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Abstract

In this paper, we challenge the util-
ity of approved drug indications as a
prediction target for machine learning
in drug repurposing (DR) studies. Our
research highlights two major limita-
tions of this approach: 1) the presence
of strong confounding between drug in-
dications and drug characteristics data,
which results in shortcut learning, and
2) inappropriate normalization of indi-
cations in existing drug-disease associa-
tion (DDA) datasets, which leads to an
overestimation of model performance.
We show that the collection patterns
of drug characteristics data were similar
within drugs of the same category and
the Anatomical Therapeutic Chemical
(ATC) classification of drugs could be
predicted by using the data collection
patterns. Furthermore, we confirm that
the performance of existing DR models

is significantly degraded in the realistic
evaluation setting we proposed in this
study. We provide realistic data split in-
formation for two benchmark datasets,
Fdataset and deepDR dataset.

Data and Code Availability In this
study, we used three publicly available
drug-target affinity databases BindingDB,
ChEMBL, and PDSP, and two benchmark
DDA datasets, Fdataset, and the deepDR
dataset. In addition, a new data partition-
ing proposed in this study and codes for this
study are available at github.com/revisit-
ML-based-DR
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1. Introduction

Drug repurposing (DR), or drug reposition-
ing, refers to finding new indications (i.e., the
use of a drug for treating a particular disease)
and targets (e.g., protein receptors related
to drugs’ therapeutic effects) for approved
drugs or drugs under development. DR has
strategic advantages over de novo drug devel-
opment (Ashburn and Thor, 2004; Nosengo
et al., 2016). Due to evidence of safety pro-
files and pharmacokinetics (PK), DR offers
lower development risk and bypasses time-
consuming processes such as chemical opti-
mization or formulation development (Push-
pakom et al., 2019; Breckenridge and Ja-
cob, 2019). A recent example of successful
DR includes the repurposing of remdesivir,
an antiviral originally developed against the
Ebola virus, to treat COVID-19 (Beigel et al.,
2020).

Although DR traditionally relied on
serendipitous discovery of off-target effect,
systematic machine learning (ML)-based ap-
proaches have been widely adopted by DR
studies (Jarada et al., 2020). ML-based DR
studies take one of the two task formula-
tions: 1) predicting drug-target interaction
(DTI) or 2) predicting drug-disease associ-
ation (DDA). DR studies based on DTI as-
sumes that drugs interact with the same pro-
tein targets may exhibit the same therapeu-
tic effect. On the other hand, DR studies
based on DDA assumes that drugs of similar
characteristics (e.g., physicochemical proper-
ties) may be repurposed to the indications
of their counterparts. Discovering potential
DR signals by predicting unknown DTI has
benefited from the advance of protein struc-
ture prediction models (Jumper et al., 2021).
However, it was often pointed out that drug-
target binding affinity may not always trans-
late into therapeutic efficacy (Yu et al.,
2021).

Thus, a growing number of DR studies
formulate DR task as predicting DDA, in
which data about drug characteristics (e.g.,
molecular structure, physicochemical proper-
ties, or drug-target affinity) are used to pre-
dict “approved drug indication" (drug indi-
cations, hereafter). Drug indications, which
can be found in its product documents like
drug labels and approval documents, spec-
ify the medical condition or disease for which
the drug is intended or authorized to be used
in treatment. Recent DR studies focusing on
predicting DDA have demonstrated excellent
performance with AUROCs frequently sur-
passing 0.9 in their validation set (Luo et al.,
2016; Liu et al., 2016; Zeng et al., 2019; Cai
et al., 2021).

However, we suspect that the performance
of existing DDA prediction models for DR
is overestimated. In this study, we challenge
the conventional approach of utilizing drug
indication as a prediction target for DR.

First, we argue that there is a confounder
between drug indications and drug char-
acteristics data (Fig. 1a). To support this
claim, we show that the collection patterns
of drug characteristics data are confounded
with the Anatomical Therapeutic Chemical
(ATC) classification of drugs and that pre-
dicting ATC class could be done by using
only the data collection patterns (i.e., the
specific types of data collected by drug de-
velopers to support the approval of the drug
under development).

Second, we point out inappropriate nor-
malization in DDA datasets (Fig. 1b). We
find that the normalization of drug indica-
tions is inappropriate and lacks predeter-
mined criteria for controlling the granularity
of disease concepts in DDA datasets. When
using a random split for model evaluation,
this issue can lead to the overestimated per-
formance of DR models. To address this is-
sue, we propose a novel data partitioning
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Figure 1: Two major limitations of conventional DR task formulation as DDA prediction:
a) target indication determined in the early stage of drug development as a con-
founder between drug indications and drug characteristics data, b) inappropriate
normalization of indications in existing DDA datasets

method that enables a more realistic evalua-
tion of DR model.

2. Target Indication as a
Confounder

DDA prediction models assume that drug
indications are predictable from drug char-
acteristics data. However, we thought that
this assumption ignores the complexity in
the drug development process (Kaitin, 2010;
Kinch et al., 2014). In reality, various indus-
trial contexts such as market demands, exist-
ing treatments, and regulatory environment,
in addition to the biological properties of the
drug, contribute to determining drug indica-
tion.

Moreover, because it is unrealistic and in-
feasible from the business standpoint to in-
vestigate potential indications in all thera-

peutic areas, drug developers decide on which
indications to pursue (i.e., target indications)
from the early stage of drug development
(Fig. 1a). Thus, drug developers tend to
selectively collect drug characteristics data
needed to support the druggability within
the pre-meditated target indications (Hughes
et al., 2011; Strovel et al., 2016). While al-
most all drug indications are among target
indications, target indications may become a
strong confounder between drug indications
and drug characteristics data (and their col-
lection pattern).

3. Disease Normalization for Drug
Indication

DDA datasets contain drug indication infor-
mation extracted from drug labels. The drug
indications are normalized to disease con-
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cepts in medical ontologies such as Online
Mendelian Inheritance in Men (OMIM) and
Unified Medical Language System (UMLS)
to use standard disease concepts from diverse
disease characteristics databases. Thus, nor-
malization of drug indication (indication nor-
malization, hereafter) involves deciding how
different disease concepts will be linked or
combined to express corresponding drug in-
dications (Luo et al., 2019).

Because standard medical ontologies used
in DDA datasets are hierarchical, the op-
tions for disease normalization are either 1)
opting for higher (broad) concepts or 2) us-
ing lower (specific) concepts. For example,
noninsulin-dependent diabetes mellitus can
be normalized into a higher concept “type
2 diabetes mellitus" or by using lower con-
cepts “maturity-onset diabetes of the young"
and its subtypes (Fig. 1b). Each option has a
downside. The former can lead to information
loss, while the latter can induce an overrep-
resentation issue, where a single drug indica-
tion is normalized by several, closely related
disease concepts. We suspect that when de-
veloping DDA prediction models for DR, us-
ing lower concepts for disease normalization
should be refrained. It is especially so if the
model is developed by using random split, re-
sulting in overestimated model performance.

4. Correlation Investigation and
ATC Prediction

In this section, we first present t-SNE visu-
alization and odds ratio measurements that
we utilized to investigate the correlation be-
tween the drug indications and the collection
patterns of drug characteristics data. Next,
we present ATC prediction results using the
data collection patterns as input to demon-
strate that there is a shortcut in predicting
drug indications.

4.1. Data

We utilized drug-target affinity data from
BindingDB(Liu et al., 2007), PDSP Ki
(PDSP), ChEMBL v31 (Mendez et al., 2019)
databases to perform t-SNE visualization in
order to explore a correlation between drug
indications and the collection patterns of
drug characteristics data. Additionally, we
developed an ATC prediction model based
on the drug-target affinity data to show that
the data collection patterns could work as a
shortcut in predicting drug indications.

To standardize the data, we normalized
all drugs using the DrugBank identifier, and
the ATC classification of each drug was ex-
tracted from the corresponding ATC codes
in DrugBank1. Furthermore, we excluded the
binding affinity values for proteins related
to drug PK (i.e., absorption, distribution,
metabolism and elimination of drugs in the
body) because they would be present for all
drugs regardless of indication.

4.2. Correlation Investigation

We performed a 2D t-SNE visualization to
investigate the correlation between drug in-
dications and the collection patterns of drug
characteristic data. A binary vector was cre-
ated for each drug to indicate the presence
or the absence of affinity data for each tar-
get protein (see Appendix A.1). Thus, the di-
mension of the binary vector is the number of
target proteins in each database. We adjusted
the perplexity as the sole hyperparameter we
adjusted in t-SNE, with values of 10, 30 and
50. The results were compared to t-SNE plots
of randomly generated data which is a set
of binary drug vectors randomly constructed
to have the same overall collection frequency
(i.e., number of ’1’ elements) in the binding
affinity databases. The drugs were colored ac-
cording to their ATC class.

1. https://go.drugbank.com/
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In addition, to assess the correlation be-
tween drug ATC classes and data collection
patterns, we computed odds ratios for each
ATC class-target protein combination. We
used same binary vectors used for the t-SNE
visualization. We computed the odds ratios
by considering whether a drug belong to a
particular ATC class or not, and whether
affinity data for a specific target protein were
available for that drug. Thus, a higher odds
ratio greater indicates a stronger association
between a particular ATC class and the avail-
ability of data for a specific target protein.

The t-SNE plots showed that drugs within
the same ATC class are more likely to cluster
(Fig. 2). This finding suggests that data col-
lection patterns are more likely to be similar
for drugs in the same category.

Moreover, the odds ratios were signifi-
cantly higher in the actual binding affinity
data compared to randomly generated data
(Fig. 3). Notably, the majority of the ATC
classes and target proteins with high odds
ratios are clinically associated (Table. B.1).
These results provide evidence in support of
the proposed link between drug indications
and data collection patterns through target
indication, as presented in section 2.

4.3. ATC Prediction

We developed an ATC prediction model to
assess whether there is a shortcut in predict-
ing drug indications using drug characteris-
tics data. The input vector of each drug was
binary, indicating the presence or absence of
affinity data for target proteins like in t-SNE
visualization.

The model was trained on 869 drugs with
known ATC class from the affinity databases.
XGBoost, with the learning rate, max depth,
and number of estimators as hyperparam-
eters (see Appendix A.2), was used (Chen
and Guestrin, 2016). Moreover, since the to-
tal number of target proteins with at least

one binding affinity data was about 2500,
which is much larger than the total num-
ber of drugs, it was essential to reduce the
dimensionality of the input data. Therefore,
we considered the number of target proteins
used in ATC prediction as a hyperparame-
ter, and obtained the highest model perfor-
mance when using the top 10% of most fre-
quently collected target proteins. Model vali-
dation was done with the leave-one-out (i.e.,
jackknife) method as widely used in previous
studies (Chen et al., 2012; Cheng et al., 2017;
Wang et al., 2019).

The model achieved an accuracy of 47.3%,
lower than the existing benchmark models
(Wang et al., 2019; Cheng et al., 2017; Chen
et al., 2012) but substantially higher than a
random guess of 7% for 14 ATC classes (Ta-
ble 1). It is noteworthy that our model only
used the binary vector as input features ex-
pressing the presence or absence of affinity
data for target proteins. In contrast, NLSP-
XGB-LPA (Lumini and Nanni, 2018) and
iATC-mISF (Cheng et al., 2017) used similar-
ity scores based on drug interaction, molecule
structure, and molecular fingerprint as drug
characteristics data, while Chen et al., 2012
chemical-chemical interaction and structural
similarity.

Table 1: Leave-one-out accuracy for ATC
class prediction

Models Accuracy
NLSP-XGB-LPA 0.7808
iATC-mISF 0.6641
Chen et al., 2012 0.4938
Our model 0.4730
Random guess 0.0714
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Figure 2: t-SNE visualization of drug characteristics databases based on the data collection
pattern

5. Re-visiting Existing DR
Datasets and Models

In this section, we showed the performance
degradation of existing DDA prediction mod-
els in a realistic evaluation setting.

5.1. Data

We used two benchmark datasets for DDA
prediction: Fdataset (Gottlieb et al., 2011)
and DDA dataset collected from deepDR
study (Zeng et al., 2019). The Fdataset (i.e.,

PREDICT), which extracts drug indication
information from DailyMed and DrugBank,
contains a total of 1933 DDAs between 593
drugs and 313 diseases. The deepDR dataset
contains 6677 clinically reported DDAs be-
tween 1519 drugs and 1229 diseases. The
indications in Fdataset and the deepDR
datasets are normalized to disease concepts
in OMIM and UMLS, respectively. Addition-
ally, all drugs in both datasets are normalized
using drug identifiers of DrugBank.
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Figure 3: Distribution of odds ratios for ATC class-target protein combinations in drug
characteristics databases (Top 50)

5.2. Evaluating Normalization
Appropriateness

In this section, we evaluated whether drug
indications in DDA datasets were appropri-
ately normalized. To this end, we calculated
similarity scores between drug indications for
each drug in the datasets. We hypothesized
that the presence of drug indication pairs
with high similarity scores (i.e., ≥ 0.6 for
ICD10 and ≥ 0.8 for MeSH) indicates the
datasets are not appropriately normalized.
The threshold was heuristically determined
(see Appendix B.2). To calculate similarity
scores, we mapped drug indications to disease
concepts in the International Classification of
Diseases 10th revision (ICD10) and Medical
Subject Headings (MeSH) using automated
mapping provided by UMLS metathesaurus
and OMIM. Then, the remaining indications
were manually mapped.

Similarity scores were calculated using the
hierarchical structure of ICD10 and MeSH
and the set-level similarity score based on
the concept of information content (Sánchez
et al., 2011; Jia et al., 2019, see Appendix
A.3).

Results showed that 17.50% and 9.95% of
drug indication pairs within a single drug had
a closer match above the threshold in the
Fdataset and deepDR dataset, respectively
when measuring similarity scores based on
ICD10 (Fig. 4). In other words, the DDA
benchmark dataset currently includes several
highly similar diseases as separate drug indi-
cations for a single drug, which can lead to
overestimation when evaluating performance.
Likewise, based on MeSH, similarity scores of
22.50% and 15.90% of drug indication pairs
were above the threshold in Fdataset and the
deepDR dataset, respectively. These results
imply that close disease concepts were fre-
quently used to express drug indications for
a single drug in Fdataset and the deepDR
datasets.

5.3. Re-evaluating Existing DR
Models

In this section, we revisited three represen-
tative DDA prediction models in a more re-
alistic evaluation setting. We used deepDR
(Zeng et al., 2019), HNET-DNN (Liu et al.,
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Figure 4: Distribution of similarity scores between drug indication pairs for each drug (Left:
ICD10, right: MeSH)

2020), and TP-NRWRH (Liu et al., 2016))
models.

We categorized the drug indications into
“original" and “expanded." We separated the
original and expanded indications by per-
forming agglomerative clustering based on
the similarity scores (see Appendix A.3).
Drug indications in the larger cluster were
categorized as original and the other as ex-
panded. However, when a similarity score be-
tween larger and smaller clusters was above a
pre-determined threshold (0.1 for ICD10, 0.3
for MeSH), drug indications in the smaller
cluster were classified as original. We con-
ducted an iterative search for thresholds
that divide original and expanded indications
across the distinct therapeutic area.

We set the number of clusters, disease on-
tology used to measure similarity, and the
linkage criterion as clustering hyperparam-
eters (see Appendix A.3). Then, we evalu-
ated the performance of existing DR mod-
els for every combination of hyperparame-
ters in three different scenarios: scenario 1)
train and test through random split; scenario
2) train and test on original indications; and
scenario 3) train on original and test on ex-
panded indications. The number of samples
in the train and test set was kept constant.

The results revealed consistent perfor-
mance degradation of the DR model in sce-
nario 3 (Tables 2 and B.6) when comparing
the performance in scenarios 1 and 2. Con-
versely, scenario 2, showed a slight improve-
ment compared to scenario 1. We believe this
is because more similar drug indications were
contained in train and test datasets.

We propose scenario 3 as the most appro-
priate and realistic data partitioning method
for evaluating DR models because finding
drug indications outside of an initial thera-
peutic area is a genuine goal of generating DR
signals through ML models. In addition, we
expect that the problem of containing highly
similar drug indications in both train and test
datasets would be mitigated in scenario 3.

6. Related Work

6.1. DDA Prediction Models

Recent studies have focused to deal with two
major huddles to improve the performance
DDA prediction models: 1) reducing the di-
mensionality of drug features through unsu-
pervised learning methods and 2) incorpo-
rating drug and disease characteristics data
of different modalities from diverse databases
(Luo et al., 2021; Liang et al., 2017). The di-
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Table 2: AUC performances of existing DR models in different evaluation scenarios

Scenario 1 Scenario 2 Scenario 3
deepDR
ICD10 0.907 ± 0.018 0.915 ± 0.016 (▲0.007) 0.840 ± 0.012 (▼0.068)
MeSH 0.926 ± 0.016 0.929 ± 0.014 (▲0.003) 0.756 ± 0.035 (▼0.170)

HNET-DNN
ICD10 0.926 ± 0.025 0.927 ± 0.025 (▲0.002) 0.838 ± 0.024 (▼0.088)
MeSH 0.927 ± 0.017 0.934 ± 0.027 (▲0.007) 0.866 ± 0.024 (▼0.060)

TP-NRWRH
ICD10 0.942 ± 0.022 0.942 ± 0.012 (▲0.000) 0.837 ± 0.008 (▼0.105)
MeSH 0.927 ± 0.019 0.945 ± 0.026 (▲0.018) 0.750 ± 0.010 (▼0.177)

mension reduction is important in DDA pre-
diction because sample size of drug indica-
tion data is limited compared to the high-
dimensional drug characteristics data.

Indeed, autoencoder (Zeng et al., 2019;
Jiang et al., 2020) and similarity networks
(Liu et al., 2020; Jarada et al., 2021) have
been widely used to obtain the dense features
for drug and disease while utilizing character-
istics data of multiple modalities. In addition,
matrix factorization (Luo et al., 2018; Jarada
et al., 2021) and matrix completion methods
(Zhang et al., 2020) have been used to com-
bine drug-drug and disease-disease networks
or integrate other types of interaction data,
such as drug-target and disease-gene interac-
tions.

6.2. Shortcut Learning

Shortcut learning refers to a phenomenon in
which a ML model learns a spurious corre-
lation that does not generalize to real-world
scenarios, resulting in poor performance out-
side the benchmark dataset (Geirhos et al.,
2020). This has been observed in various
tasks across vision and natural language pro-
cessing, including image classification (Beery
et al., 2018; Rosenfeld et al., 2018), med-
ical imaging (Zech et al., 2018b; DeGrave
et al., 2021), question answering (Jia and

Liang, 2017) and argument reasoning (Niven
and Kao, 2019). Unlike overfitting, shortcut
learning exhibits relatively high performance
on test data drawn from the same distri-
bution as the train data, but demonstrates
poor performance on out-of-distribution data
(Geirhos et al., 2020).

Our study was motivated by a previous
study that found the use of confounding vari-
ables as shortcut features in medical settings
reduced the generalizability of model perfor-
mance (Zech et al., 2018a). In this study, we
tested the hypothesis that there is a high risk
of problems caused by shortcut learning in
DR settings, where the approved indication
of a drug is determined not only by its biolog-
ical characteristics but also by social factors,
which act as confounders.

7. Discussion

In this study, we found that the performance
of current DDA prediction models was sig-
nificantly reduced when evaluated in a more
realistic evaluation setting following the data
partitioning method we proposed. We offer
two possible explanations for our finding.

First, there may be a spurious correlation
between drug indications and the drug char-
acteristics data, possibly through the target
indications of a drug and data collection pat-
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tern. Of note, we found that the collection
patterns of drug characteristics data were
correlated with the drug’s ATC class through
t-SNE visualization and that the ATC class
could be predicted based on the data col-
lection patterns. This correlation could re-
sult in the DR models relying on shortcuts
rather than drug characteristics when pre-
dicting drug indications. When DR models
rely on shortcuts, the DR models’ perfor-
mance will decrease in an evaluation setting
that is more relevant to DR, where the mod-
els often need to predict new indications in a
different therapeutic area.

Second, inappropriate normalization of
drug indications to disease concepts in ex-
isting DDA datasets may have led to over-
estimated prediction performance. We found
that in the benchmark DDA datasets, similar
disease concepts were used to express drug
indications of a drug (section 5.2). In this
situation, the commonly used random split
method for model evaluation is not appro-
priate because the presence of highly similar
disease concepts within both the train and
test sets increases the risk of overfitting and
reduces the practical value of DR models.

Thus, we suggest that future DR models be
trained and tested in a more realistic evalua-
tion setting, as proposed in this study. In ad-
dition, we recommend establishing guidelines
for creating DDA datasets, with attention to
the granularity of disease concepts used to
normalize drug indications.

In addition, to circumvent the spurious
correlation due to data collection pattern,
we propose that future DR studies priori-
tize using the drug characteristics data in
which missingness is low. In the case of high-
dimensional drug characteristics data with
substantial missingness, it is advisable to en-
sure that the missing pattern is not asso-
ciated with the drug indications to prevent
shortcut learning.

We originally aimed to define ‘original in-
dications’ as ‘the group of indications for
which marketing approval was first granted’,
and ‘expanded indications’ as ‘subsequently
granted approved indications that are clini-
cally distinct from the original indications’.
This was intended to replicate the real-world
DR process, where drug developers should
use information on already approved drug
indications to predict new indications for
drug approval. However, due to challenges
in collecting approval dates for drug indi-
cations and disease normalization issues, we
instead classified approved indications into
major and minor groups based on disease
similarity scores and clustering techniques.
Despite the deviation from our initial plan,
we still referred to these groups as original
and expanded indications. We would like to
note that the most realistic approach would
involve dividing the indication data based
on their approval dates, which we hope to
achieve in future DDA datasets.

In fact, the difficulty in normalizing drug
indications to disease concepts is due to the
fact that a drug indication may not cor-
respond to a single disease. Drug indica-
tions may contain information about the pa-
tient’s condition, such as non-responsiveness
to other medications, contraindications, or
severity of the disease (FDA, 2018). In other
words, drug indications provide information
about the relevant clinical context in which
the drug is being used. This fact makes
it complex to map drug indications to dis-
ease concepts provided by medical ontologies,
leading to irregularities in indication normal-
ization. To avoid this issue, a novel approach
to formulating DR problems, such as predict-
ing investigational conditions in clinical tri-
als (Brown and Patel, 2017) or recommend-
ing eligibility criteria for these clinical stud-
ies, could be considered.
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Appendix A. Supplementary Methods

We elaborate methodologies for 1) obtaining a binary vector expressing the presence or
the absence of drug characteristics data for t-SNE visualization and ATC prediction and
2) splitting drug indications in DDA datasets based on similarity scores in this appendix
section.

A.1. Obtaining binary vectors for t-SNE visualization and ATC prediction

In this section, we present a detailed methodology for obtaining binary vectors that indicate
the presence or the absence of drug-target affinity data in three databases used for t-SNE
visualization and ATC prediction (Fig. A1).

Figure A1: Visualization of obtaining binary vectors representing the collection patterns of
drug-target affinity data for t-SNE visualization and ATC prediction

A.2. Hyperparamter settings for XGBoost model predicting drug’s ATC class

We performed a grid search to find the best combination of hyperparameter settings for
the XGBoost model that predict drugs’ ATC class. The tuned hyperparameters included
learning rate (range of [0.1, 0.05, 0.01]), max depth (range of [2, 6, 8]), and the number of
estimators (range of [10, 100, 1000]).
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Figure A2: Visualization of splitting drug indications in DDA datasets based on similarity
scores

A.3. Splitting drug indications in DDA datasets based on similarity scores

We used the set-level similarity proposed by Jia et al., 2019 as the similarity score for
splitting drug indications into original and expanded as follows:

InformationContent: IC(d) = log
|leaves(d)|

|subsumers(d)|+1

|leaves(r)+1 (1)

CodeLevelSimilarity: CS(da, db) = 1− 2IC(dc)
IC(da)+IC(db)

(2)

SetLevelSimilarity: SS(Da,Db) =

∑
da∈Da

mindb∈Db
CS(d

(i)
a ,d

(j)
b )+

∑
db∈Db

minda∈Da CS(d
(i)
a ,d

(j)
b )

||Da||+||Db|| (3)

where d denotes a single disease concept in ID10 or MeSH ontologies, r is the root con-
cept in each medical ontology, dc is the least common ancestor of disease concept da, and
db. Da and Db are the sets of disease concepts for expressing a single drug indication. In
addition, leaves(d) denotes the leaf nodes that are a descendant of disease concept d, and
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subsumers(d) is the ancestors of disease concept d. On the other hand, we used MeSH tree
numbers to calculate the similarity score in MeSH, because the unique identifiers in MeSH
do not have a tree structure.

We performed splitting drug indications into original and expanded in all the combi-
nations of clustering hyperparameters (Fig. A2), such as the number of clusters (2 or 3),
disease ontology used to measure similarity (ICD10 or MeSH), and linkage criterion in the
agglomerative clustering analysis (complete or average).

Appendix B. Supplementary results

B.1. Lists of ATC classes and target proteins with the highest odds ratios

In this section, we present lists of ATC classes and target proteins with the highest odds
ratio measured in section 4.2 (Table B.1). Table B.1 highlights that most of the therapeutic
area associated with the ATC classes and target proteins with high odds ratios are clinically
associated. These results provide further evidence for the proposed connection between drug
indications and data collection patterns discussed in section 2.

B.2. Lists of drug indication pairs of similarity scores above the
pre-determined thresholds

In this section, we present lists of drug indication pairs with similarity scores above the
pre-determined threshold (Tables B.2, B.3, B.4, and B.5). We caution against dividing these
similar disease concepts into train and test datasets, which are used to normalize drug
indications, as this can lead to overestimated DR performance.

B.3. Re-evaluation of existing DR models in three evaluation scenarios

In this section, we present the performances of three representative DR models in different
evaluation settings under all the combinations of clustering hyperparameters (Table B.6).
The degradation of performances in setting 3 was consistent in all the data split settings.
The performances of DR models were lower when using the number of clusters as 2 rather
than 3. This is because the size of the train dataset (i.e., the number of original indications
- the number of expanded indications) is smaller when setting the number of clusters as 2.
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Table B.1: Top 10 ATC classes and target proteins with the highest odds ratio and their
clinical association

Odds ratio ATC class Target protein Clinical association

26.4 respiratory system activin receptor-like
kinase 3 (ALK3 or
BMPR1a)

ALK3 is associated with develop-
ment of respiratory disorder, includ-
ing pulmonary arterial hypertension
(PAH) and chronic obstructive dis-
ease (COPD) (Verhamme et al., 2015;
Hoeper et al., 2023).

17.9 respiratory system adrenergic receptor
alpha-2 (ADRA2)

ADRA2 is a target protein of nasal
preparation drugs such as oxymeta-
zoline and xylometazoline (Haenisch
et al., 2010).

11.7 respiratory system alpha-glucosidase not clear

10.6 antiparasitic prod-
ucts, insecticides
and repellents

adrenergic alpha Studies have suggested that adrenergic
alpha agonists such as clonidine may
inhibit parasitic growth and replica-
tion (Konrad et al., 2013; Porto et al.,
2021).

9.8 nervous system alpha-2c adrenergic re-
ceptor (ADRA2C)

ADRA2C is a target protein of drugs
for treating schizophrenia, bipolar dis-
order, and major depressive disorder
such as quetiapine and risperidone
(Uys et al., 2017).

8.8 respiratory system atp-binding cassette
sub-family g member 2
(ABCG2 or BRCP)

ABCG2 is an efflux transporter pro-
tein important to transport toxic
compounds across cell membranes in
the respiratory system. (Leslie et al.,
2005).

8.1 respiratory system aurora kinase a (AU-
RKA)

not clear

7.9 respiratory system adrenergic alpha Adrenergic alpha is a target protein
of nasal decogestants such as phenyle-
phrine and pseudoephedrine (Horak
et al., 2009).

7.5 systemic hormonal
preparations, excl.
sex hormones and
insulins

alpha-1d adrenergic re-
ceptor (ADRA1D)

not clear

6.9 antiparasitic prod-
ucts, insecticides
and repellents

3’,5’-cyclic-AMP phos-
phodiesterase (cAMP-
specific PDE)

The potential of PfPDE1, a cAMP-
specific PDE from the human malaria
parasite Plasmodium falciparum, as a
target protein for malaria treatment
has been studied. (Yuasa et al., 2005).
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Table B.2: Drug indication pairs in Fdataset of which similarity based on ICD10 was above
a pre-determined threshold (0.6)

UMLS Code 1 Disease Name 1 UMLS Code 2 Disease Name 2 Similarities
C0014859 esophageal cancer

(Esophageal Neoplasms)
C0027651 Cancer (Neoplasm) 0.600938012

C0023418 LEUKAEMIA (leukemia) C0023448 Lymphoblastic leukaemia
NOS (Lymphoid leukemia)

0.604412021

C0036202 Sarcoidosis C1840264 IMMUNE SUPPRESSION 0.611315305
C0011560 Amyloid (Amyloid deposi-

tion)
C0085681 Hyperphosphatemia 0.615445301

C0576224 Small feet (Small foot) C1300226 MOTH-EATEN SKELE-
TAL DYSPLASIA (Green-
berg dysplasia)

0.619091281

C0003811 cardiac arrhythmia C1560249 CARDIAC ARRHYTH-
MIA

0.633847941

C0011860 Diabetes Mellitus, Non-
Insulin-Dependent

C0011860 NIDDM (Diabetes
Mellitus, Non-Insulin-
Dependent)

0.633847941

C0005744 Blepharophimosis C0005745 Ptosis (Blepharoptosis) 0.638848603
C0270327 Nocturnal Enuresis (Bed-

wetting)
C1833268 ENUR2 (ENURESIS,

NOCTURNAL, 2)
0.666666667

C0042875 Vitamin E Deficiency C1848533 VED (AVED) 0.666666667

Table B.3: Drug indication pairs in Fdataset of which similarity based on MeSH was above
a pre-determined threshold (0.8)

UMLS Code 1 Disease Name 1 UMLS Code 2 Disease Name 2 Similarities
C0014550 Epilepsy, Myoclonic

(Epilepsies, Myoclonic)
C0751785 Unverricht (Unverricht-

Lundborg Syndrome)
0.801462118

C0022350 DJS (Jaundice, Chronic Id-
iopathic)

C1855980 HYPERBILIRUBINEMIA,
ROTOR TYPE

0.802169339

C0023448 Lymphoblastic leukaemia
NOS (Lymphoid leukemia)

C2063390 acute lymphoma 0.803133644

C0027497 Nausea C1704628 Hyperthermia 0.803273592
C0032460 PCOS1 (Polycystic Ovary

Syndrome)
C0085215 PREMATURE OVARIAN

FAILURE 1 (Ovarian Fail-
ure, Premature)

0.804119097

C0020437 HYPERCALCAEMIA
(Hypercalcemia)

C0270685 Cerebral calcification 0.808016006

C0038454 Stroke (Cerebrovascular
accident)

C0852949 Arteriopathy (Arterio-
pathic disease)

0.810390489

C0007758 Cerebellar Ataxia C0027066 Myoclonus 0.812515766
C0398701 Immunoglobulin G2 defi-

ciency
C1840264 IMMUNE SUPPRESSION 0.816091392

C0009917 Contractures (Contrac-
ture)

C0026848 Myopathy 0.819916169
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Table B.4: Drug indication pairs in the deepDR dataset of which similarity based on ICD10
was above a pre-determined threshold (0.6)

UMLS Code 1 Disease Name 1 UMLS Code 2 Disease Name 2 Similarities
C0004771 Bartonella Infections C0014836 Escherichia coli Infections 0.600269
C0010043 Corneal Ulcer C0022073 Iridocyclitis 0.601288
C0009088 Cluster Headache C0393735 Headache Disorders 0.601349
C0085437 Meningitis, Bacterial C0456107 Neonatal meningitis 0.604572
C0346976 Secondary malignant neo-

plasm of pancreas
C1282500 Metastasis from malignant

tumor of colon
0.606009

C0039614 Tetanus C1318973 Staphylococcus aureus in-
fection

0.606237

C1261256 Pelvic inflammatory dis-
ease due to Mycoplasma
hominis

C2733595 Pulmonary Mycobac-
terium avium complex
infection

0.606237

C0153246 Tinea manus C2349994 Tinea barbae 0.608611
C0020598 Hypocalcemia C1704431 Disorder of electrolytes 0.615445
C0018099 Gout C0268108 Chronic gouty arthritis 0.618304

Table B.5: Drug indication pairs in the deepDR dataset of which similarity based on MeSH
was above a pre-determined threshold (0.8)

UMLS Code 1 Disease Name 1 UMLS Code 2 Disease Name 2 Similarities
C0011616 Contact Dermatitis C0036508 Seborrheic dermatitis 0.800242518
C0520777 Chlamydial pelvic inflam-

matory disease
C1261256 Pelvic inflammatory dis-

ease due to Mycoplasma
hominis

0.800252406

C0085438 Meningitis, Fungal C0153256 Candidal meningitis 0.800669954
C0004238 Atrial Fibrillation C0030590 Paroxysmal supraventricu-

lar tachycardia
0.800983448

C0022602 Actinic keratosis C0043037 Common wart 0.802293872
C0020461 Hyperkalemia C0020598 Hypocalcemia 0.802801151
C0030920 Peptic Ulcer C0043515 Zollinger-Ellison syndrome 0.80563138
C0027424 Nasal congestion (finding) C0035460 Rhinitis, Vasomotor 0.806782936
C0006060 Boutonneuse Fever C0035021 Relapsing Fever 0.807744887
C0014544 Epilepsy C0238111 Lennox-Gastaut syndrome 0.815127811
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Table B.6: AUC performances of existing DR models in different evaluation settings under
diverse clustering settings.

Cluster 2 Cluster 3

Complete Scenario 1 Scenario 2 Scenario 3 Scenario 1 Scenario 2 Scenario 3

deepDR
ICD10 0.922 0.916 0.840 0.920 0.914 0.900
MeSH 0.925 0.929 0.790 0.934 0.948 0.812

HNET-DNN
ICD10 0.931 0.937 0.798 0.927 0.947 0.873
MeSH 0.924 0.907 0.884 0.888 0.932 0.836

TP-NRWRH
ICD10 0.939 0.930 0.841 0.905 0.950 0.825
MeSH 0.911 0.945 0.750 0.926 0.940 0.833

Cluster 2 Cluster 3

Average Scenario 1 Scenario 2 Scenario 3 Scenario 1 Scenario 2 Scenario 3

deepDR
ICD10 0.884 0.905 0.849 0.944 0.904 0.872
MeSH 0.941 0.935 0.739 0.912 0.928 0.789

HNET-DNN
ICD10 0.917 0.937 0.837 0.931 0.934 0.849
MeSH 0.924 0.918 0.808 0.949 0.968 0.903

TP-NRWRH
ICD10 0.942 0.931 0.660 0.924 0.938 0.843
MeSH 0.921 0.942 0.749 0.931 0.912 0.815
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