigmoid activation. Code
uses Tensorflow 2.4.1 (Abadi et al., 2015). We set a
latent representation of dimension 64. All models are
trained for 100 epochs at a learning rate of 0.001.

4.2. Latent Space Classifier with Auxiliary
Features

The auxiliary classifier fψ(c|z), parameterized by ψ,
predicts c from z. Classifier loss is implemented as bi-
nary cross-entropy and added to the ELBO loss with
weight γ. The final loss function of the β-VAE Clas-
sifier model is:

L = −Eqϕ(z|x) log pθ(x|z) + βDKL

(
qϕ(z|x)||p(z)

)
−γ 1

n

n∑
i

dim(c)∑
j

cij log(fψ(cij |zij))

4.3. Clustering

We use K-Means clustering with Euclidean dis-
tance and K = 30 as the number of clusters.
We motivate this choice in Appendix E. We use
the sklearn.clustering library for the implementation
(Buitinck et al., 2013).

4.4. Clinical Relevance Score

The CR score consists of four submetrics.

Body-Spatial Submetric (bs) Trauma injury
patterns that contain injuries that are spatially far
apart and span multiple body regions are of greater
clinical interest, since they are often indicative of
complex injury patterns. Injuries are categorized into
the ten anatomical regions given by the highest level
of the ICD-10 hierarchy. We represent each region as
a node in a connected graph. The body-spatial sub-
metric bs(·, ·) is the path length between two nodes,
normalized to [0, 1].
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Figure 2: The anatomical graph for computing the
body-spatial metric.

Internal-External Submetric (ie) External in-
juries can often serve as warning signs for important
correlated internal injuries that can be detected early
through a screening procedure. See Table A for the
set of injuries assigned non-zero weights wi. For a
pair of injuries h1 and h2 with internal weights wi1
and wi2 , the metric is computed as:

ie(h1, h2) =

{
abs(wi1 − wi2) if wi1 ̸= wi2
wi1/2 if wi1 = wi2

We also down-weight superficial injuries by returning
ie(·, ·) = −1 if the pair contains a superficial injury.

High-Risk Submetric (hr) We refer to the same
list of 50 high-risk injuries as defined in the auxiliary
feature preprocessing (see Section A). Each high-risk
injury (Table 7) adds 0.5 to the submetric hs(·, ·).

Correlation (corr) We use the already computed
Pearson correlation of the injury pairs for the output
of the corr(·, ·) function.

Algorithm for Computing CR Score Default
hyperparameter values are noted in parentheses.
As input, we have cluster labels and patient injury

codes. We include clusters with more than Sκ number
of patients (Sκ = 259, or 0.1% of test cohort size).
For a particular cluster, we select injuries that occur
at a frequency higher than threshold κ (κ = 0.04).
We compute the Pearson correlation between pairs
of injuries. We select the top Sα pairs of injuries as
ranked by correlation (Sα = 50). We remove pairs
with a correlation less than threshold α (α = 0.25).

For all pairs of injuries ha and hb, we compute the
weighted score:

w = wbs ∗ bs(ha, hb) + wie ∗ ie(ha, hb)
+whr ∗ hr(ha, hb)

If the injury pair has w > 0, we add the correlation
submetric and compute the final CR score as:

CR score = w + wcorr ∗ corr(ha, hb)

For all pairs with a positive CR score, we merge pairs
with shared injuries into larger sets to form injury
patterns. We average the CR score across all pairs
to compute the CR score for the cluster, and average
across all valid clusters to compute the CR score for
the model.

We compute the CR score on the test cohort. The
default weights for the CR score submetric
are: wbs = 0.5, wie = 0.2, whr = 0.2, wcorr = 0.1.
These values are determined jointly with our collab-
orating clinicians, and reflect their preferences for
what counts as “clinically meaningful”. We have the
highest weight for the body-spatial submetric, since
injury patterns that are further apart in the body
are associated with more complex patterns. Internal-
external relationships and high-risk injuries are given
the same weight, while correlation is given the least
weight.

4.5. Model Baselines

As baselines for the β-VAE Classifier framework, we
consider the vanilla β-VAE without the classifier as
well as singular value decomposition (SVD). SVD is a
linear dimensionality reduction method that relies on
matrix factorization. SVD is implemented with Trun-
catedSVD from the sklearn library (Buitinck et al.,
2013). The chosen baselines are appropriate because
SVD serves as a simple, but robust baseline, while
the vanilla β-VAE models the completely unsuper-
vised setting without auxiliary information.

4.6. Evaluation

4.6.1. Auxiliary Task Evaluation

To evaluate model performance in the auxiliary task,
we use standard binary classification metrics such as
the area under the ROC curve (AUC), the F1 score,
recall, and precision (Hossin and Sulaiman, 2015).
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4.6.2. Unsupervised Clustering Evaluation

For the evaluation of the unsupervised representa-
tions, we use two common metrics: the silhouette
coefficient (Silh. Coef.) (Rousseeuw, 1987) and the
Calinski-Harabasz Index (CH Index) (Calinski and
Harabasz, 1974). The silhouette coefficient measures
how well points group within their own cluster in
comparison with neighboring clusters. The silhouette
coefficient ranges from [−1, 1], with a more positive
score indicating denser and better-separated clusters.
The CH index measures the ratio of between-cluster
variance (larger better) and within-cluster variance
(smaller better). A higher CH index indicates better
clustering. Since we have the same dimension size
and normalize the latent space before evaluation, the
CH index is comparable across representations (Buit-
inck et al., 2013). We use these metrics as we may
expect well-defined clusters with better unsupervised
clustering metrics to also contain strongly associated
injury patterns with higher clinical relevance.
Moreover, the clustering is also evaluated with our

developed CR score and a manually generated Expert
Rating with clinical experts.

5. Results

5.1. Model Performance on Auxiliary
Classification Tasks

Metrics SVD BetaVAE
BetaVAE
Classifier

AUC
0.793
(± 0.096)

0.821
(± 0.100)

0.842
(± 0.094)

F1
0.401
(± 0.347)

0.432
(± 0.354)

0.488
(± 0.345)

Recall
0.384
(± 0.363)

0.406
(± 0.366)

0.457
(± 0.367)

Prec.
0.585
(± 0.269)

0.605
(± 0.284)

0.618
(± 0.283)

Table 1: Model performance averaged on 12 auxiliary
tasks across 5 randomized runs with 95%
confidence intervals.

First, we evaluate the performance of the β-VAE
Classifier model as compared to the baseline mod-
els on the supervised classification task of predicting
auxiliary features from the latent space (Table 5.1).

Note, while auxiliary tasks are not the goal of our
work, good performance indicates that weak supervi-
sion is helping the representations converge to mean-
ingful spaces. We find that, on average, the β-VAE
Classifier outperforms the β-VAE and SVD model
(AUC 0.842 vs. 0.821 vs. 0.793) on all 12 tasks.
See Appendix C for further details.

5.2. Evaluating Latent Space Clustering with
CR Score

Next, we evaluate the learned latent space cluster-
ings of the β-VAE Classifier model against baselines
for the injury pattern discovery task. In terms of
unsupervised clustering metrics, we see in Table 5.2
that the β-VAE Classifier performs best for the CH
index, while the SVD model performs best for the sil-
houette coefficient. The higher silhouette coefficient
for the SVD model may be explained by the presence
of small, compact clusters at a considerable distance
from the main cluster density (Figure 5). The clus-
ters of the β-VAE Classifier are better separated than
the clusters of the β-VAE, due to the auxiliary weak
supervision. We note that the two clustering metrics
disagree on the model type with the best clustering.
This disagreement further motivates the need for a
more direct clinical metric to evaluate cluster qual-
ity.

Metrics SVD BetaVAE
BetaVAE
Classifier

CR Score
0.104

(± .003)
0.116

(± 0.020)
0.140

(± 0.003)

Silh. Coef.
0.123

(± 0.007)
0.043

(± 0.007)
0.064

(± 0.004)

CH Index
253.7

(± 10.7)
181.8

(± 11.6)
327.3

(± 18.2)

Table 2: Evaluation of latent representations across
5 randomized runs with 95% confidence in-
tervals.

In terms of the CR score (Table 5.2), the β-VAE
Classifier (CR = 0.140) performs better than the
vanilla β-VAE (CR = 0.116), which performs bet-
ter than the SVD (CR = 0.104). The addition of the
auxiliary signal seems to induce the learning of more
meaningful clusters.
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Now, we qualitatively validate that the CR score
is able to capture the concept of clinical relevance
better than the clustering metrics by examining the
cluster output manually. We observe that head in-
juries tend to dominate the cluster composition in
the SVD and β-VAE model (percent containing head
injuries = 52.6% and 57.9%, respectively). This dom-
inating effect is undesirable and is much less present
in the β-VAE Classifier (percent containing head in-
juries = 22.7%). Instead, the clusters often span
multiple body regions. We observe injury patterns
such as {Fracture of thumb, Traumatic amputation
of thumb} and {Injury of radial artery at wrist and
hand level, Fracture of lower end of radius} for the
β-VAE Classifier that we do not see in the baseline
models. To summarize, VAE models capture more
variety of injury patterns, and the β-VAE Classifier
is able to capture patterns spanning more body re-
gions than the vanilla β-VAE.

5.3. Validating the Model Selection Capacity
of the CR Score

To illustrate the capacity of the CR score for nu-
anced model selection in addition to evaluation, we
first train a pool of 50 candidate β-VAE Classifiers
(β = 5, γ = 1). We then compare the clinical rele-
vance of the model with the best silhouette coefficient
and CH index (“Unsup Top Model”) to the model
with the best CR score (“CR Top Model”). We ana-
lyze the performance of these two models as “CR Top
Model” is the best model according to our developed
metric, while “Unsup Top Model” is the model we
would have picked if we don’t have access to the CR
score.

Metrics
Unsup Top
Model

CR Top
Model

Silh. Coef. 0.092 0.037
CH Index 497.5 233.0
CR Score 0.144 0.168
Expert Rating 1.034 1.227

Table 3: Evaluation of latent representations of the
best model by clustering metrics (Unsup
Top Model) and the best model by the CR
score (CR Top Model).

As shown in Table 5.3, the difference in the CR
Score between the two models is discernible but not
large. To assess whether this difference is clinically
perceptible, a collaborating clinician (blinded to clus-
ter source method) labeled the clusters on a scale
from 0 to 2 based on how “clinically relevant and in-
teresting” they believed each cluster to be. Higher is
more clinically relevant. We average these scores per
model to form the Expert Rating.

We find that the best model chosen by clustering
metrics versus that chosen by CR have an Expert
Rating of 1.034 versus 1.227 respectively (Table 5.3).
The trend in the Expert Rating concurs with the
trend in the CR score. Qualitatively, the clinicians
also remarked that the Unsup Top Model has a higher
proportion of clusters with expected injury patterns
that would not be of interest, such as: {“Traumatic
pneumothorax (collapsed lung)”, “Multiple fractures
of ribs”}, {“Fracture of lower end of ulna (fore-
arm bone)”, “Fracture of lower end of radius (fore-
arm bone)”}, and {“Fracture of nasal bones”, “Open
wound of nose” }. See Section F.1 for additional anal-
ysis.

6. Tuning Submetrics to Customize
CR Score

The submetric weights of the CR score in the pre-
vious result sections are tuned to roughly approxi-
mate the clinical intuition of our collaborating clin-
icians. A better understanding of the typical injury
patterns favored by each submetric can aid in the
tuning process of adapting the CR score to different
clinical tasks. In this section, we explore the influ-
ence of each submetric on the extracted injury pat-
terns. In each submetric section, we set the submet-
ric to the maximum value. For instance, to analyze
the body-spatial metric, we would define the weights
(wbs = 1, wie = 0, whr = 0, wcorr = 0).

Body-Spatial Submetric (bs) The body-spatial
submetric favors clusters with complex injury pat-
terns spanning multiple body regions. The further
apart the injuries are located on the body, the higher
the value will be. We observe that the top extracted
clusters can concurrently span the head, thoracic,
abdominal, and extremity regions. We also observe
clusters with injury patterns such as {“Fracture of ac-
etabulum (hip bone)”, “Fracture of radius (forearm
bone)”, “Fracture of calcaneus (heel bone)”}. Al-
though this fracture pattern only spans extremities,
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the injuries themselves are spatially far as the lower
arm is far from the foot according to Figure 2.

Internal-External Submetric (ie) This submet-
ric awards pairs of injuries in which one is external
and one is internal. The top clusters as ranked by this
submetric will almost certainly discover some varia-
tion of the injury patterns: {“Traumatic pneumoth-
orax (collapsed lung)”, “Multiple fractures of ribs”}
and {“Fracture of base of skull”, “Traumatic subdu-
ral hemorrhage (brain bleed)”}. Note that although
both patterns contain internal and external injuries,
the patterns themselves are not as clinically interest-
ing due to how common and expected they are.
The utility of the internal-external submetric, how-

ever, lies in awarding patterns such as {“Injury of
colon”, “Injury of small intestine”, “Injury of other
intra-abdominal organs”, “Injury of iliac blood ves-
sels (abdominal)”, “Fracture of ilium (pelvic bone)”}.
Here, the fracture is the visible external presentation
of the harder-to-detect internal injuries of the colon
and other intra-abdominal organs. Discovering such
injury patterns can aid with diagnosis as the pres-
ence of external injuries can alert the clinician to the
potential co-occurrence of internal injuries character-
ized by the pattern.

High-Risk Submetric (hr) The utility of the
high-risk submetric is fairly self-evident, as it is
important to identify clusters that contain injuries
highly correlated with patient mortality. The early
detection of high-risk injuries can improve trauma
management. A few injury pattern types that we
typically observe when we rank by the high-risk sub-
metric are:

1. Severe head injuries: typically some combina-
tion of cerebral edema (brain swelling), hemor-
rhage, and fracture of some part of the skull.

2. Spine fractures: typically fractures of two or
more contiguous vertebrae, such as the fracture
of the first and second cervical (neck) vertebra.

3. Thoracic injuries: typically some combination
of traumatic hemopneumothorax (bleed in a col-
lapsed lung), flail chest (unstable chest wall), and
rib fractures.

Correlation (corr) If we rank by correlation, then
we will mostly discover clusters with injuries that
have expected associations. The pattern may charac-
terize the injuries that are spatially near or are caused
by a single, clear mechanism of injury. We obtain

fractures of neighboring bones (e.g. acetabulum (hip)
and pubis (pelvis)) and internal organs (e.g. kidney,
pancreas, liver, gallbladder, and bile duct). Interest-
ingly, we also observe a higher occurrence of milder
severity injury patterns. For instance, we observe
patterns of sprain injuries (e.g. sprain of collateral
ligament (outer knee) of knee and tear of meniscus
(inside the knee)) and of non-trauma-related condi-
tions (e.g. essential hypertension (high blood pres-
sure) and respiratory failure).

7. Case Study

Now, with our tuned model and CR score, we provide
a clinician-validated analysis of trauma injury sub-
groups in the TQIP 2017-2019 patient cohort. We
present these clinical results as a demonstration of
how our framework can be utilized to conduct retro-
spective analysis for the discovery of clinically rele-
vant injury patterns.

7.1. Setup

For 50 randomized runs of the β-VAE Classifier, we
aggregate all cluster outputs and ranked the clusters
by the CR score. We present the ranked list to the
clinician. The clinician identifies six subgroups of in-
terest (see Figure 3). The six subgroups span three
mechanisms of injury: penetrating trauma, falls, and
motor vehicle accidents.

7.2. Penetrating Trauma Subgroups

Penetrating trauma (Mech D) is an open wound in-
jury caused by a foreign object piercing the skin, such
as gunshots or stab wounds injury (Fitch et al.). We
identify Cluster O and Cluster P as two clusters
that highlight the importance of the assessment of
abdominal vascular trauma (blood vessel injury in
the abdominal area). Abdominal vascular trauma is
rare, but when it does occur, high mortality rates are
seen up to 60% of all cases (Kobayashi et al., 2016).
Cluster O includes an injury to the iliac and femoral
vessels (abdominal blood vessels). Cluster P also
represents an injury to the iliac vascularity. Iliac ves-
sel injuries are uncommon, but among the most lethal
and challenging injuries, and patients often arrive in
shock secondary to massive blood loss (Kim et al.,
2016). When abdominal vascular injury is suspected,
immediate attempt to control the bleeding is essen-
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• [Injury of iliac blood vessels, Injury of colon, Injury of small intestine, Injury of other intra-abdominal organs]
• [Injury of femoral vein at hip and thigh level, Injury of femoral artery]
• [Injury of kidney, Injury of spleen, Injury of liver and gallbladder and bile duct, Injury of stomach, Injury of pancreas, 

Injury of other specified intrathoracic organs]
• [Traumatic hemopneumothorax, Fracture of one rib, Multiple fractures of ribs, Other and unspecified injuries of lung] 

CR Score Num Patients Avg Age Perc Male (%) Mild (%) Moderate (%) Severe (%)
0.3332 2,967 33 80.6 60.3 7.7 32.1

Cluster O

Cluster P

Mech A (%) Mech B (%) Mech D (%) Mech E (%) Mech F (%) Mech G (%) High Risk (%)
2.5 0.6 94.8 0.6 3.7 44.1 83.1

• [Injury of iliac blood vessels, Injury of colon, Injury of small intestine, Injury of kidney, Injury of spleen, Injury of liver 
and gallbladder and bile duct,  Injury of stomach, Injury of pancreas, Injury of other intra-abdominal organs, Injury of 
other specified intrathoracic organs]

• [Open wound of back wall of thorax without penetration into thoracic cavity, Open wound of front wall of thorax without 
penetration into thoracic cavity]

• [Traumatic hemopneumothorax, Fracture of one rib, Multiple fractures of ribs, Other and unspecified injuries of lung]

• [Fracture of fourth cervical vertebra, Fracture of fifth cervical vertebra, Fracture of sixth cervical vertebra, Fracture of 
seventh cervical vertebra]

• [Injury of colon, Injury of small intestine, Injury of other intra-abdominal organs]
• [Focal traumatic brain injury, Traumatic subarachnoid hemorrhage, Traumatic subdural hemorrhage]
• [Sprain of cruciate ligament of knee, Sprain of collateral ligament of knee]
• [Fracture of metatarsal bone(s), Fracture of calcaneus, Fracture of talus, Fracture of other and unspecified tarsal bone(s)]

• [Fracture of sacrum, Fracture of pubis, Fracture of lumbar vertebra, Fracture of calcaneus, Fracture of lower end of 
radius]

• [Focal traumatic brain injury, Traumatic subarachnoid hemorrhage, Traumatic subdural hemorrhage]
• [Other disorders of fluid, electrolyte and acid-base balance, Disorders of mineral metabolism]

• [Traumatic pneumothorax, Multiple fractures of ribs, Other and unspecified injuries of lung]
• [Fracture of base of skull, Focal traumatic brain injury, Traumatic subarachnoid hemorrhage, Traumatic subdural 

hemorrhage] 
• [Other disorders of fluid, electrolyte and acid-base balance, Disorders of mineral metabolism]

Cluster T

Cluster Q

Cluster R

• [Fracture of acetabulum, Subluxation and dislocation of hip, Fracture of head and neck of femur]
• [Injury of colon, Injury of small intestine, Injury of other intra-abdominal organs]
• [Injury of liver and gallbladder and bile duct, Injury of spleen]
• [Traumatic pneumothorax, Multiple fractures of ribs, Fracture of sternum]
• [Fracture of metatarsal bone(s), Fracture of calcaneus, Fracture of talus, Fracture of other and unspecified tarsal bone(s), 

Subluxation and dislocation of foot]

CR Score Num Patients Avg Age Perc Male (%) Mild (%) Moderate (%) Severe (%)
0.3255 5,245 33 80.1 59.0 7.4 33.6

CR Score Num Patients Avg Age Perc Male (%) Mild (%) Moderate (%) Severe (%)
0.157 1,394 70 51.8 93.1 4.1 2.8

CR Score Num Patients Avg Age Perc Male (%) Mild (%) Moderate (%) Severe (%)
0.137 1,177 70 52.6 90.1 5.4 4.5

CR Score Num Patients Avg Age Perc Male (%) Mild (%) Moderate (%) Severe (%)
0.122 316 40 66.1 35.1 10.4 54.4

CR Score Num Patients Avg Age Perc Male (%) Mild (%) Moderate (%) Severe (%)
0.126 5,044 63 62.8 88.3 5.3 6.4

Mech A (%) Mech B (%) Mech D (%) Mech E (%) Mech F (%) Mech G (%) High Risk (%)
1.2 0.3 96.8 0.3 3.3 38.6 81.2

Mech A (%) Mech B (%) Mech D (%) Mech E (%) Mech F (%) Mech G (%) High Risk (%)
8.4 85.0 0.6 1.9 23.7 20.9 53.4

Mech A (%) Mech B (%) Mech D (%) Mech E (%) Mech F (%) Mech G (%) High Risk (%)
10.7 81.1 0.9 2.4 24.4 21.9 59.7

Mech A (%) Mech B (%) Mech D (%) Mech E (%) Mech F (%) Mech G (%) High Risk (%)
80.7 4.7 1.6 10.1 12.7 1.3 89.6

Mech A (%) Mech B (%) Mech D (%) Mech E (%) Mech F (%) Mech G (%) High Risk (%)
88.3 4.3 0.5 3.4 7.8 1.4 33.0

Cluster S

Figure 3: Visualization and patient characteristics of the six subgroup clusters that we discuss in Section 7.
In the UMAP, we show patients in the selected subgroup in red. The remaining clusters are colored
on a gradient from yellow to purple. We denote the high-risk group with the green, dashed box.
High-risk injuries are bolded in the injury pattern descriptions. We highlight items of interest with
the color red.
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tial for a possible rescue of the patient (Kobayashi
et al., 2016).

In general, we find that patients in clusters with
penetrating trauma tend to be male and younger.
The percentages of male patients in Cluster O and
Cluster P are both around 80%, while the percent-
age in the training cohort is around 60% (Table 26).
The average age of both clusters is 33, while the av-
erage age of the training cohort is 53.

7.3. Fall-Related Trauma Subgroups

Fall-related injury is a leading cause of death in the el-
derly population (CDC, 2021b), and is the most com-
mon cause of traumatic brain injury (TBI), account-
ing for 35% of all TBIs (Jager et al., 2000). The top
clusters in the Fall category (Mech B) reflect known
patterns in the medical literature. The patients tend
to be older of age and female. We take Cluster Q
and Cluster R as examples. The average age in the
clusters is 70, versus 53 for the training cohort. The
percentage male is around 51% for the two clusters,
versus 60% in the training cohort.

In terms of injury patterns, Cluster Q and Clus-
ter R include patterns of multiple fractures, com-
bined with head injuries. Notably, both clusters also
contain electrolyte imbalance disorders (too much or
too little electrolytes). Though the type of electrolyte
disorder is not specified, hyponatremia (low blood
sodium) has been proposed to be among the factors
related to elderly falls and associated with worse out-
comes (Kuo et al., 2017; Rittenhouse et al., 2015).
Lastly, we note that around 20% of the patients in
both clusters also suffered from other blunt trauma
(Mech F), which is clearly explained by falling as the
primary mechanism of injury.

7.4. Motor Vehicle Accident Trauma
Subgroups

Motor vehicle accidents are the second leading cause
of TBI and a leading cause of death in young adults
(Vella et al., 2017). Indeed, we observe that motor
vehicle accidents (Mech A) clusters often include se-
vere head injuries along with other high-risk internal
injuries. Cluster S has a high 54% of patients with
severe TBI.

Motor vehicle accidents are also the most com-
mon mechanism leading to pelvic ring and acetabu-
lum (hip) fractures, correlated with impact direction
(Dakin et al., 1999). Cluster T captures an injury

pattern of an acetabular fracture with a femur frac-
ture (thigh bone). In general, we find that Mech A
clusters tend to have injury patterns that cover all
parts of the body, from the head to the thorax to the
spine to the extremities.

8. Conclusion

The identification of commonly co-occurring trauma
injury patterns can aid with the earlier diagnosis
of injuries. We conduct a thorough analysis of in-
jury patterns in the TQIP cohort through learn-
ing weakly supervised representations with a β-VAE
model paired with a latent classifier. We demonstrate
the capability of our proposed clinical relevance score
as a proxy for clinical intuition during clustering eval-
uation and model selection. We present a case study
of selected subgroups with clinically interesting injury
patterns and patient characteristics.

We envision the proposed framework can enable
the more meaningful and easier extraction of in-
jury patterns from a large, heterogeneous dataset of
trauma patients. In particular, the CR score can
greatly expedite the discovery process. Once the CR
score is tuned to approximate clinical intuition, an
ML practitioner without domain expertise can effi-
ciently utilize this quantitative metric to select the
most relevant models and extract injury patterns of
interest without active feedback from clinical collabo-
rators. There is also less burden on the clinical collab-
orators, as they need to review fewer model outputs,
and can interact with the ML model through changes
to the more interpretable CR score framework.

In this work, the validation of our developed CR
score is limited by the small sample size of clinical ex-
pert collaborators we can query on an active basis. In
future work, we hope to more rigorously benchmark
the developed CR score with a larger group of clinical
domain experts. We note that thoughtful experiment
design is likely needed, as the same clinical expert
may offer different absolute scales of Expert Rating
over time, as we observe in Section F.1. We also hope
to explore different versions of the CR score that can
emphasize the discovery of novel injury patterns not
previously documented in the medical literature.
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Appendix A. Data Preprocessing of
Auxiliary Features

We consider four types of auxiliary features: age,
mechanism of injury, GCS, and high-risk. Age is a
single feature that is normalized to the range [0, 1].

Table 4: The mechanism of injury groups with their
training set prevalence.

Group Mechanism Prevalence

A
Motor Vehicle
Collision

0.308

B Fall 0.407
C Burn 0.014

D
Penetrating
Trauma

0.089

E
Struck by
Motor Vehicle

0.054

F
Other
Blunt
Trauma

0.234

G
Other
Injury

0.137

H Poisoning 0.002

Mechanism of Injury In the TQIP dataset, the
mechanism of injury data feature (“MECHANISM”)
is divided into 27 categories describing the cause
of the injury. Our collaborating clinician grouped
these into eight larger categories (Table 4) based on
the type of trauma injury the patient is expected
to incur for each of the finer categories (Table 6).
For instance, since both “Fire/flame” and “Hot ob-
ject/substance” leads to burns, they are grouped to-
gether to form Category C (Burns).

Glasgow Coma Scale (GCS) We use the “TO-
TALGCS” data feature in the TQIP dataset for the
raw value of the total GCS. Total GCS is the sum
of the motor, verbal, and eye-opening GCS scores.
Total GCS can vary on a scale from 3 to 15. We
group GCS into three categories of mild, moderate,
and severe head injury depending on the score (See
Table 5).

High-Risk Injuries We define the concept of high-
risk injuries as injuries that occur at a much higher
prevalence in patients who died than in patients

Table 5: Our clinician-defined mapping from the raw
total GCS values to the three broad cate-
gories.

Group
Total
GCS

Prevalence

mild 14-15 0.89
moderate 9-13 0.04
severe 3-8 0.07

who didn’t die. With the TQIP feature “HOSPDIS-
CHARGEDISPOSITION” = 5 (Deceased/Expired),
we form a deceased subgroup of 2.6% of the patient
cohort who died in the hospital. For the list of 500 se-
lected diagnosis codes, we compute the ratio of the oc-
currence of the condition in the deceased group over
the occurrence in the non-deceased group. We rank
by this ratio and selected the top 50 conditions to
be classified as high-risk injuries (Table 7). Patients
with at least one high-risk injury in the set of their
diagnoses are indicated with a 1. The percentage of
high-risk patients in the training set is 38.6%.

Since the goal is to identify interesting trauma in-
jury patterns during the early stages of diagnosis, we
only use data features of the patient that we would
have access to upon admission to the hospital. Basic
information such as age and mechanism of injury is
generally known before admission. GCS is evaluated
at least once upon admission.
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Table 6: Our clinician-defined mapping for how the TQIP “MECHANISM” data feature corresponds with
the larger mechanism of injury groupings.

Mechanism of Injury (TQIP) Category

1=Cut/pierce D
2=Drowning/submersion G
3=Fall B
4=Fire/flame C
5=Hot object/substance C
6=Firearm D
7=Machinery G
8=MVT Occupant A
9=MVT Motorcyclist A
10=MVT Pedal cyclist E
11=MVT Pedestrian E
12=MVT Unspecified NA
13=MVT Other NA
14=Pedal cyclist, other F
15=Pedestrian, other F
16=Transport, other F
17=Natural/environmental, Bites and stings G
18=Natural/environmental, Other G
19=Overexertion G
20=Poisoning H
21=Struck by, against F
22=Suffocation F
23=Other specified and classifiable G
24=Other specified, not elsewhere classifiable G
25=Unspecified G
26=Adverse effects, medical care H
27=Adverse effects, drugs H
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Table 7: List of top 50 injuries categorized to be high-risk according to the procedure outlined in Section A

ICD10 Injury Description Ratio Prevalence

S06.1 Traumatic cerebral edema 23.62 0.164
S06.2 Diffuse traumatic brain injury 14.82 0.057
G93 Other disorders of brain 12.26 0.014
S35.5 Injury of iliac blood vessels 9.93 0.018
S06.8 Other specified intracranial injuries 9.31 0.107
S02.9 Fracture of unspecified skull and facial bones 8.83 0.023
S35.2 Injury of celiac or mesenteric artery and branches 8.32 0.009
S26.0 Injury of heart with hemopericardium 6.97 0.013
S36.2 Injury of pancreas 6.91 0.015
S06.3 Focal traumatic brain injury 6.67 0.312
S15.0 Injury of carotid artery of neck 6.33 0.017
S02.0 Fracture of vault of skull 6.24 0.173
S25.0 Injury of thoracic aorta 5.86 0.015
S02.1 Fracture of base of skull 5.55 0.173
T21.3 Burn of third degree of trunk 5.43 0.006
S36.3 Injury of stomach 5.16 0.011
S06.6 Traumatic subarachnoid hemorrhage 4.9 0.358
S06.5 Traumatic subdural hemorrhage 4.87 0.424
S15.1 Injury of vertebral artery 4.79 0.021
S26.1 Injury of heart without hemopericardium 4.69 0.008
S36.5 Injury of colon 4.56 0.032
S27.8 Injury of other specified intrathoracic organs 4.5 0.031
S13.1 Subluxation and dislocation of cervical vertebrae 4.32 0.019
S06.4 Epidural hemorrhage 4.28 0.033
S36.4 Injury of small intestine 4.26 0.034
S14.1 Other and unspecified injuries of cervical spinal cord 4.13 0.038
S22.5 Flail chest 4.11 0.028
R40 Somnolence, stupor and coma 4.1 0.005
S36.8 Injury of other intra-abdominal organs 4.08 0.058
T22.3 Burn of third degree of shoulder and upper limb 4.07 0.005
S36.1 Injury of liver and gallbladder and bile duct 3.86 0.084
T24.3 Burn of third degree of lower limb 3.78 0.005
S27.1 Traumatic hemothorax 3.77 0.058
S37.2 Injury of bladder 3.67 0.01
S12.0 Fracture of first cervical vertebra 3.49 0.029
S12.2 Fracture of third cervical vertebra 3.39 0.014
S75.0 Injury of femoral artery 3.37 0.006
E87 Disorders of fluid, electrolyte, acid-base balance 3.33 0.006
S72.9 Unspecified fracture of femur 3.31 0.007
S37.8 Injury of other urinary and pelvic organs 3.29 0.013
S37.0 Injury of kidney 3.1 0.036
S12.3 Fracture of fourth cervical vertebra 3.07 0.017
S27.2 Traumatic hemopneumothorax 3.03 0.061
S36.0 Injury of spleen 3.01 0.068
S14.0 Concussion and edema of cervical spinal cord 2.98 0.004
S24.1 Other and unspecified injuries of thoracic spinal cord 2.87 0.009
S33.2 Dislocation of sacroiliac and sacrococcygeal joint 2.85 0.006
S02.8 Fractures of other specified skull and facial bones 2.85 0.078
S12.4 Fracture of fifth cervical vertebra 2.81 0.023
S12.1 Fracture of second cervical vertebra 2.81 0.044
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ICD10 wi Description

S04 1 Injury of cranial nerve
S06 1 Intracranial injury
S14 0.5 Injury of nerves and spinal cord at neck level
S15 0.5 Injury of blood vessels at neck level
S24 0.5 Injury of nerves and spinal cord at thorax level
S25 0.5 Injury of blood vessels of thorax
S26 1 Injury of heart
S27 1 Injury of other and unspecified intrathoracic organs

S34 0.5
Injury of lumbar and sacral spinal cord and
nerves at abdomen, lower back and pelvis level

S35 0.5
Injury of blood vessels at abdomen,
lower back and pelvis level

S36 1 Injury of intra-abdominal organs
S37 1 Injury of urinary and pelvic organs
S44 0.5 Injury of nerves at shoulder and upper arm level
S45 0.5 Injury of blood vessels at shoulder and upper arm level
S54 0.5 Injury of nerves at forearm level
S55 0.5 Injury of blood vessels at forearm level
S64 0.5 Injury of nerves at wrist and hand level
S65 0.5 Injury of blood vessels at wrist and hand level
S74 0.5 Injury of nerves at hip and thigh level
S75 0.5 Injury of blood vessels at hip and thigh level
S84 0.5 Injury of nerves at lower leg level
S85 0.5 Injury of blood vessels at lower leg level
S94 0.5 Injury of nerves at ankle and foot level
S95 0.5 Injury of blood vessels at ankle and foot level
XX0 -1 Superficial injury

Table 8: The weights that define the internal-external sub-metric as part of our clinical relevance scoring
algorithm. Internal injuries in key regions of the head, thorax, and abdomen are given the most
positive 1 weight. Injuries of blood vessels and nerves are weighed 0.5, while any superficial injury
(X serves as a placeholder) is down-weighed as -1.

330



Clinical Relevance Score for Guided Trauma Injury Pattern Discovery

Appendix B. Data Preprocessing of
ICD10 Codes

We visualize the training prevalence of the top 500 se-
lected ICD10 codes in Figure 4. Since the training set
prevalence drops off quickly after the top 100 codes,
the cutoff of 500 most frequent codes is reasonable
for our analysis.

Figure 4: Plot of the selected 500 ICD10 codes
ranked by prevalence in the training co-
hort.

Appendix C. Auxiliary Classification
Task

We note that all evaluated models perform poorly at
predicting moderate GCS group and the mechanism
of injury groups of E, F, G, H (Table 9, Table 10,
Table 11). The lower performance can be attributed
to greater patient heterogeneity. We observe that the
β-VAE Classifier consistently learns the separation
between high-risk and low-risk groups (see Figure 7),
while the β-VAE and SVD are not able to consistently
do so.

Table 9: Auxiliary task performance of the SVD
model.

Features AUC F1 Recall Prec.

mild 0.735 0.943 0.995 0.895
moderate 0.666 0.000 0.000 0.000
severe 0.768 0.104 0.057 0.590
A 0.806 0.566 0.484 0.682
B 0.805 0.680 0.708 0.654
C 0.993 0.878 0.937 0.826
D 0.936 0.674 0.585 0.794
E 0.762 0.084 0.045 0.607
F 0.657 0.027 0.014 0.588
G 0.699 0.098 0.054 0.583
H 0.791 0.000 0.000 0.000
Risk 0.893 0.762 0.728 0.799
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Table 10: Auxiliary task performance of the β-VAE
model.

Features AUC F1 Recall Prec.

mild 0.820 0.948 0.986 0.912
moderate 0.727 0.000 0.000 0.000
severe 0.859 0.308 0.203 0.645
A 0.802 0.556 0.481 0.662
B 0.821 0.679 0.656 0.705
C 0.993 0.882 0.918 0.849
D 0.940 0.663 0.576 0.783
E 0.764 0.061 0.032 0.608
F 0.660 0.092 0.050 0.571
G 0.694 0.059 0.032 0.581
H 0.783 0.000 0.000 0.000
Risk 0.991 0.939 0.932 0.945

Table 11: Auxiliary task performance of the β-VAE
Classifier model

Features AUC F1 Recall Prec.

mild 0.835 0.950 0.983 0.918
moderate 0.737 0.001 0.001 0.047
severe 0.876 0.408 0.294 0.666
A 0.830 0.608 0.542 0.692
B 0.849 0.720 0.722 0.718
C 0.994 0.895 0.941 0.854
D 0.959 0.740 0.684 0.807
E 0.787 0.142 0.082 0.537
F 0.686 0.185 0.111 0.573
G 0.725 0.200 0.121 0.581
H 0.821 0.001 0.000 0.017
Risk 1.000 1.000 1.000 1.000

Appendix D. UMAP Visualizations of
Model Examples

Figure 5: UMAP visualization of a typical SVD
model explored in Section 5.2.

Figure 6: UMAP visualization of a typical β-VAE
model explored in Section 5.2.
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Figure 7: UMAP visualization of a typical β-VAE
Classifier model explored in Section 5.2.

Appendix E. Additional Ablation and
Robustness Results

E.1. Number of Clusters

Table 12: Effect of the cluster number (K) for the
KMeans algorithm on the unsupervised
representation performance. Metrics are
averaged across 5 randomized runs of the
β-VAE Classifier model.

K CR Score Silh. Coef. CH Index

5 0.165 0.065 718.7
10 0.150 0.073 563.4
20 0.136 0.073 418.6
30 0.132 0.073 333.0
40 0.123 0.067 282.7
50 0.130 0.060 247.4
60 0.122 0.056 221.2
70 0.127 0.057 202.1
80 0.128 0.054 182.9
90 0.132 0.053 171.2
100 0.126 0.051 159.3

For the KMeans algorithm, we vary the number
of clusters (K) and observe in Table 12 that for both
the CR and the CH Index, a small number of clusters
(K=5 and K=10) perform better than a larger num-
ber of clusters. The reason is that the global struc-
ture of the typical latent space of the β-VAE Classi-
fier is divided into two main clusters corresponding to
the high-risk and lower-risk groups, as we previously
noted. Patients with burn injuries are also typically
placed in their own cluster far from the main cohort.
Thus, since there are usually 3 to 5 clouds of dis-
persed density, the clustering metrics are optimized
for smaller cluster numbers. Similarly, the CR score
is higher because if the model has only 5 clusters,
then on average, most of the injury patterns in these
clusters are clinically relevant. Practically, however,
we are not able to extract meaningful clusters of in-
terest with such a small number of clusters.

If we visualize the set of binary auxiliary features
overlaid on the clustered UMAP visualization, we can
discover some of these local clusters by eye. For in-
stance, we see in Figure 8 that Group D (Penetrat-
ing Trauma) is primarily concentrated in two com-
pact local areas (upper hook of the left cluster and
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B C

D

A

G Moderate Severe

FE

Age < 30 Age > 80 High Risk

Figure 8: The patients in the positive class of each binary auxiliary signal are overlaid in red over the UMAP
visualization colored by the 30 clusters. The latent embedding from the β-VAE Classifier with the
highest CR score. Groups A to G can be referenced with their corresponding mechanism of injury
groups. Due to space constraints, we do not include the subfigures for Group H and the Mild GCS
group. Group H (Poisoning) is very sparse while the Mild group covers all cluster density.
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the lower extension of the right cluster). These two
groups overlap with the patients less than 30 years
old subgroup, and is mostly disjoint with the pa-
tients more than 80 years old subgroup. This phe-
nomenon is explained by the mechanism of injury,
since firearms and cut/pierce are the only two valid
subcategories for penetrating trauma in our data pre-
processing. Thus, we confirm that the β-VAE Classi-
fier is indeed learning informative local clusters. It’s
just that these local clusters may be near each other
in the latent space and form larger density clouds that
are easier to cluster. Based on the output of the clus-
ter descriptions for varying K, we decide on a cluster
number of K=30 for the main experiments in this
work. We qualitatively feel that K=30 reasonably
balances the relevance and variety of the discovered
injury patterns. We note that K=30 does exhibit a
reasonable CR score and clustering performance as
well (Table 12).

E.2. Clustering Algorithms

Table 13: Unsupervised representation performance
for different clustering algorithms averaged
across 50 randomized runs of the β-VAE
Classifier model.

Alg
CR
Score

Silh.
Coef.

CH
Index

KMeans
0.128
(± 0.017)

0.075
(± 0.028)

340.8
(± 92.7)

BKMeans
0.130
(± 0.042)

0.040
(± 0.023)

274.1
(± 68.9)

Ward
0.125
(± 0.030)

0.044
(± 0.025)

281.4
(± 69.5)

Besides KMeans, we also briefly explored two other
clustering algorithms. We tested agglomerative clus-
tering with ward linkage (“Ward”) and a hierar-
chical variant of KMeans called BisectingKMeans
(“BKMeans”). In Ward agglomerative clustering,
each point starts as its own cluster. During clus-
tering, the points are linked together to minimize the
sum of squared differences within all clusters. In bi-
secting K-Means, the clustering is hierarchical, as sin-
gle clusters are successively chosen and split into new
clusters (Buitinck et al., 2013).

We see in Table 13 that KMeans performs notably
better the other two in terms of the clustering met-
rics. For the CR score, the marginal improvement
of the BKMeans over the KMeans algorithm was
not sufficient to justify the additional computational
time, and thus we settled on using the KMeans algo-
rithm with K=30 for our main experiments.

E.3. Consistency of Learned Representations

Table 14: The adjusted mutual information score
(AMI) averaged across 50 pairs of labels
with 95 confidence intervals. Model 1 and
Model 2 denote which model architectures
was the label sampled from.

Model 1 Model 2 AMI

SVD SVD
0.772
(± 0.005)

BetaVAE BetaVAE
0.449
(± 0.008)

BetaVAE
Classifier

BetaVAE
Classifier

0.574
(± 0.008)

SVD BetaVAE
0.206
(± 0.004)

SVD
BetaVAE
Classifier

0.317
(± 0.007)

BetaVAE
BetaVAE
Classifier

0.315
(± 0.006)

To evaluate the agreement of cluster assignments
of patients in the test cohort for the same and differ-
ent model architectures, we computed the average ad-
justed mutual information score (AMI) for pairs of la-
bel sets. AMI measures agreement between two clus-
terings, while correcting for the effect of the agree-
ment solely due to chance (Vinh et al., 2009). Perfect
matching will have a score of 1, while a random pair
will have a score of around 0. We see in Table 14
that SVD is the model that clusters the most consis-
tently, followed by the β-VAE Classifier. In general,
the cluster assignment disagrees more across differ-
ent model architectures than within the same model
architecture.
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E.4. Ablation: Temporal Shift

To validate the claim that there are no significant
temporal shifts in data (Section 3.1), we trained and
evaluated the β-VAE Classifier model on patient co-
horts constrained to year = {2017, 2018, 2019}. For
each year, we randomly sampled 250,000 patients,
and perform a 70-30 train-test split to form training
cohort (n = 175, 000) and test cohort (n = 75, 000).
Based on results in Table 15 and Table 16, we see that
the average value of all metrics are similar and all
confidence intervals overlap. Qualitatively, the clin-
ical collaborators also did not detect significant dif-
ferences in the discovered injury patterns across the
years.

Table 15: Ablation of the year of the patient record
on the auxiliary classification task for the
β-VAE Classifier model (CIs over 5 ran-
domized runs).

year AUC F1 Recall Prec.

2017
0.749
(±0.018)

0.472
(±0.004)

0.446
(±0.001)

0.527
(±0.018)

2018
0.747
(±0.013)

0.473
(±0.001)

0.447
(±0.002)

0.528
(±0.008)

2019
0.745
(±0.017)

0.475
(±0.005)

0.447
(±0.004)

0.534
(±0.016)

Table 16: Ablation of the year of the patient record
on the unsupervised clustering task for the
β-VAE Classifier model ().

year
CR
Score

Silh. Coef. CH Index

2017
0.129
(±0.007)

0.035
(±0.038)

312.2
(±142.0)

2018
0.136
(±0.015)

0.033
(±0.031)

303.2
(±122.3)

2019
0.135
(±0.021)

0.040
(±0.021)

330.4
(±74.7)

E.5. Ablation: Model Hyperparameters

We did not find the model very sensitive to specific
values of β or γ, as long as they are within the general
ranges of: β ∈ [1, 25], γ ∈ [1, 10].

When β ≥ 1, greater latent space disentanglement
is induced through upweighting the KL loss term with
the isotropic Gaussian prior. We observe that auxil-
iary classification performance decreases with larger
β (Table 17). Higher β yields better unsupervised
clustering metrics, as expected through the greater
disentanglement enforced in the latent space by larger
β (Table 18). We use β = 5 for our main experiments,
as it has the highest averaged CR score of 0.117.

In Table 19, we see that different γ performs the
best for different metrics evaluating the auxiliary
classification performance. As γ increases, the un-
supervised clustering metrics get better (Table 20).
During training, however, we note empirically that if
the γ parameter is set too high (e.g. γ = 25), the
KL loss term can sometimes diverge and the latent
space becomes nonsensical. If we exclude γ = 25,
there is no clear choice of γ given both task perfor-
mances. We settle on the intuitive choice of γ = 1,
which would give equal weight to the classifier loss
and the reconstruction loss in the objective function.

From Table 21 and Table 22, we see that the per-
formance on both tasks is not sensitive to the latent
dimension size. We choose a latent dimension size of
64 as it has the highest CR score of 0.127.

Table 17: Ablation of the disentanglement loss hy-
perparameter β on the auxiliary classifica-
tion task for the β-VAE model (CIs over 5
randomized runs).

β AUC F1 Recall Prec.

1.0
0.825
(±0.002)

0.440
(±0.004)

0.413
(±0.006)

0.609
(±0.002)

5.0
0.821
(±0.001)

0.433
(±0.003)

0.405
(±0.004)

0.606
(±0.004)

10.0
0.819
(±0.001)

0.425
(±0.005)

0.401
(±0.005)

0.603
(±0.008)

25.0
0.815
(±0.002)

0.420
(±0.001)

0.393
(±0.002)

0.597
(±0.004)
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Table 18: Ablation of the disentanglement loss hy-
perparameter β on the unsupervised clus-
tering task for the β-VAE model (CIs over
5 randomized runs).

β
CR
Score

Silh. Coef. CH Index

1.0
0.109
(±0.025)

0.042
(±0.004)

168.8
(±15.9)

5.0
0.117
(±0.018)

0.043
(±0.006)

181.8
(±11.6)

10.0
0.110
(±0.011)

0.046
(±0.006)

189.8
(±18.6)

25.0
0.104
(±0.017)

0.060
(±0.007)

224.2
(±14.3)

Table 19: Ablation of the classifier loss hyperparam-
eter γ on the auxiliary classification task
for the β-VAE Classifier model (CIs over 5
randomized runs).

γ AUC F1 Recall Prec.

0.1
0.841
(±0.001)

0.476
(±0.001)

0.448
(±0.003)

0.625
(±0.001)

1.0
0.845
(±0.001)

0.487
(±0.001)

0.455
(±0.001)

0.619
(±0.001)

5.0
0.839
(±0.003)

0.490
(±0.002)

0.459
(±0.003)

0.625
(±0.008)

10.0
0.833
(±0.001)

0.488
(±0.001)

0.458
(±0.001)

0.613
(±0.008)

25.0
0.830
(±0.002)

0.490
(±0.002)

0.460
(±0.002)

0.608
(±0.003)

Table 20: Ablation of the classifier loss hyperparam-
eter γ on the auxiliary classification task
for the β-VAE Classifier model (CIs over 5
randomized runs).

γ
CR
Score

Silh. Coef. CH Index

0.1
0.130
(±0.006)

0.053
(±0.012)

231.3
(±57.3)

1.0
0.139
(±0.005)

0.059
(±0.009)

304.2
(±37.3)

5.0
0.138
(±0.010)

0.074
(±0.014)

376.9
(±38.6)

10.0
0.139
(±0.006)

0.083
(±0.011)

417.0
(±81.0)

25.0
0.153
(±0.013)

0.097
(±0.018)

430.1
(±78.1)

Table 21: Ablation of the latent dimension size on
the auxiliary classification task for the β-
VAE Classifier model (CIs over 5 random-
ized runs).

latent
dim

AUC F1 Recall Prec.

16
0.837
(±0.006)

0.487
(±0.003)

0.456
(±0.002)

0.626
(±0.033)

32
0.840
(±0.003)

0.487
(±0.002)

0.456
(±0.002)

0.613
(±0.002)

64
0.843
(±0.002)

0.487
(±0.004)

0.456
(±0.003)

0.621
(±0.012)

128
0.844
(±0.001)

0.485
(±0.001)

0.454
(±0.002)

0.621
(±0.007)

256
0.844
(±0.001)

0.485
(±0.001)

0.455
(±0.001)

0.627
(±0.020)
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Table 22: Ablation of the latent dimension size on
the unsupervised clustering task for the β-
VAE Classifier model (CIs over 5 random-
ized runs).

latent
dim

CR
Score

Silh. Coef. CH Index

16
0.124
(±0.013)

0.059
(±0.010)

346.1
(±83.5)

32
0.125
(±0.010)

0.054
(±0.018)

274.9
(±49.9)

64
0.127
(±0.025)

0.063
(±0.009)

314.2
(±48.4)

128
0.124
(±0.024)

0.083
(±0.012)

372.5
(±45.8)

256
0.120
(±0.009)

0.073
(±0.036)

353.9
(±102.5)

Appendix F. Additional Analysis

F.1. Validation of Model Selection Capacity
of the CR Score with More Candidate
Models

After the first round of evaluation of the two models
with the best CR score (relative ranking = 1) and
best unsupervised clustering metrics (relative rank-
ing = 21) in Section 5.3, we asked our clinical col-
laborators to perform a second round of evaluation
by assigning the Expert Rating to model output. We
asked the clinicians to evaluate for models at relative
ranking = {10, 30, 40, 50} to approximate an interval
of 10 among the candidate pool of 50 trained models.

The Pearson correlation of the CR score and Ex-
pert Rating across all six models is -0.071, which im-
plies no correlation. However, if we only look at the
four models from the second round of evaluation, we
have a Pearson correlation of 0.651, which indicates
a reasonable positive association. The reason for this
phenomenon is that although the relative order of
the Expert Rating is positively associated with the
relative order indicated by the CR score within each
round of evaluation, the clinicians consistently
scored models higher in the second round of
evaluation. Taking a step back, this inconsistency
in the absolute of human evaluation further motivates
our work that seeks to develop a consistent, empirical
proxy metric for clinical intuition.

Relative
Ranking

CR
Score

Expert
Rating

Silh.
Coef.

CH
Index

1 0.168 1.227 0.037 233.0
10 0.148 1.391 0.061 288.7
21 0.144 1.034 0.092 497.5
30 0.137 1.476 0.049 298.9
40 0.132 1.250 0.062 316.7
50 0.110 1.250 0.054 316.1

Table 23: Additional evaluation of latent representa-
tions of the 50 candidate β-VAE Classifier
models. We include the same results of
the Unsup Top Model (rank 21) and the
CR Top Model (rank 1), along with mod-
els with different relevant rankings by the
CR score.
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F.2. Bootstrapped Performance on Auxiliary
Classification Task and Unsupervised
Clustering Task

As an alternate to CIs computed over 5 randomized
runs, we can also compute 95% CIs through boot-
strapping the test set (DiCiccio and Efron, 1996).
Specifically, we bootstrapped a sample size of 100,000
patients for 50 iterations. From Table 24, we see that
β-VAE Classifier is still the model with the best aux-
iliary classification performance. From Table 25, we
see the same trends as Table 5.2. Generally, the av-
erage values and the CIs are similar to the previous
result tables. Bootstrapped CIs are slightly smaller
for some metrics.

Table 24: Bootstrap CIs version of Table 5.1.

Metrics SVD BetaVAE
BetaVAE
Classifier

AUC
0.773
(±0.101)

0.807
(±0.102)

0.841
(±0.094)

F1
0.393
(±0.339)

0.402
(±0.356)

0.485
(±0.347)

Recall
0.374
(±0.355)

0.378
(±0.360)

0.454
(±0.367)

Prec.
0.553
(±0.252)

0.581
(±0.284)

0.620
(±0.292)

Table 25: Bootstrap CIs version of Table 5.2.

Metrics SVD BetaVAE
BetaVAE
Classifier

CR Score
0.094
(±0.005)

0.133
(±0.005)

0.136
(±0.006)

Silh. Coef.
0.158
(±0.010)

0.042
(±0.001)

0.036
(±0.002)

CH Index
159.3
(±3.2)

176.1
(±1.4)

226.4
(±4.5)

Appendix G. Patient Characteristics

See Table 26 and Table 27.
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Table 26: Baseline characteristics for the train set, TQIP 2017-2019, n = 903,267.

Attribute Value
Age in years, median (IQR) 53 (33-70)
Gender, % (n)
Female 40.1 (362,562)
Male 59.5 (540,705)
Race, % (n)
White 74.1 (669,332)
Black or African American 14.8 (133,346)
Asian 1.9 (17,460)
American Indian 0.9 (8,203)
Native Hawaiian or other Pacific Islander 0.2 (2,232)
Unknown/other 8.0 (72,694)
Injury Severity Score (ISS), median (IQR) 9 (5-14)
ISS <= 15, % (n) 79.3 (716,065)
ISS >15, % (n) 20.7 (186,929)
Unknown 0.0 (273)
Work-related injury, % (n)
Yes 4.4 (40,140)
No 94.5 (853,781)
Unknown 1.0 (9,346)
Inter-facility transfer, % (n)
Yes 24.5 (221,050)
No 75.5 (682,144)
Unknown 0.0 (73)
Use of protective device (>0.1%), % (n)
None 49.6 (448,166)
Airbag present 16.0 (144,645)
Lap belt 14.6 (132,250)
Shoulder belt 11.9 (107,345)
Helmet 6.3 (56,466)
Protective clothing (e.g. padded leather pants) 0.9 (8,462)
Protective non-clothing gear (e.g. shin guard) 0.3 (2,808)
Eye protection 0.1 (914)
Other 0.2 (1,916)
Hospital teaching status, % (n)
University 44.0 (397,830)
Community 38.2 (345,040)
Non-teaching 17.1 (155,245)
Unkown 0.6 (5,152)
Bed size, % (n)
>600 33.2 (299,606)
401 - 600 30.8 (277,847)
201 - 400 28.4 (256,843)
<= 200 7.6 (68,971)
IQR = interquartile range; % = percentage; n = number
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Table 27: Baseline characteristics for the test set, TQIP 2017-2019, n = 259,132.

Attribute Value
Age in years, median (IQR) 53 (33-70)
Gender, % (n)
Female 40.0 (103,695)
Male 60.0 (155,437)
Race, % (n)
White 74.0 (191,791)
Black or African American 14.8 (38,359)
Asian 1.9 (4,931)
American Indian 0.9 (2,348)
Native Hawaiian or other Pacific Islander 0.3 (657)
Unknown/other 8.1 (21046)
Injury Severity Score (ISS), median (IQR) 9 (5-14)
ISS 15, % (n) 79.5 (205,902)
ISS >15, % (n) 20.5 (53,138)
Unknown 0.0 (92)
Work-related injury, % (n)
Yes 4.5 (11,615)
No 94.5 (244,913)
Unknown 1.0 (2,604)
Inter-facility transfer, % (n)
Yes 24.5 (63,435)
No 75.5 (195,682)
Unknown 0.0 (15)
Use of protective device (>1%), % (n)
None 49.5 (128,350)
Airbag present 16.0 (144,645)
Lap belt 14.6 (132,250)
Shoulder belt 11.9 (107,345)
Helmet 6.3 (56,466)
Protective clothing (e.g. padded leather pants) 0.9 (8,462)
Protective non-clothing gear (e.g. shin guard) 0.3 (2,808)
Eye protection 0.1 (914)
Other 0.2 (741)
Hospital teaching status, % (n)
University 44.0 (113,985)
Community 38.1 (98,820)
Non-teaching 17.3 (44,903)
Unknown 0.5 (1,424)
Bed size, % (n)
>600 33.1 (85,722)
401 - 600 31.0 (80,270)
201 - 400 28.3 (73,384)
<= 200 7.6 (19,756)
IQR = interquartile range; % = percentage; n = number
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