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Abstract
Electrodermal activity (EDA) is a biosignal
that contains valuable information for moni-
toring health conditions related to sympathetic
nervous system activity. Analyzing ambulatory
EDA data is challenging because EDA measure-
ments tend to be noisy and sparsely labeled.
To address this problem, we present the first
study of contrastive learning that examines ap-
proaches that are tailored to the EDA signal.
We present a novel set of data augmentations
that are tailored to EDA, and use them to gen-
erate positive examples for unsupervised con-
trastive learning. We evaluate our proposed
approach on the downstream task of stress de-
tection. We find that it outperforms baselines
when used both for fine-tuning and for trans-
fer learning, especially in regimes of high label
sparsity. We verify that our novel EDA-specific
augmentations add considerable value beyond
those considered in prior work through a set of
ablation experiments.

Data and Code Availability This study uses
the WESAD (Schmidt et al., 2018) and Ver-
BIO datasets (Yadav et al., 2020), which are
both publicly available. Code is available at:
https://github.com/kmatton/contrastive-learning-
for-eda.

1. Introduction

Electrodermal activity (EDA) measures electrical
properties of the skin. It is most commonly recorded
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using a measure of electrical conductance on the sur-
face of the skin (Boucsein, 2012; Tronstad et al.,
2022). Conductance is affected by the sympathetic
nervous system, and thus changes in EDA are rep-
resentative of changes in psychological or physiolog-
ical arousal (Boucsein, 2012; Dawson et al., 2017).
EDA can be measured through wrist-worn smart-
watches, which makes it a valuable signal for re-
mote health monitoring. A leading application of
EDA is stress estimation and numerous lab studies
have validated its association with stress (Sharma
and Gedeon, 2012; Dawson et al., 2017; Giannakakis
et al., 2019; Can et al., 2019). Recent longitudinal
studies have incorporated wrist-worn EDA measure-
ments to deepen the understanding of how stress me-
diates conditions such as suicidal thinking (Kleiman
et al., 2021), substance-use disorder (Carreiro et al.,
2020), and post-traumatic stress disorder (McLean
et al., 2020). Beyond stress, EDA is an important
signal for remote monitoring of other conditions and
constructs such as seizures, sleep, pain and depres-
sion (Johnson and Picard, 2020; Bhatkar et al., 2022;
Ortega et al., 2022; Sarchiapone et al., 2018; Werner
et al., 2022).

There are two significant limitations to the anal-
ysis of EDA data collected in ambulatory settings.
First, identifying most EDA-related outcomes re-
lies on self-reported patient labels (e.g., psycholog-
ical stress level) or clinical labels (e.g., a diagnosis).
Therefore, EDA datasets are usually sparsely labeled;
there is a natural upper bound on the number of la-
bels one can collect relative to the number of EDA
measurements one can record (ambulatory EDA runs
at sample rates ≥4Hz). Second, wrist-worn EDA
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measurements are noisy (i.e., they contain artifacts)
(Posada-Quintero and Chon, 2020; Tronstad et al.,
2022). This noise often results from physical disrup-
tions of the positioning of the watch, e.g., when the
electrodes do not make consistent contact with the
skin, or from environmental factors such as tempera-
ture and humidity.

Unsupervised contrastive learning can help to over-
come these challenges. This is a self-supervised
method for learning data representations from un-
labeled data. It works by: (1) generating positive
pairs of examples (examples that should have sim-
ilar representations), and (2) training a model to
push the representations of positive pairs of examples
together and other pairs of examples (i.e., negative
pairs) apart. Generating positive pairs is typically
done by applying two different data augmentations
to the same example (e.g., two different rotations to
the same image). The choice of data augmentations
(DA) has a large effect on the quality of the represen-
tations learned (Tian et al., 2020): it is important to
select DAs that are both challenging (i.e., it is non-
trivial to distinguish between positive and negative
examples) and label-preserving.

Recently, there have been a number of studies
that examine unsupervised contrastive learning ap-
plied to biosignal data, including ECG and EEG sig-
nals (Kiyasseh et al., 2021; Rabbani and Khan, 2022;
Wagh et al., 2021). However, to our knowledge there
is no work that examines approaches that are tai-
lored specifically to the EDA signal. The EDA signal
presents different challenges than the biosignals for
which contrastive learning is well-studied. In par-
ticular, it is not quasi-periodic in the same sense as
signals like ECG, which have well-defined repeating
patterns over time. Further, it is subject to specific
sources of noise related to the nature of the signal and
where it is measured. These differences suggest that
contrastive learning approaches developed for other
signals might not generalize directly to EDA.

In this paper, we provide the first study of con-
trastive learning that focuses on the EDA signal. We
focus on the choice of DAs used to generate positive
examples. We develop a novel set of DAs that are de-
signed to account for the particular properties of the
EDA signal. We perform experiments on two data
sets. WESAD (Schmidt et al., 2018) contains data
from 15 subjects measured under laboratory condi-
tions. VerBIO (Yadav et al., 2020) contains data from
55 subjects performing tasks related to public speak-
ing. We find that our approach outperforms baselines

on the downstream task of stress detection, yield-
ing a ≈16% accuracy improvement on WESAD and
a ≈6% improvement on VerBIO compared to fully-
supervised learning in a setting of high label sparsity
(1% of the data is labeled). Through a set of ab-
lation experiments, we verify that our EDA-specific
augmentations add considerable value beyond those
considered in prior work on augmenting bio-signals.
We also show that our approach can be used to gen-
eralize across datasets; it consistently beats baselines
when performing transfer learning from one dataset
to the other.

2. Related Work

A number of existing works have examined machine
learning methods for stress detection from bio-signals
(Gedam and Paul, 2021). Many of these studies com-
pare the performance of supervised learning methods,
including linear regression, SVMs, random forests,
KNNs, and neural networks, working with either
hand-crafted feature sets or the raw biosignals di-
rectly (Garg et al., 2021; Bobade and Vani, 2020;
Schmidt et al., 2018). While supervised learning is
well-studied in this space, there is little work on self-
supervised learning.

Self-supervised learning using contrastive learn-
ing techniques such as Contrastive Predictive Cod-
ing, SimCLR and Wav2Vec has enabled significant
progress on learning from noisy and sparsely labeled
datasets in domains such as computer vision and
speech recognition (Oord et al., 2018; Chen et al.,
2020; Baevski et al., 2020; Jaiswal et al., 2020).
More recently, contrastive methods have also been
applied in health domains, for example to electrocar-
diogram (ECG) data for cardiac arrhythmia detec-
tion (Kiyasseh et al., 2021; Cheng et al., 2020) and
stress detection (Rabbani and Khan, 2022), and to
electroencephalogram (EEG) data for e.g., sleep stage
scoring and eye state classification (open vs. closed)
(Mohsenvand et al., 2020; Wagh et al., 2021; Cheng
et al., 2020). Most relevant to our work, (Rabbani
and Khan, 2022) explore the use of self-supervised
contrastive learning for stress detection from ECG
data. They find that this approach outperforms non-
contrastive baselines on two stress datasets, including
WESAD. Multimodal contrastive learning methods
that use the signals from more than one sensor in a
wearable have also been considered in studies to pre-
dict generic health and demographic characteristics
such as VO2 max and age (Spathis et al., 2021).
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Regarding contrastive learning methods for elec-
trodermal activity (EDA), EDA has been included
as a modality in multimodal contrastive learning sys-
tems that apply standard transforms across all signals
generically (i.e., using transforms that are agnostic to
the nature of the sensor signals) (Dissanayake et al.,
2022; Saeed et al., 2020). However, to the best of our
knowledge, no previous work has focused explicitly
on EDA in a way that carefully considers the na-
ture of the EDA signal – which is non-periodic, non-
stationary, and subject to specific sources of noise.

3. Methods

3.1. Contrastive Learning Task Formulation

In line with SimCLR (Chen et al., 2020), we for-
mulate a self-supervised contrastive learning set up
where we train a model to distinguish positive exam-
ples of the input signal from negative examples.
We segment the EDA signal into windows of a fixed

length (|xi| = M samples). We then generate trans-
formed versions of each segment x̃i = t(xi) by ap-
plying a transform t that is randomly sampled from
a set of data augmentations T (which we discuss in
Section 4). We define positive examples as those that
have the same base segment (e.g., x̃i = t(xi) and
x̃′
i = t′(xi) where t, t′ ∼ T .), and negative exam-

ples as those that have different base segments (i.e.,
x̃j = t(xj), ∀j : j ̸= i).

We use a neural network model that maps from
augmented samples x̃i ∈ Rd to low-dimensional em-
beddings zi ∈ Rk, with k ≪ d. To train the model,
we sample a random mini-batch of N examples. For
each sample, xi, we generate two augmented versions,
x̃i = t(xi) and x̃′

i = t′(xi). We use the InfoNCE loss
(Oord et al., 2018; Chen et al., 2020) to optimize
model parameters during pre-training. For a postive
pair of examples (x̃i, x̃

′
i) this loss is defined as:

ℓi,i′ = −log
exp(sim(zi, z

′
i)/τ)∑N

j=1 exp(sim(zi, z′j)/τ)
(1)

where sim(zi, z
′
j) is the cosine similarity between em-

beddings and τ is a temperature parameter. The loss
for the batch is computed as L = 1

2N

∑N
i=1[ℓi,i′+ℓi′,i].

3.2. Model Architecture

Our model architecture consists of an encoder, f(·),
followed by a linear projection head, g(·). The en-
coder produces lower-dimensional embeddings of the

input signal hi = f(x̃i), which can be transferred to
downstream prediction tasks.

We implement the encoder using a 1-D convo-
lutional neural network (CNN), consisting of three
convolutional blocks each with batch normalization,
dropout and ReLU activation, followed by a single
linear layer. This convolutional architecture was cho-
sen as it is generally found to be a strong baseline for
time-series classification while also being relatively
less complex to train than e.g., recurrent architec-
tures such as LSTM (Wang et al., 2017; Bai et al.,
2018).

The projection head g further reduces the dimen-
sionality of the input, producing zi = g(hi). We im-
plement this as a single linear layer. Further details
on the model architecture and hyperparameters can
be found in Appendix A.

4. Data Augmentations

We consider two sets of data augmentations (DA): (1)
a comprehensive set of generic time-series augmenta-
tions, and (2) a set of augmentations we developed
that are tailored to properties of the EDA signal.
Figure 1 contains visualizations of these augmenta-
tions. We also provide our code with this paper to
demonstrate how these DAs are implemented.

Most of the DAs have associated parameters that
control how much they perturb the signal. In our
main experiments, we use stochastic versions of each
DA, where the parameters for the augmentation are
randomly sampled from a fixed range of values. We
selected these parameter ranges based on both prior
knowledge about EDA properties and preliminary ex-
periments on the WESAD training data. In these
preliminary experiments, we used deterministic ver-
sions of each DA and swept over broad ranges of their
parameter values. We then selected the optimal range
of parameters based on their validation set accuracy.

This parameter selection approach helps us to
select DAs that are both challenging and label-
preserving, the two key properties needed for DAs
that are used in contrastive learning (Tian et al.,
2020). Details on the experiments to select the opti-
mal parameter ranges are in Appendix B. From this,
we see that several DAs are very sensitive to the
strength of augmentation, and hence parameter selec-
tion is important to ensure DAs are well-calibrated.
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Figure 1: Example EDA segment with each data augmentation applied. Note: the range of the y-axis varies
between subplots. EDA-Specific augmentations are in orange and others are in blue.

4.1. EDA-Specific Data Augmentations

4.1.1. Isolating & Altering Frequency
Components of the Signal

EDA signals are characterized by two components:
(1) a slow-varying tonic component, which repre-
sents baseline skin conductance level, and (2) a faster-
varying phasic component, which represents abrupt
changes in skin conductance that occur in response
to external stimuli (Boucsein, 2012; Posada-Quintero
and Chon, 2020). Both components can be informa-
tive of stress: tonic activity varies depending on an
individual’s psychological state, whereas phasic ac-
tivity changes in the presence of external stressors
(Turpin and Grandfield, 2007). In the datasets we
consider, stress is induced via external conditions,
and hence we expect that the phasic component is
particularly relevant. The phasic component can be
approximately extracted by applying a high-pass fil-
ter with a cutoff frequency of 0.05 Hz. The tonic
component can be extracted with a low-pass filter
also with cutoff at 0.05 Hz (Braithwaite et al., 2013).
In the filtering-based augmentations described in this
section, we consider parameter settings that corre-
spond to tonic and phasic component extraction.

Our DAs are also informed by research aimed at
identifying the frequency bands of EDA that are the
most informative of sympathetic nervous system ac-
tivity. Posada-Quintero et al. (2016) conducted a
study in which subjects were exposed to a series of
sympathetic-tone inducing stimuli. They found that
frequencies in the range 0.08-0.24 Hz were the most
responsive. Accordingly, we design augmentations
that are aimed at isolating the information rich com-

ponents of the signal and altering the parts of the
signal where relevant information is not expected:

• Low-Pass Filter: We apply a filter that passes
only signals with a lower frequency than a chosen
cutoff f ∈ [0.25, 1.0]1.

• High-Pass Filter: We apply a filter that passes
only signals with a higher frequency than a cho-
sen cutoff f ∈ [0.05, 0.25].

• Band-Pass Filter: We apply a filter that passes
only a specific frequency band f ∈ [0.05, 0.25].

• Band-Stop Filter: We apply a filter that rejects
/ attenuates a specific frequency band, while let-
ting all others pass. We sample from reject fre-
quencies: f ∈ [0.75, 1].

• High Frequency Noise: We add noise to the high
frequency bands of the signal. To do this, we
map the signal to the frequency-domain using
an FFT, and add Gaussian noise to all frequency
bands ≥ 1Hz, before running an iFFT to return
the signal to the time-domain. We sample from
σ ∈ [0, 0.5] for the noise distribution.

4.1.2. Simulating Motion Artifacts

EDA data, even when collected in lab settings, are
prone to artifacts, i.e., changes in the signal that are
not a result of the electrodermal system (Boucsein,
2012; Taylor et al., 2015). Because artifacts do not re-
flect sympathetic nervous system activity, our model

1. Note: All parameter ranges reported in these subsections
are those selected from the initial parameter selection ex-
periments described in Appendix B.
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predictions should be invariant to them. To achieve
this, we simulate adding two common types of motion
artifacts. We designed these artifacts using mecha-
nistic understanding of how physical disruptions af-
fect the EDA measurement (Boucsein, 2012; Kleckner
et al., 2018), as well as by visually comparing our sim-
ulated artifacts to authentic EDA artifacts that were
labeled by experts in a large dataset (> 100 hours of
data) (Gashi et al., 2020):

• Jumping / Motion Artifact: We add simulated
motion artifacts to the signal, i.e., artifacts that
arise when the placement of wearable sensors is
altered by movement. Motion artifacts often ap-
pear as abrupt drops or rises in the signal (a
drop or rise of ≥ 0.1µS/sec is a common heuris-
tic to identify them). We allow up to two jump-
ing artifacts to occur within a 60s signal win-
dow, and we sample the size of the jump from
jump ∈ [0.01, 0.2]µS. We allow each artifact to
occur for a duration of t ∈ [0.5, 3] seconds, where
the jump may cause either a drop or a rise.

• Loose Sensor Artifact: We simulate the addition
of artifacts that occur when sensor electrodes
lose contact with the skin. This typically re-
sults in the signal values dropping to near-zero.
We implement this by sampling a length of time
that the sensor is loose for from t ∈ [5, 20] sec-
onds. We allow a smooth drop of the signal over
a time of ≤ 5 seconds, as well as a smooth recov-
ery over a time of ≤ 5 seconds, since this creates
a more realistic looking loose sensor artifact rela-
tive to those documented in (Gashi et al., 2020).
We also superimpose the absolute residual of the
original signal minus its mean amplitude onto
the signal in the window where the artifact oc-
curs. This ensures that the signal is non-zero
during this time, which again makes the artifact
appear more authentic.

4.1.3. Simulating Thermoregulation
Artifacts

Temperature and humidity affect the EDA signal
because they influence the extent to which some-
one sweats through the process of thermoregulation
(Bari et al., 2018; Qasim et al., 2022; Gashi et al.,
2020; Boucsein, 2012). Temperature and humidity
can change while EDA is being recorded, yet they
are rarely directly related to a change in someone’s
level of psychological stress. We seek to learn rep-

resentations that are invariant to these thermoregu-
lation artifacts. To this end, we introduce two aug-
mentations based on controlled EDA studies where
participants are subjected to stress inducing tasks at
different humidities (Bari et al., 2018) and temper-
atures (Qasim et al., 2022). These studies find that
the slowly-changing tonic component of EDA is sig-
nificantly increased by both increasing humidity and
increasing temperature. In contrast, they find that
the more rapidly-changing phasic component of EDA
is not significantly changed by increases in humid-
ity or temperature (though there is a non-significant
increasing trend).

• Tonic Amplitude Constant Scale: We use But-
terworth lowpass and highpass filters at 0.05Hz
to extract the tonic and phasic components of
the original signal. We then apply a constant
scaling factor to the tonic component to mimic
the effect of a constant change in temperature
across the length of the recording. Finally, we
recombine the signal as a simple sum of the tonic
and phasic components. We sample scaling fac-
tors in the range s ∈ [0.25, 2]

• Tonic Amplitude Warp: We apply a time-
varying scaling factor to the tonic component
of the signal. This imitates when temperature
or humidity is changing (for example, someone
might move between rooms). We use a cubic
spline to smoothly vary the scaling factor over
time. The tonic and phasic components are
extracted and recombined in the same way as
the previous augmentation. We examine splines
with 0 to 4 knots (where 0 represents a scaling
factor that varies linearly over time) and knot
heights (ui) sampled from ui ∼ N(1, σ2) with
σ ∈ [0.01, 0.05].

4.2. Generic Time-Series Augmentations

We also include a set of standard time-series DAs that
are commonly considered for supervised learning and
contrastive learning on biosignals (Wen et al., 2021;
Um et al., 2017; Iwana and Uchida, 2021; Saeed et al.,
2019):

• Amplitude Constant Scale: We apply a constant
scaling factor directly to the raw EDA signal.
This augmentation is similar to the Tonic Ampli-
tude Constant Scale augmentation described in
Section 4.1, but it scales the whole signal rather
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than only the tonic component. We use the same
scaling factors for both augmentations for com-
parison: s ∈ [0.25, 2].

• Amplitude Warp: We apply a time-varying scal-
ing factor to the raw EDA signal. We include
this for comparison with the EDA-specific Tonic
Amplitude Warp (see Section 4.1). The same
range of spline parameters are considered.

• Gaussian Noise: We add random noise to the
signal using independent samples from a Gaus-
sian distribution for each sample, with σ ∈
[0, 0.5]. We scale σ for each signal to control
the signal-to-noise ratio.

• Time Shift: We shift the signal forward or back-
ward in time, with lengths of t ∈ [5, 45] seconds.

• Temporal Cutout: We zero out / mask the signal
over a subset of the window, with a sub-window
of length t ∈ [5, 15] seconds.

• Time Warp: We perturb the pattern of the sig-
nal in the temporal dimension. A cubic spline
is used to warp the distance in time between
samples in the signal, thus leading to local com-
pression or stretching of the original signal. We
examine splines with 1 to 4 knots (where 1 rep-
resents a linear scaling) and knot heights (ui)
sampled from ui ∼ N(1, σ2) with σ ∈ [0.01, 0.1].

• Permutation: We cut the signal window into
sub-windows and randomly permute their order.
We vary the number of sub-windows n ∈ [2, 6].

• Signal Flip: We flip / invert the signal over its
amplitude dimension. There are no parameters
for this augmentation.

5. Experiments

5.1. Datasets

We consider two datasets for our experiments. First,
the WESAD dataset (Schmidt et al., 2018), a mul-
timodal wearable dataset for stress and affect de-
tection. WESAD includes data collected from 15
subjects in a laboratory setting. Subjects were ex-
posed to experimental conditions that were designed
to elicit different affective states. We focus on the
binary classification task of distinguishing between
the stress and baseline (i.e., low stress) conditions,

and do not use the data from other parts of the pro-
tocol in our experiments (neither pre-training or the
downstream evaluation). During the stress condition,
the participants complete the Trier Social Stress Test
(TSST) (Kirschbaum et al., 1993), which comprises
public speaking and a mental arithmetic task. It lasts
about 10 minutes on average. During the baseline,
the participants sit or stand at a desk, and it lasts
about 20 minutes on average. The EDA data we use
for these experiments is collected using a wrist-worn
device (Empatica E4). As in prior work (Schmidt
et al., 2018), we segment the EDA data into 60-second
windows, overlapping with a window shift of 0.25 sec-
onds. This produces 103,037 segments with a stressed
or non-stressed label (based on the experimental con-
dition). There are more non-stressed segments (65%)
than stressed segments (35%).

Second, we use the VerBIO dataset (Yadav et al.,
2020), a multimodal wearable dataset to understand
public speaking anxiety. VerBIO contains recordings
from 55 participants, with 344 public speaking ses-
sions across multiple days, where some sessions are
in person and others are in a virtual reality (VR)
environment. Participants are guided through a pro-
tocol for each session of a relaxation period (where
they watch a nature video for 5 minutes), followed
by a preparation period (where they prepare a speech
about a news article for about 10 minutes), followed
by a presentation period (where they present to either
a live or virtual audience). We code the relaxation pe-
riod as low stress and the presentation period as high
stress. We do not assign a label to the preparation
period, nor do we include it as unlabeled data during
our pre-training phase. The EDA recordings in this
dataset are again obtained using a wrist-worn device
(Empatica E4). We create signal windows with the
same length and overlap as WESAD. This produces
403,072 segments with a stressed or non-stressed la-
bel. Conversely to WESAD, there are more stressed
segments (61%) than non-stressed segments (39%).

5.2. Evaluation Approach

In this study, our primary goal is to achieve strong
stress detection performance in label sparse settings.
Thus, to evaluate the utility of our proposed con-
trastive pre-training approach, we examine its ability
to find a good initialization for an encoder that is
later fine-tuned on a small amount of labeled data.
To conduct this fine-tuning evaluation, we add a lin-
ear classification layer on top of the pre-trained en-
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(a) WESAD (b) VerBIO

Figure 2: Fine-tuning evaluation: test accuracy using 1% of labeled data. Methods that use EDA-specific
data augmentations are denoted with white hatched lines. Almost all contrastive pre-training
approaches outperform Supervised Learning (red line).

coder, and allow all model parameters to be updated
during the downstream supervised learning stage (see
diagram in Appendix D). To understand how well our
approach generalizes across datasets, we also evalu-
ate how the pre-trained encoders perform when used
for transfer learning. In this experiment, we take the
encoder pre-trained on one dataset, fine-tune it using
the labeled data from the other dataset, and then ex-
amine the stress detection performance on the latter
dataset.

Many contrastive learning studies also consider a
linear evaluation scenario, in which the pre-trained
encoder is frozen and only the linear classification
layer is updated during the downstream supervised
training. However, recent work on self-supervised
learning has argued that fine-tuning performance
should be the primary evaluation metric (He et al.,
2022; Balestriero et al., 2023). This is because lin-
ear evaluation performance is often uncorrelated with
that of fine-tuning and transfer learning, and it can-
not be used to assess the ability of a method to gen-
erate useful non-linear features. We include linear
evaluation results in Appendix C for completeness,
but do not consider them to be our main focus.

As baselines, we consider three other models with
the same architecture (i.e., the same encoder and lin-
ear classifier): (1) a model trained with constrative
learning where positive examples are generated via
the Identity transformation (i.e., no DA is applied);
(2) a linear classifier trained on top of a frozen, ran-
domly initialized encoder; and (3) a model trained
end-to-end with supervised learning.

During the contrastive learning phase we train with
all training examples (and assume no access to la-
bels). During the supervised learning phase, we train
on x% of the labeled data (we vary x from 0.1%
to 100%, randomly selecting the subset of the data
to keep labeled). This artificial downsampling of
the available labels allows us to examine how each
method performs when we make different assump-
tions about the sparsity of labels and is a stan-
dard evaluation approach in the contrastive learn-
ing literature. We split the data by subject into
5 folds and perform leave-N-subjects-out (LNSO)
cross-validation to assess how well each method per-
forms on held-out subjects. All results are reported as
the average over 5 random experimental seeds. The
details of our model architecture and hyperparameter
selection are provided in Appendix A.

5.3. Results and Discussion

5.3.1. Fine-tuning Evaluation

We evaluate each method on its ability to initialize
the parameters of an encoder that leads to good per-
formance when updated by fine-tuning on labeled
data. We examine versions of the contrastive pre-
training encoder trained with only one DA applied
(i.e., for positive pairs of examples, one segment
is transformed x̃i = t(xi), while the other is not
x̃′
i = x′

i). We also examine the performance of an
encoder pre-trained using all of the DAs. For this ap-
proach, we generate positive pairs of examples by ap-
plying two different DAs to the original sample, which
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are randomly sampled from the full set of DAs (i.e.,
x̃i = t(xi) and x̃′

i = t′(xi) where t, t′ ∼ T ). Figure 2
shows the test accuracy for each experiment, where
1% of the labeled data is used. Across both datasets,
contrastive pre-training outperforms the supervised
learning baseline for almost all of the DAs. This high-
lights the general utility of contrastive learning as an
approach to address label sparsity for stress detection
using EDA data.

We see that the Identity transformation (no aug-
mentation) is a surprisingly strong baseline, espe-
cially for the WESAD dataset, where it outperforms
Supervised Learning by a large margin. To under-
stand this result, it is helpful to consider the con-
trastive loss function in Equation 1. When the Iden-
tity transformation is used to generate positive exam-
ples, the numerator – which encourages positive ex-
amples to be close together – will be a fixed constant.
Thus, optimization will focus on the denominator,
which pushes negative samples apart. As discussed
in (Wang and Isola, 2020; Wang and Liu, 2021), this
translates into encouraging the resulting features to
be uniformly distributed. Uniformity is a desirable
property because it encourages information preserva-
tion. In addition, we suspect that a more uniform
feature distribution may help to counteract the sub-
ject heterogeneity that is typical of EDA data (due to
variations in skin properties across individuals), lead-
ing to more generalizable features. We provide em-
pirical evidence to support this idea in Section 5.3.3.

The set of DAs that performs best is not identical
across the two datasets, but there is a fairly large set
of DAs that outperform the Identity for both. This
includes four EDA-Specific DAs (Band Pass Filter,
Low Pass Filter, Tonic Constant Scale, and Loose
Sensor Artifact) and two generic DAs (Time Warp
and Gaussian Noise). The high utility of the band
pass and low pass filtering DAs suggests that they
are able to help build invariance to irrelevant fre-
quency components of the signal; we further discuss
this point in Appendix B. We find that using All DAs
is the best performing approach, leading to 15.7%
and 5.7% gains in accuracy over supervised learning
on the WESAD and VerBIO datasets, respectively.

While contrastive learning provides a clear perfor-
mance benefit for both datasets, the accuracy gain is
more pronounced on WESAD than on VerBIO. We
suspect that a few factors may contribute to this.
First, VerBIO is about four times larger than WE-
SAD, so training on 1% of labeled examples results
in 4,000 datapoints (versus 1,000 for WESAD). This

Table 1: EDA-specific transform ablation: fine-
tuning test accuracy using pre-trained con-
trastive encoders at 1% label fraction on
downstream task. Rows below the All DAs
model show classification accuracy reduc-
tion when removing each EDA-specific DA
from the contrastive pre-training. Note: all
values in percentage points and negative val-
ues represent reduction in accuracy.

WESAD VerBIO

All DAs 83.77 78.38
- Band Pass Filter -5.20 -0.97
- Band Stop Filter -1.24 -0.91
- High Freq. Noise -2.41 -0.48
- High Pass Filter -8.17 -0.04
- Jump Artifact -0.29 -1.17
- Loose Sensor -1.91 -1.30
- Low Pass Filter -1.68 -0.75
- Tonic Ampl. Warp -1.03 -0.91
- Tonic Constant Scale -6.17 -0.52

likely contributes to the higher accuracy of supervised
learning on VerBIO. Second, in the VerBIO study,
the stress detection task is more complex: VerBIO
asks participants to deliver different public speeches
in both real-life and VR environments, whereas WE-
SAD uses the standard TSST stress test. This is
likely to introduce more variance in the nature of
the stress that is elicited, making the prediction task
more challenging.

To further understand the utility of each EDA-
specific DA, we conduct an ablation analysis where
we pre-train with the full set of DAs except for one.
The results of this ablation are in Table 1. We see
that removing EDA-specific DAs leads to a 0.29-8.17
percentage point reduction in test accuracy for WE-
SAD, and a 0.04-1.30 reduction for VerBIO. For WE-
SAD, these results clearly show that no EDA-specific
DA is dispensable in the contrastive pre-training, as
results consistently worsen when any individual aug-
mentation is excluded. For VerBIO, the trend is the
same, though we note that the performance drops
are generally smaller than those for WESAD, with
the exclusion of some DAs resulting in only a slight
change in performance. This may be partially due to
the more challenging nature of VerBIO.
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Table 2: Transfer evaluation: test accuracy for 1%
of labeled data. Models pre-trained with All
DAs and transferred across datasets signif-
icantly outperform Supervised Learning.

WESAD→VerBIO VerBIO→WESAD

Supervised 72.65 ± 6.00 68.03 ± 14.42
All DAs 76.86 ± 3.26 82.98 ± 7.29

5.3.2. Transfer Learning Evaluation

In this section, we seek to understand how well our
approach generalizes across datasets. We consider
the contrastive pre-training approach that uses all
DAs, as this performed best in our earlier experi-
ments (see Section 5.3.1). We examine the perfor-
mance of an encoder pre-trained on one dataset and
fine-tuned for the downstream task of stress detection
on the other, using 1% of the labeled data for fine-
tuning. We compare the accuracy of this approach to
training a model end-to-end on labeled data from the
target domain (i.e., Supervised Learning). As shown
in Table 2, we find that transfer learning in both
directions results in significantly better performance
compared to supervised learning. We see a 4.21%
gain in accuracy when transferring from WESAD to
VerBIO, and a 14.95% gain when transferring from
VerBIO to WESAD. Remarkably, this performance
approaches the accuracy that we saw in the in-domain
(i.e., fine-tuning) evaluation scenario. For the WE-
SAD to VerBIO experiment, the accuracy obtained is
only 1.5% less than that obtained when using a model
pre-trained on VerBIO, and for VerBIO to WESAD,
the accuracy is within 1% of that obtained with a
model pre-trained on the WESAD data.

The WESAD and VerBIO datasets are consider-
ably different from each other; they contain data from
different subjects and were collected in the context of
different types of stress elicitation tasks. The strong
performance of our approach when used for transfer
learning across these two datasets therefore suggests
that (1) our data augmentations and pre-training ap-
proach are effective at learning representations that
are useful for generalized stress detection, and (2) our
approach has a high degree of robustness to dataset
shift, which is a challenging problem that often arises
when working with physiological data.

5.3.3. Representation Quality Analysis

Our evaluation of downstream performance provided
an understanding of the overall quality of the repre-
sentations learned by each method. In this section,
we seek to better understand the reason for the per-
formance differences by analyzing the quality of the
learned representations along three dimensions:

1. Uniformity: We desire representations that are
both invariant to unnecessary details and that
maximally preserve relevant information. Mea-
suring the uniformity of the learned representa-
tion space is a way of capturing the latter of these
two objectives. We adopt the uniformity metric
proposed in (Wang and Isola, 2020), which mea-
sures how well the (normalized) representation
space matches the uniform distribution on the
unit hypersphere. This is computed as the mean
Gaussian potential between pairs of embeddings,
where a lower value implies greater uniformity.
The Gaussian potential between two embeddings
u, v is given by: Gt(u, v) = e−t∥u−v∥2

2 , where t
is a non-negative parameter. We set t = 2 as in
(Wang and Isola, 2020).

2. Label Separability: An ideal encoder maps exam-
ples of the same label close together and exam-
ples of different labels far apart. We assess this
by computing the ratio of the mean Euclidean
distance between pairs of examples with different
labels to that of examples with the same labels.
A representation space that better separates the
two label classes will receive a higher score.

3. Subject Separability: EDA signals are known to
exhibit strong inter-individual differences due to
variations in skin properties across individuals
(Sarchiapone et al., 2018), which can manifest as
subject-specific clusters in the data. We expect
that a representation space that reduces differ-
ences across subjects will be useful for general-
ization. To measure this, we compute the ratio
of the mean Euclidean distance between pairs of
examples that belong to the same subject to that
of examples that belong to different subjects. A
representation space that better reduces subject
heterogeneity will receive a lower score.

We use these metrics to compare the quality of the
representations obtained with the All DAs method
relative to the baselines, as shown in Figure 3. Ex-
amining the Identity method, we find that it has the
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(a) Uniformity (G2 ↓) (b) Label Separability (↑) (c) Subject Separability (↓)

Figure 3: Measures of representation quality on WESAD test data. Uniformity, as measured by the mean
Gaussian Potential (G2) between pairs of embeddings, captures how well the learned representation
space preserves information (lower G2 is better). Label separability is computed as the ratio of
mean pairwise Euclidean distance for examples with different versus same labels (higher is better).
Subject separability is computed as the ratio of mean pairwise Euclidean distance for examples
from different versus same subjects (lower is better, since we desire representations that generalize
across people). The All DAs contrastive pre-training method beats the Random Encoder and
Supervised Learning baselines across all three metrics.

best score among all methods for the uniformity and
subject separability metrics. As discussed in Sec-
tion 5.3.1, the Identity method induces a fixed con-
stant for the numerator of the contrastive loss (Equa-
tion 1) and thereby amounts to directly optimizing
for uniformity of the (normalized) embedding space.
Our finding that the Identity achieves the best uni-
formity (lowest mean G2) is consistent with this un-
derstanding. We expect that uniformity is desirable
not only because it can help with information preser-
vation, but also because it can counteract subject
heterogeneity. Our finding that the Identity obtains
the smallest value of subject separability provides ev-
idence to support this idea, and helps to explain why
it obtained fairly strong performance in the down-
stream evaluation experiments.

While the Identity is strong in terms of the uni-
formity and subject separability metrics, it achieves
relatively poor label separability. This aligns with
the intuition that the Identity method encourages all
representations to be equally distant from each other,
including those with the same label. In contrast, the
All DAs method obtains high values for all three met-
rics. It achieves the highest label separability out of
all the methods, and obtains uniformity and subject
separability scores that are much closer to the Iden-
tity compared to the Random Encoder and Supervised

Learning. The observation that the All DAs method
is able to effectively balance performance along these
different dimensions helps to explain its superior per-
formance in the downstream evaluation experiments.

Figure 4: Label sparsity ablation for WESAD:
Test performance of fine-tuned contrastive
model compared to baselines. The fine-
tuned contrastive method outperforms the
baselines at all label fractions.

5.3.4. Impact of Label Sparsity

In this experiment, we examine the impact of the
amount of labeled data available on the performance
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of contrastive pre-training and baseline methods. We
focus on the contrastive pre-training method that
uses all DAs, and consider the fine-tuning evaluation
scenario. In Figure 4, we show the test accuracy of
each method on the WESAD dataset for labeled data
fractions ranging from 0.1% to 100%. We see that
the contrastive learning approach consistently out-
performs the two baselines. It achieves greater per-
formance than supervised learning at all label frac-
tions, including when all the labels are used.

6. Summary and Conclusion

We introduced a set of novel data augmentations tai-
lored to the EDA signal and the task of stress detec-
tion. These include modifying the frequency bands
of the EDA signal and incorporating priors on the
sources of noise that affect it. Our experiments show
that when used to generate positive examples for con-
trastive learning, these novel EDA-specific DAs add
value beyond the generic time-series DAs considered
in prior work. Our resulting approach achieves strong
performance on the downstream task of stress detec-
tion, outperforming supervised learning by a consid-
erable margin in regimes of high label sparsity. All
of our experiments are conducted on held-out sub-
jects; thus, our results show that our approach is able
to generalize across people. By conducting a set of
transfer learning experiments, we further show that
our approach generalizes across datasets.
In future work, there are several limitations that we

will address. First, we did not consider methods for
choosing the optimal subset of DAs to include in the
contrastive learning model (we include all of them in
our All DAs model), nor do we apply augmentations
to a signal in composition (i.e., applying > 1 augmen-
tation to create a data view x̃i). Second, the datasets
that we used were collected under controlled experi-
mental conditions and contained a limited number of
subjects. While these are sufficient to demonstrate
the proof of concept of contrastive learning on EDA
data, they do not encompass all of the EDA noise
profiles or stress responses that would be observed in
naturalistic settings, and they are not representative
of the EDA signals produced by all individuals. Fur-
thermore, they contain a definition of stress induced
by experimental conditions, rather than self-reported
stress. Therefore, future work should consider how
these methods generalize to additional datasets. Fi-
nally, we only consider EDA as a modality. Stress
is likely best categorized by multiple physiological

modalities, so multimodal approaches may yield fur-
ther performance improvements.

Despite these limitations, we believe that our re-
sults demonstrate 1) the potential of using unsuper-
vised contrastive learning to learn useful representa-
tions of EDA for stress detection, and 2) the utility of
EDA-specific augmentations. While in this study we
focused only on EDA, we believe that the approach
we take of carefully considering signal properties to
curate a set of signal-specific augmentations could be
generalized to other biosignals.
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Appendix A. Model Architecture and
Hyperparameters

A.1. Model architecture

The following modules are used to create the different
models in our experiments:

1. Encoder, f(·): 1-D convolutional layers fol-
lowed by 1-D max-pooling are used to trans-
form the M-dimensional input signal, xi, to a
k-dimensional embedding, hi. Batch normali-
sation and dropout are used in each convolu-
tional block and ReLU is used as the activa-
tion function. For the experiments of this pa-
per, we use 3 convolutional blocks in the en-
coder, transforming the input from a 240 di-
mensional input segment (60 seconds at 4Hz)
to a 64 dimensional embedding. The in-
put and output channels of these blocks are
Conv1(in=1, out=4), Conv2(in=4, out=16) and
Conv3(in=16, out=32). A kernel size of 7 and
a stride of 1 are used in the convolutional layers
and a kernel size of 2 is used in the max-pooling
operations. A single linear layer with ReLU ac-
tivation then maps the output to 64 dimensions.

2. Projection head, g(·): is implemented as a sin-
gle linear layer that maps the 64-D embedding,
hi, to a 32-D embedding, zi. The loss function
(1) is computed on these 32-dimensional embed-
dings.

3. Linear classifier for task prediction: a lin-
ear classifier is used for supervised learning on
the downstream prediction task (binary classi-
fication in the case of WESAD). This is imple-
mented as a single linear layer mapping from the
64-D embeddings, hi, to 1-D for the binary pre-
diction. This model is trained for this task with
binary cross entropy loss.

For the contrastive learning models in the pre-
training phase, we compose the encoder module (a)
and the projection head module (b). Then, for the
downstream prediction phase, the pre-trained en-
coder is again used, but the linear classifier (c) re-
places the projection head.
For the supervised learning (SL) and random

encoder (RE) models, there is only the downstream
prediction phase, and these models comprise modules
(a) and (c). In the case of SL, the model is trainable
end-to-end (i.e., all parameters in (a) and (c) can be

optimized), whereas for RE only the linear classifier
module (c) can be trained.

A.2. Hyperparameters

Different hyperparameters are used for the con-
trastive pre-training and the supervised learning
phases of the modeling.

• Contrastive pre-training hyperparame-
ters: A temperature of 0.1 is used within the
InfoNCE loss. Adam is used as the optimizer
with batch size of 256, learning rate of 0.001,
and 400 epochs. The dropout probability is 0.1.
Early stopping is implemented using the training
InfoNCE loss.

• Supervised learning fine-tuning hyperpa-
rameters: Adam is used as the optimizer with
batch size of 32, learning rate of 0.0001, weight
decay of 0.01, and 200 epochs. The dropout
probability is set to 0. Early stopping is imple-
mented using the validation loss.

• Supervised learning linear evaluation hy-
perparameters: Adam is used as the optimizer
with batch size of 32, learning rate of 0.001,
weight decay of 0.01, and 200 epochs. The
dropout probability is set to 0. Early stopping
is implemented using the validation loss.
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Appendix B. Selection of Data
Augmentation
Parameters

To select an optimal range of parameters for each
data augmentation, we conducted experiments on the
WESAD data in which we considered a determin-
istic version of each data augmentation, and then
swept over a broad range of possible parameter set-
tings for this augmentation. We examined the val-
idation set accuracy of each parameter value. The
results of this experiment are presented Figure 5. We
see that several augmentations are very sensitive to
the strength of augmentation. For example, the val-
idation accuracy obtained with the Band Pass Fil-
ter augmentation varies by as much as 10% percent
depending on the chosen frequency parameter, and
the Low Pass Filter, Gaussian Noise, and Temporal
Cutout augmentations all have as much as a 7% per-
cent change in validation accuracy depending on the
parameter setting. These results showcase the impor-
tance of carefully selecting data augmentation param-
eters when using them for contrastive pre-training.

We used these results to inform our selection of
an optimal range to sample from for the stochastic
versions of each data augmentation module that are
used in the main contrastive learning experiments.
The selected range is presented alongside the design
of each augmentation in Section 4.

In addition to informing our parameter selection,
these results also provide insights into how the design
of each augmentation impacts downstream stress de-
tection performance. Looking at the results of the
filtering DAs (plots a-d in Figure 5), we see that
performance varies considerably depending on which
frequency bands the filter is applied to. Generally,
we see that performance is strong when the DA pa-
rameters filter out parts of the signal where infor-
mation related to sympathetic nervous system activ-
ity is not expected (i.e., outside of the 0.08-0.24 Hz
range (Posada-Quintero et al., 2016)). For example,
we see that the performance of the Low Pass Fil-
ter DA peaks when all signal content above 0.25 Hz
is filtered, and that there is a steep drop in perfor-
mance when filtering frequency components of the
signal that are lower than this. Similarly, we see
that the Band Pass Filter augmentation performs
best when frequencies in the range 0.05-0.25 Hz are
passed, and exhibits a considerable drop in perfor-
mance when high frequencies (≥ 1.25 Hz) are passed.

Appendix C. Linear Evaluation
Results

We consider the linear evaluation setting, to un-
derstand how well the pre-trained encoders perform
when used as fixed feature extractors. We compare
contrastive pre-training encoders that use a single
DA, as well as an approach where we pre-train by
sampling from the set of all DAs. Figure 6 displays
the test accuracy for each experiment, where 1% of
the labeled data is used in the downstream task.
We see that across both datasets, almost all of the
contrastive learning approaches outperform the ran-
domly initialized encoder, indicating that the features
learned are more meaningful than a random transfor-
mation of the data.

We see that the Time Warp DA is the best pe-
forming single augmentation for both datasets for
this evaluation scenario. Gaussian Noise is the only
other DA that outperforms the Identity baseline for
both datasets. On the WESAD dataset, many of the
DAs outperform the Identity baseline. In contrast, on
the VerBIO dataset, relatively few do. The VerBIO
dataset contains considerably more subjects than the
WESAD dataset, and the tasks performed by each
subject are less structured. Thus, we suspect that
there may be a greater degree of heterogeneity in the
VerBIO dataset, which may both make optimization
more challenging and increase the relative utility of
the Identity baseline (which helps to counteract het-
erogeneity, as shown Section 5.3.3).

We find that training with all DAs leads to consid-
erable improvement on the WESAD dataset, achiev-
ing a more than 3% accuracy lift over all the other
methods. On VerBIO, this multi-transform method
performs about as well as the top-performing single
DA, but does not yield improvement beyond this. We
suspect that the best performing set of transforms
may be some subset of the full set, but since find-
ing the optimal subset is not trivial, we leave this for
future work.

Appendix D. Approach Diagram

We provide a visualization of our approach for pre-
training and downstream task evaluation in Figure 7.
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(a) Low Pass Filter (b) High Pass Filter (c) Band Pass Filter

(d) Band Stop Filter (e) HF Noise (f ) Jump Artifact

(g) Loose Sensor (h) Temporal Cutout (i) Tonic Warp

(j ) Amplitude Warp (k) Time Warp (l) Time Shift

(m) Tonic Scale (n) Constant Scale (o) Permute

(p) Gaussian Noise

Figure 5: Hyperparameter tuning of individual data augmentation parameters for WESAD dataset. All
reported accuracies are on the validation set. We see that several augmentations are very sensitive
to the strength of augmentation. Parameter ranges for each data augmentation were selected
from this experiment and used in the stochastic augmentation modules for the main experiments.
Parameters selected are reported in Section 4.
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(a) WESAD (b) VerBIO

Figure 6: Test accuracy for linear classifier trained on 1% of labeled data, using frozen pre-trained encoders
as features. Methods that use EDA-specific data augmentations are denoted with white hatched
lines. Most of the encoders pre-trained with a single data augmentation outperform both the
Random Encoder baseline (red line).

Figure 7: A visualization of our approach to pre-training and evaluation. We adopt the SimCLR contrastive
learning framework proposed by Chen et al. (2020) and evaluate our pre-trained encoders on the
downstream task of stress detection.
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