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Abstract
Machine learning models perform well on sev-

eral healthcare tasks and can help reduce the
burden on the healthcare system. However, the
lack of explainability is a major roadblock to
their adoption in hospitals. How can the deci-
sion of an ML model be explained to a physician?
The explanations considered in this paper are
counterfactuals (CFs), hypothetical scenarios
that would have resulted in the opposite out-
come. Specifically, time-series CFs are investi-
gated, inspired by the way physicians converse
and reason out decisions ‘I would have given
the patient a vasopressor if their blood pres-
sure was lower and falling’. Key properties of
CFs that are particularly meaningful in clinical
settings are outlined: physiological plausibility,
relevance to the task and sparse perturbations.
Past work on CF generation does not satisfy
these properties, specifically plausibility in that
realistic time-series CFs are not generated. A
variational autoencoder (VAE)-based approach
is proposed that captures these desired proper-
ties. The method produces CFs that improve on
prior approaches quantitatively (more plausible
CFs as evaluated by their likelihood w.r.t origi-
nal data distribution, and 100× faster at gener-
ating CFs) and qualitatively (2× more plausible
and relevant) as evaluated by three physicians.

Data and Code Availability This paper uses the
MIMIC-III dataset (Johnson et al., 2016) which is

available on the Physionet repository (Goldberger
et al., 2000). Our implementation of CF VAE is avail-
able at https://github.com/supriyanagesh94/CFVAE.

Institutional Review Board (IRB) Our research
does not require IRB approval.

1. Introduction

Machine learning (ML) models are demonstrating
compelling performance on various healthcare tasks
(Futoma et al., 2017; Kaji et al., 2019; Johnson et al.,
2017), and even reach physician-level performance in
some cases (Rajpurkar et al., 2017; Grewal et al., 2018;
Hannun et al., 2019). Machine learning can particu-
larly be useful in reducing the burden on the health-
care system by predicting hospital bed usage (Kuta-
fina et al., 2019; Turgeman et al., 2017), interven-
tion use (Suresh et al., 2017; Ghassemi et al., 2017),
and rehospitalization (Henry et al., 2015). Despite
this, we have not seen widespread adoption of these
models in hospitals, with explainability being a key
reason (Amann et al., 2020). Physicians want to
understand how a model produced its output (a diag-
nosis or a recommendation for the course of treatment)
before using it in practice.

In this paper, we explain a model’s output through
counterfactuals (CFs) (Wachter et al., 2017) - what
should have changed in the input, to have a different
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outcome under this model?. Our approach was in-
spired by observing our medical collaborators express
clinical judgements in terms of hypothetical trends
in vital signs, e.g., “This patient would have been
moved out of the ICU had their blood pressure been
stable.” The CFs provide a means for a physician to
interrogate and understand the assessments of an ML
model.

Desirable Properties of CFs What makes one CF
better than another? Three key properties desirable
of CFs for use in clinical settings include:

1. Plausibility: Generated CFs must be consistent
with the patient population and not contain data
that is unlikely or impossible (e.g., diastolic blood
pressure exceeding systolic).

2. Relevance: The CFs should reflect the key dimen-
sions that are related to the task that the ML
model is targeting. For example, given a model
for the task of predicting if a patient will need
a ventilator - a generated CF that is relevant
might differ in the SpO2 and respiration rate tra-
jectories (and not for example in their bilirubin
level).

3. Sparse perturbations: The generated CFs must
deviate minimally (minimal number of features)
from the original patient to result in the opposite
prediction.

The remainder of this paper presents a method for
generating CFs possessing these properties.

To illustrate a CF on real data generated by our
approach, see Figure 1. Given a patient’s 48 hour vital
sign history, an ML model predicts if they will require
a vasopressor in the next 24 hours. We use our method
to generate a CF given the learned model. While the
original data consists of multiple features (see Fig. 4),
only one is changed in the counterfactual. Hence, the
counterfactual is sparsely perturbed in that it did
not needlessly alter other time series. Furthermore,
the counterfactual is plausible in the sense that it is
clinically possible for systolic blood pressure to drop
from 100 to 70 over the course of 48 hours. Finally,
the counterfactual is relevant since vasopressors are
administered when blood pressure is low.

While there are existing methods for generating
numerical CFs (Mothilal et al., 2020; Joshi et al.,
2019; Delaney et al., 2020), we show that they can
produce unrealistic CFs, making them unsuitable for
generating explanations in a healthcare setting. For

Figure 1: An intervention prediction model predicts
that this patient will not need a vasopressor.
The orange time series represents the CF
generated in response to a physician inter-
rogating the prediction. The dotted blue
line is the actual time series and the green
box shows the normal range.

the same patient in Figure 1, DICE (Mothilal et al.,
2020) generates a CF (Figure 3) with SpO2 declining
from 98 to -98, and heart rate dropping from 60 to -60.
In reality, negative values are not possible. Further,
neither clinical metric is relevant since vasopressors
are administered when blood pressure drops. Note
that while (Delaney et al., 2020) demonstrates results
on generating CF ECG time series, their methods can
produce unrealistic counterfactuals in other health
settings. We further discuss this in Sec. 5.

In this paper, we develop CF-VAE - a method to
produce counterfactuals based on variational autoen-
coders (VAE) (Kingma and Welling, 2013). Tradition-
ally, VAEs are used to learn a continuous latent space
and generate realistic synthetic data. We show how
the traditional VAE loss function can be modified to
generate convincing CFs. The CF must be close to
the original patient’s data (Fig. 2 first term), be of
the opposite class (second term) and yet not perturb
too many features (third term). As with VAEs, we
are able to use stochastic gradient descent to train
our model to generate desirable CFs.

Additionally, CF-VAE is a feed-forward approach
- generating CFs only requires a feed-forward pass.
In contrast, prior methods perform optimization at
test time to identify CF samples, as exemplified by
(Mothilal et al., 2020), (Delaney et al., 2020), (Delaney
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Figure 2: Our proposed approach: Given a binary prediction (BP) model, we learn a VAE latent space that
embeds input data points onto regions of the latent space, which results in reconstructions that
have the opposite label under the BP model.

et al., 2020), and (Joshi et al., 2019) where generating
CFs required making multiple calls to an optimization
module.

In summary, this paper makes the following con-
tributions: 1. We develop CF-VAE: a variational
autoencoder based feed-forward method to produce
plausible, relevant, and sparsely perturbed CFs, 2.
We train an intervention prediction model for two
ICU interventions: vasopressor and ventilator using
the MIMIC-III clinical dataset. We generate CFs for
each of these prediction models using CF-VAE, 3. We
present a quantitative evaluation of the CFs produced
by our method and prior works and note that a higher
fraction of our CFs are plausible. 4. We present re-
sults from a qualitative analysis of CFs performed by
three physicians. The physicians were blinded to the
method that produced the CF and evaluated if a CF
was plausible and relevant to the intervention. Our
evaluators found that CF-VAE was 2X more plausible
and relevant than DICE.

2. Related Work

Explainable machine learning is a heavily studied
field too vast to adequately summarize in this section.
Comprehensive surveys on the topic include (Doshi-
Velez and Kim, 2017; Adadi and Berrada, 2018; Abdul
et al., 2018; Tjoa and Guan, 2020; Chaddad et al.,
2023).

Several explainability techniques focus on feature
weights/attributions (Zhang et al., 2019; Lundberg
and Lee, 2017). For example, suppose we have a
learned model predicting if a person will be granted a
loan. Analyzing the feature weights might reveal that
the model attributes a larger weight to the feature
‘credit history’ than the feature ‘marital status’. Fea-
ture attribution methods are useful in many settings.

This paper differs in that the objective is to identify
a CF to explain the model’s decision (Wachter et al.,
2017; Joshi et al., 2019; Mothilal et al., 2020; Delaney
et al., 2020; Xu et al., 2022).

Our approach to generating CFs over numerical
data possesses three key properties not previously
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found in combination among prior numerical CF ap-
proaches: (1) Plausibility, (2) Relevance to the ML
task, (3) Sparse perturbations. We compare the prior
work on generating counterfactuals to explain a black-
box model (Dhurandhar et al., 2018; Joshi et al., 2019;
Delaney et al., 2020; Mothilal et al., 2020; Xu et al.,
2022) on each desirable characteristic we listed above.

Plausibility: Our CFs are usually physiologically
plausible, meaning that we avoid reporting SpO2 val-
ues of 105% or diastolic blood pressures exceeding
systolic since we sample from the latent space of a
VAE trained on real patients. This contrasts with
methods that look for nearby CFs under the Euclidean
metric (Ates et al., 2021; Guidotti et al., 2020; Dhu-
randhar et al., 2018; Mothilal et al., 2020), which are
prone to sampling from outside the true data manifold.
E.g., while an SpO2 reading of 105 is close to a patient
with SpO2 98, the former is not realistic. (Delaney
et al., 2020) partially avoid this issue by using a near-
est neighbor method. After identifying the nearest
unlike neighbor (NUN) to a given time series, (Delaney
et al., 2020) changes the ‘high importance’ regions of
the input with segments from the NUN. While often
sensible, this CF generation approach has a major
pitfall when it comes to plausibility: in many cases,
one cannot directly substitute a time series segment
from one patient with that of another patient. (Joshi
et al., 2019) ensures plausibility by training a VAE
to approximate the data distribution and learn an
embedding (latent) space. The algorithm optimizes a
loss function to search over the latent space for a coun-
terfactual. (Xu et al., 2022) posits that their method
of only changing subsets which are both sufficient and
necessary inherently induces plausibility.

Relevance: Our CF-VAE incorporates a loss which
captures relevance to the prediction task (that the ML
model is trained on), encouraging CFs that are rele-
vant to the prediction task. Whereas none of the other
works explicitly encourage capturing representations
that are relevant to the prediction task.

Sparse perturbations: Our approach produces
sparse perturbations which can be interpreted as the
factors important for the model outcome. We achieve
sparse perturbations through a ℓ1 regularization on
the perturbation. The work of (Delaney et al., 2020)
defines sparsity in terms of the length of the modified
data segment rather than in terms of number of fea-
tures they touch. Thus, they attempt to find short
perturbations to the time series that flip the label.
While this fits nicely within their framework, it is spe-
cific to signals whose label is largely defined by short-

duration events (e.g. a single arrhythmia) and is not
as well suited for sparsely capturing long-term trends
in a small number of signals. In (Mothilal et al., 2020),
the authors propose augmenting their base model with
an explicit post-hoc sparsification step. To sparsify
the generated counterfactuals, they perform a greedy
coordinate descent until no further coordinates can
be independently minimized without crossing the de-
cision boundary. Note that this post-hoc process can
result in implausible CFs. Because (Xu et al., 2022)
works on a binary input domain, sparsity and rele-
vance coincide in their work and so their search for
a small set of diagnosis codes that collectively flips
the classifier output inherently induces sparsity. The
remaining works did not specifically target sparsity.

Additionally, our CF-VAE can produce counter-
factuals for time series data. Among the previously
mentioned approaches, (Delaney et al., 2020) is the
only work explicitly generating time series counter-
factuals. CF VAE produces CFs by performing a
feed-forward pass through the encoder and decoder
unlike (Delaney et al., 2020; Mothilal et al., 2020;
Dhurandhar et al., 2018; Joshi et al., 2019) which
require optimization at test-time to generate a CF.

3. CF-VAE: Counterfactual Variational
Autoencoder

Given a target patient’s data, our goal is to gen-
erate a CF patient for visualization as a means to
explain how the model produced its prediction. Our
solution comprises of a novel Counterfactual VAE
(CF-VAE) module (Fig. 2), which provides a general,
feed-forward approach to synthesizing CFs for time
series classification problems.

Our method (CF-VAE) jointly optimizes for plau-
sibility (samples respect the data distribution), CF
validity (samples flip the outcome of the ML model),
and sparsity (minimal feature change). We show
experimentally in Sec. 4 that our joint training
method produces more plausible CFs than prior meth-
ods (Mothilal et al., 2020; Joshi et al., 2019; Delaney
et al., 2020). A benefit of our method is that the
embeddings learned by CF-VAE are relevant to the
prediction task, facilitating the generation of relevant
CFs. It is difficult to achieve this type of relevance
in the case of prior methods that do not utilize a
task-specific representation during CF generation. An
example of an irrelevant CF produced by DICE is
shown in Figure 3. By incorporating multihead self-
attention blocks (Vaswani et al., 2017) in the encoder
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CEM REVISE DICE NG-CF CF-VAE (ours)

Plausibility X ✓ X X ✓
Relevance X X X X ✓
Sparse perturbations ✓ X ✓ X ✓
Time series X X X ✓ ✓
Feed-forward approach X X X X ✓

Table 1: Comparison of different CF generation methods: CEM (Dhurandhar et al., 2018), REVISE (Joshi et al.,
2019), DICE (Mothilal et al., 2020), NG-CF (Delaney et al., 2020), CF-VAE - this paper.

and decoder, the VAE can handle time series mea-
surements as inputs, and synthesize counterfactual
time series as outputs, thereby achieving the goals
in Table 1. We now describe our solution architec-
ture, beginning with a brief overview of a vanilla VAE
(Kingma and Welling, 2013).

VAE background: The VAE approximation takes
the form of a standard encoder-decoder pair where
the encoder, Q, and the decoder, P , are each parame-
terized by neural networks. The encoder and decoder
networks are trained by maximizing the objective:

EX∼D[Ez∼Q[logP(X|z)] −D(Q(z|X)||P(z))] (1)

Where X is a data point sampled from the dataset
D, the encoder Q produces a distribution N (µX,ΣX)
over the latent representation z, and D is the KL
divergence between the latent multivariate Gaussian
distribution and the prior distribution P(z). The
two terms in the objective function correspond to the
reconstruction error and latent space normalization,
respectively.

When both the prior P(z) and output distributions
P(X|z) are assumed to be spherical Gaussians, maxi-
mizing 1 can be shown to be equivalent to minimizing

EX∼D[||X−X′||2
2

+ KL(N (µX,ΣX)|N (0, I))], (2)

where X′ = P (Q(X)) is the network’s reconstruction
of X. We therefore use 2 as a starting point for
defining a loss function for training our VAE. See
(Doersch, 2016) for a more complete derivation of this
objective.

CF-VAE objective: To produce realistic CFs, we
must generate samples with high probability under the
data distribution that flip the output of a target binary
prediction model (e.g., ICU intervention prediction).

We denote the binary prediction output of the target
model as y = BP(X) and the output of the CF-VAE
as XCF.

We modify the VAE objective so that its output
(XCF) is penalized by a term proportional to the

cross entropy of yprobcf and 1 − y (where yprobcf is the
class probability output of BP(XCF)) in addition to
the standard regularization and reconstruction loss
on X and XCF. Introducing this extra loss term
allows the VAE to learn about the target model’s
decision boundary and incentivizes it to synthesize a
CF sample XCF whose output ycf is of the opposite
class. Intuitively, as diagrammed in Fig. 1(b), this
teaches the VAE to encode the classifier boundary in
its latent space, and to map a given X to a latent
point of the opposite class. Another consideration is
to have minimal changes to the input to produce a
CF. We achieve this through a sparsity constraint on
the perturbation. Thus, our modified loss function
takes on the form

EX∼D[||X−XCF||22 + KL(N (µX,ΣX)|N (0, I))

+ λcfCrossEntropy(yprobcf , 1 − y)

+ λS ||X−XCF||1] (3)

where XCF is the decoder output and λS , λcf are
loss weights for sparsity and for the “soft constraint”
that CF class ycf and y must differ, respectively. Note
that Eq. 3 differs from the standard VAE loss only in
the cross-entropy and ℓ1 norm term. Adjusting λcf

allows us to tune the VAEs attention between focusing
on its reconstruction/regularization objectives and on
its CF objective. Fig. 7 visualizes the latent space
using t-SNE with varying λcf – as we increase λcf , we
see more separation between the classes in the latent
space. We choose the λS value proportional to the
magnitude of the different loss terms on the training
set. See Sec. 5 for examples of CFs generated with
and without the sparsity term. We provide intuition
about the loss function by building it up one term at
a time in Appendix A.

A strength of our approach is that the CF-VAE can
be trained in the same way as a Vanilla VAE, using
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stochastic gradient descent, allowing us to leverage
the VAE optimization literature. Note that the pa-
rameters of the binary prediction model are held fixed
while training the CF-VAE.

We explore two ways to represent patient data:
1) A temporal representation based on linear trends
(e.g., up or down) with a specific slope and intercept
over the measurement window, 2) As a time series
with a N × T data matrix, where T is the number of
time samples and N is the number of measurements
(e.g. vital signs). We present results for both patient
representations in the subsequent sections.

4. Experiments and Results

We use data from the MIMIC III ICU dataset for
our experiments. Additional details are provided in
Appendix C. The main objectives of our experiments
are to show that CF-VAE produces plausible, relevant,
and sparsely perturbed CFs as explanations.

4.1. Binary prediction task

In our experiments, we generate CFs for two target
binary prediction models - predicting the use of va-
sopressor and ventilator. Given a patient’s 48 hour
history, we train a model to predict if a target inter-
vention will be required within the next 24 hours. See
Appendix E for model implementation details. The
results on the task of intervention prediction using
the linear (slope-intercept) representation is shown
in Table 3. We perform additional experiments using
the entire temporal sequence data as input to the pre-
diction model. These results are presented in Table 4
of Appendix B.

The specific task of intervention prediction was
motivated by the clinical problem of home hospi-
tal (Levine et al., 2021) and we provide more context
on this problem in the Appendix B.

4.2. Baseline methods for generating
counterfactuals

The space of prior CF methods can be roughly par-
titioned into three approaches: (1) Optimization-
based approaches in the input space (Dhurandhar
et al., 2018; Mothilal et al., 2020), (2) Optimization-
based approaches in the latent space of a generative
model (Joshi et al., 2019), and (3) Input perturbation-
based approaches (Delaney et al., 2020). The third
category is not suitable for us since substituting a

part of a patient’s vital signs with vital signs from
another patient could be unrealistic. We discuss this
further in Sec. 5. In our experiments, we compare to
DICE (Mothilal et al., 2020) and REVISE (Joshi et al.,
2019) to represent the two optimization categories.

Figure 3: DICE’s counterfactual for the same patient
in Figure 1

4.3. Counterfactuals generated by CF-VAE

We use the intervention prediction model as the bi-
nary prediction model and train CF-VAE to generate
CFs given a test patient. The CFs produced for the
task of vasopressor prediction by CF-VAE and DICE
and shown in Figure 4. We see that the CF-VAE pro-
duces a CF that changes the systolic blood pressure -
which is a key trigger for providing vasopressors. The
CF indicates that the binary prediction model has
learned patterns between decreasing systolic blood
pressure and the need for vasopressors. We quantita-
tively evaluate the CFs generated by CF-VAE to those
generated by DICE and REVISE on three aspects:

1. Log likelihood score under a KDE model:
We compute the log likelihood score of a generated
CF under the kernel density estimator (with Gaus-
sian kernel) fit to the training data to quantify its
plausibility. A higher log-likelihood score implies that
the CF is plausible and similar to a real patient in
the training data. The column %lmethod > lCF-VAE in
Table 2 is the ratio of test samples for which the like-
lihood score of CFs generated by DICE and REVISE
were greater than that of CFs generated by CF-VAE,
we outperform both these methods.
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Ventilator Vasopressor

Method % lmethod % CF Physician % lmethod % CF Physician Time (s) Time (s)
≥ lCF-VAE validity score ≥ lCF-VAE validity score (train) (test)

DICE 2% 100% 40% 2% 100% 23.33% 0 0.37
REVISE 16% 25% - 12% 19% - 10 0.38
CF-VAE - 90% 60% - 85% 73.33% 180 0.001

Table 2: Comparison of (Mothilal et al., 2020; Joshi et al., 2019) and CF-VAE. lmethod > lCF-VAE is the
fraction of test points where the log likelihood of a CF from prior work exceeded that of our own.
We see that in the case of Ventilator, only 2% of the test CF from DICE had a higher likelihood
score than our CF. The physician evaluated our CF for plausibility and relevance. The physician’s
score is the fraction of CF that were deemed both plausible and relevant. Note that we don’t have
physician score for REVISE because of its poor validity percentage.

2. Validity of CFs generated: Out of the total
set of test points, Table 2 presents the percentage
of generated points that have the opposite outcome
under the binary prediction model (i.e. the true CF).
Note that REVISE has a very low % validity because
the optimization did not converge to a CF.

3. Train and test time: The training and test
time for each method is listed in the table. The train
time is a one-time cost, while the test time listed
is the average time for generating a CF for one test
point. Since DICE and REVISE are optimization-
based approaches, they incur a higher cost at test
time. However, the cost of CF-VAE is a one-time
training cost. Generating a CF with CF-VAE involves
performing a forward pass though the trained model,
which is 100x faster than DICE and REVISE.

In addition to these measures, we evaluate the prox-
imity of CFs generated at test time. Proximity ensures
that we do not produce a very different synthetic pa-
tient as a CF for a given target patient. We observe
that CF-VAE generates CFs that are closer to the
input compared to DICE (Appendix F).

4.4. Qualitative evaluation of counterfactuals

We presented 10 CFs generated by DICE and CF-VAE
to three physicians to score based on plausibility and
relevance. The physicians were blinded to whether
the CF came from DICE vs. our method. A plausible
and relevant CF is one which convinces the physician
that “if the patient looked as in the CF, their interven-
tion prediction would be reversed”. The physicians
evaluated CFs for two interventions - ventilator and
vasopressor. Each physician evaluated 40 CFs, result-
ing in a total of 120 evaluated CFs. On average, the
three physicians marked 73.33% and 60% of the coun-

terfactuals produced by CF-VAE and 23.33% and 40%
of the counterfactuals produced by DICE for the va-
sopressor and ventilator prediction tasks respectively
(Table 2). We exclude REVISE from this evaluation
due to its poor convergence rate (it fails to produce a
CF 75% of the time).

Compared to the two baselines, our method gen-
erates highly valid CFs that are more plausible and
relevant (based on the small sample of expert evalua-
tion), and does so in less time.

Vaso Vent
ACC 0.83 ± 0.01 0.83 ± 0.12
AUC 0.88 ± 0.02 0.91 ± 0.01

Table 3: Intervention prediction results using the slope-

intercept representation for vasopressor and ven-

tilator interventions. Margin of error generated

by running the experiment with 10 random seeds.

Here, ACC = Accuracy, AUC = Area under

ROC curve. Additional results of prediction

under three scenarios 1. Using temporal input

representation, 2. Feature ablation on history

of intervention, and 3. Including only patients

who have received acute interventions at least

once are presented in the appendix.

5. Discussion

Comparison to NG CF (Delaney et al., 2020):
While (Delaney et al., 2020) presents a method to
produce counterfactual ECG signals, their method
is not suitable for a general healthcare context. We
briefly describe the method to generate a CF using
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Figure 4: Counterfactual (CF) generated using DICE (Mothilal et al., 2020) and CF-VAE. The original
patient (blue dotted) does not require a vasopressor within 24 hours. The orange line shows the
generated CF. (a) CF generated using DICE: neither looks plausible nor relevant. Vasopressors
are provided when the blood pressure drops - the DICE CF changes the heart rate and oxygen
saturation. Note that the sharp drop in oxygen saturation is not realistic. The DICE CF is neither
realistic nor relevant. (b) CF-VAE output with slope-intercept representation (c) CF-VAE output
with a time series representation. In both (b), (c) CF-VAE is capturing the relationship between
systolic BP, heart rate and vasopressor.

the method of NG CF (Delaney et al., 2020) here.
Given a patient whose time series (e.g., heart rate) is
shown in blue (Fig. 5), the nearest unlike neighbor
(NUN) in the training set is identified (shown in black
here). Parts of the original time series are replaced
with the NUN values resulting in a counterfactual
as shown in red. Notice how the heart rate drops
precipitously from 150 to 50 beats per minute. The
NG CF method was proposed in the context of ECG
signals. We believe that this could work for ECG
signals (which have been studied in (Delaney et al.,
2020)) - replacing a segment (e.g, the QRS complex)
of the ECG signal of one patient with the QRS com-
plex of another patient. However, given the amount of
variability that exists in vital signs data, the strategy
of stitching together time series from different patients
could result in physiologically implausible counterfac-
tuals. Fig. 17 is an example of a CF generated using
NG CF. In comparison, CF-VAE produces plausible
time series CF. See Fig. 4 for an example of a time
series CF generated using CF-VAE.

Figure 5: Illustration of the method in (Delaney et al.,
2020). The nearest unlike neighbor (NUN)
to the target patient is identified. Segments
of the time series of the NUN is stitched
into the time series of the target patient.
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We compare the validity and run time of (Delaney
et al., 2020) with our time series CF-VAE method.
We see that (Delaney et al., 2020) has a 100% validity
since the method is designed to at least return the
nearest unlike neighbor in the training set as a counter-
factual. The training time of CF-VAE with time series
is higher compared to (Delaney et al., 2020), which
does not require training. However, CF-VAE is 80×
faster than (Delaney et al., 2020) while generating a
CF at test time.

Impact of sparsity term on the CFs: By spar-
sity in perturbation, we mean that a minimal number
of features should be changed. This is an important
consideration as it reduces the cognitive load on a
physician. We include a soft constraint to encourage
CFs that alter a minimal number of dimensions with
the λs||X −XCF ||1 term in Eq. 3. Figures 6 and 16
illustrate two examples with and without sparsity in
the CF-VAE loss function. In both of these examples,
we see that without sparsity, the CF-VAE produces
a CF that changes multiple input dimensions - sys-
tolic blood pressure, temperature and respiratory rate.
However, adding the sparsity constraint results in a
CF that makes large changes only in the systolic blood
pressure. Note that a vasopressor is administered to
increase a patient’s blood pressure up to normal levels.
The CF-VAE with sparsity is correctly identifying the
key feature relevant to the target intervention.

Visualization of the latent space of CF-VAE:
We present the TSNE visualization of the latent space
with varying values of λcf in Figure 7. The two classes
(requires intervention, doesn’t require intervention)
are shown in two different colors. Notice that as the
value of λcf increases, the separation between the two
classes becomes more pronounced - more information
from the binary prediction model gets embedded in
the latent space.

6. Significance

Our motivation for pursuing the counterfactual prob-
lem came from ‘home hospital’ programs, where pa-
tients are sent home to receive care they otherwise
would have received in the hospital (Levine et al.,
2021). The fluctuating availability of hospital beds
and fears of hospital-acquired infection inspires inter-
est in home hospital programs both within and outside
of the US (Knight et al., 2021). Home hospital is an
interesting solution where all parties benefit. Patients

are motivated by home hospital care: attractive bene-
fits of such a program include improved sleep, home-
cooked food, and avoiding hospital-acquired infections.
Hospitals are motivated to send less-acute patients
home to expand bed capacity for more-acute patients.
Past studies show that home hospital care tends to be
substantially less expensive than in-hospital – one
study suggests 52% cheaper (Levine et al., 2021).
Moreover, early studies (Levine et al., 2021; Leff et al.,
2005) suggest that home hospital care enjoys similar
to slightly better outcomes, although these studies
are limited in the number and variety of participants.
Findings confirm that home patients tend to be more
physically active, sleep better, and have fewer bed
sores. Note that there is global interest (not just US
interest) in home hospital programs (Knight et al.,
2021) due to the sometimes diminished availability of
hospital beds and fear of infection.

Selecting the right patients to be sent for home care
is vital for the success of this program, e.g., patients
who might require acute interventions (those that can
only be performed in a hospital) must not be sent
home. The current process of assigning a patient to
home hospital relies on manual workflows of physi-
cians constantly reviewing data, which is laborious
and not scalable. Machine learning algorithms can
be used to learn effective representations from large
datasets containing patient records to identify and
rank candidates based on their suitability for home
hospital care. However, they need to be explainable in
order to gain a physician’s trust and be deployed in
hospitals. Hence, in this paper, we present a method
to explain the decision of a trained ML model through
counterfactuals generated by CF VAE. Given a model
that is trained to determine if a patient can be sent to
home hospital, our CF VAE can be used to generate
counterfactuals and explain the decision of the model.

7. Future work

(Mothilal et al., 2020) argue that diversity of CF is an
important characteristic of a CF generation method.
Diverse CFs alter different feature dimensions to re-
verse the classifier outcome. A potential weakness of
our method is that sampling from a smooth latent
space may reduce diversity. There is a trade-off be-
tween diversity and ease of interpretation and this is
an interesting topic for future work.

Causality is an interesting direction for future work.
The method in this paper is designed to minimally
change an input point to move across a classification
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Figure 6: Example 1: Counterfactual produced with and without the sparsity term. Notice how only the
systolic blood pressure changes when we include the sparsity constraint. Another example is shown
in Fig. 16

Figure 7: TSNE plot of the latent space of a vanilla
VAE and CF-VAE with varying λcf . We
visualize the two classes each point belongs
to: requires intervention, or doesn’t require
intervention. We see that the CF-VAE cap-
tures the classifier boundary and learns to
separate the two classes in the latent space
as λcf increases.

boundary. However, the factors that change are not
necessarily causal.

Physicians already look at so many clinical time
series, our CFs add even more. While our sparsity
constraint is designed to reduce the number of time
series, we may still be increasing the cognitive burden.
One way to mitigate is with a simple English sentence,
e.g., “If this patient’s blood oxygen had been 80% and

falling, and their respiration rate had been 20 bpm
and rising, we would have predicted that a ventilator
would be required in the next 12 hours.” Translating
these numeric time series CFs to meaningful, accurate
English sentences is a good future direction.

Finally, the landscape of possible CFs extends be-
yond time-series. In clinical settings, it also includes
text, images and categorical data. These other data
types have already received attention in the commu-
nity. Ultimately, it would be interesting to synchronize
the CFs across these data types, e.g., show a clogged
artery in the heart from an angiogram, together with
an EKG time series reflecting a heart attack, and a
text clinical record “Patient was diagnosed with a
myocardial infraction”.
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Appendix

Appendix A. Interpretation of the CF-VAE Loss Function

In this section, we interpret the CF-VAE loss function from Equation (3) by building it up one term
at a time. While the most technically interesting use cases for (CF)-VAEs involves datasets with data
dimension exceeding the latent dimension, for ease of exposition and visual clarity we use a simple, synthetic
2-dimensional dataset and a latent space also of dimension 2.

Figure 8: (a) The generated synthetic data. Point colors indicate their labels. Note that this data is largely, but not
entirely, separated. (b) The classification probabilities output by a binary classifier trained on this labeled
data. (c) The synthetic data overlayed on top of the learned classifier.

In Figure 8, we show both the generated synthetic training data and a classifier trained on this data. This
classifier will act as the blackbox algorithm used by our CF-VAE. To help with interpretation, the data is
constructed to be mostly (but not entirely) separable with a non-trivial shape. The learned binary classifier
is a simple feed-forward neural network with 4 hidden layers of 64 neurons each and an un-regularized
crossentropy objective.

Figure 9: The output of a fully-trained CF-VAE instance with all coefficients equal to 1. (a) The original synthetic
data, recolored and overlayed on top of the binary classifier. (b) A collection of 20 randomly-chosen arrows
pointing from the original data point to its generated counterfactual. (c) The locations of all generated
counterfactuals.
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In Figure 9, we show the mapping learned by a CF-VAE with all coefficients set to 1. The left-most plot is
similar to Figure 8(c) in that it shows the 4000 original data points overlayed on the classification boundary,
but the label-based coloring is now replaced with a simple gradient. We give points distinct colors so that we
can uniquely identify them on the other two plots. In the second plot, we show the counterfactuals chosen
by the CF-VAE for 20 randomly chosen sample points: each arrow points from an original point x to its
counterfactual xcf. Finally, the third plot shows the location of all 4000 counterfactuals, colored to match
the original data points. For example, this shows that the violet points on the right of Figure 8(a) were
overwhelmingly mapped to counterfactuals near the center-right of the space.

We now show how the various terms in the loss function build up to this point. As a starting point, we
will begin in Figure 10 with the naive alternative in which the loss function only includes the counterfactual
(crossentropy) term from Equation (3). In the limit, this is equivalent to setting λcf to an increasingly large
number (at which point the CF term dwarfs all other term in the loss).

loss = CrossEntropy(yprobcf , 1 − y)

Figure 10: loss = CrossEntropy(yprob
cf , 1− y). The output of a network trained only with the crossentropy term. The

figure has to be rescaled to show the location of the counterfactual mappings The hyphenated box shows
the bounding box of the original data, and we can see many counterfactuals are generated outside of this
region.

While most arrows correctly point from red regions to blue regions (or the reverse), we see that
these arrows are far longer than those seen in Figure 9 and, worse, map to counterfactuals far out-
side of the original data manifold. This is not surprising, as there is no term explicitly constraining
the trained network to generate realistic data (outside of the certainty claimed by the trained blackbox model).

In Figure 11, we examine what happens if we correct these problems by adding the reconstruction term
||X −XCF||22 to this loss function.

loss = CrossEntropy(yprobcf , 1 − y) + ||X −XCF||22

This shows a drastic improvement over Figure 10, but it still suffers from a few flaws. Firstly, we see that
the counterfactual manifold is contained almost entirely on the decision boundary of the blackbox classifier.
This makes sense and in many cases is useful, as the autoencoder is finding nearby points with a different
classification, but borderline patients do not make for striking counterfactuals and the generated CFs suffer
from a lack of diversity. Second, we see that the arrows are oftentimes not axis-aligned, meaning that they
change multiple parameters at once, which as discussed in Section 3 poses a barrier for interpretability.
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Figure 11: loss = CrossEntropy(yprob
cf , 1− y)+ ||X −XCF||22. The output of a “CF-AE” with only the crossentropy

and reconstruction terms.

We address the first concern by adding the regularization term to the loss, thus turning the counterfactual
autoencoder into a counterfactual variational autoencoder.

loss = CrossEntropy(yprobcf , 1 − y) + ||X −XCF||22 +KL(N (µX,ΣX)|N (0, I))

Figure 12: loss = CrossEntropy(yprob
cf , 1− y) + ||X −XCF||22 +KL(N (µX,ΣX)|N (0, I)). The output of the CF-VAE

minus the sparsity term. In contrast to Figure 11, we see more diversity and some motion away from the
decision boundary.

Figure 12 shows the impact of adding the KL term to the objective. This removes the near-zero-width
regions from the data, thus allowing for the generation of more diverse counterfactuals that are not all right
on the decision boundary. However, many of the counterfactual directions are still far from axis-aligned. This
is fixed by adding the final sparsity term to the loss function.

loss = CrossEntropy(yprobcf , 1 − y) + ||X −XCF||22 + KL(N (µX,ΣX)|N (0, I)) + ||X−Xcf ||1

Going back to Figure 9, we see that the sparsity term lines the arrows up better with the axes while
still maintaining relatively short (and thus meaningful) displacements in counterfactual generation, as well
as diversity of counterfactuals. In practice, one would adjust the weights of the various coefficients in the
CF-VAE to emphasize (or de-emphasize) the aspects most important to their particular use case.
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Appendix B. Ranking results

The problem of explaining the decision of an ML model to physicians was motivated by the problem of home
hospital (Levine et al., 2021). Home hospital is a program in which medical capabilities that would usually
be provided in a hospital are brought to the patient’s home. It is attractive to both patients and healthcare
providers, and is likely to be more relevant as the demand for hospital beds continues to grow (Knight et al.,
2021). Selecting the right patients to be sent for home care is critical for this program - e.g., a patient who
might need an intervention in the ICU within the next few hours must not be sent to home care. The current
process of assigning a patient to home hospital relies on manual workflows of physicians reviewing data,
which is not scalable. ML algorithms can be used to learn effective representations from large datasets and
select patients to be sent to home care, however they need to be explainable in order to gain the physician’s
trust and be deployed in hospitals. In this paper, we base our ML task on the home hospital problem and
frame it using the MIMIC-III dataset (Johnson et al., 2016). We present our CF-VAE, a method to generate
counterfactuals for a given binary classifier. In our experiments, we present results of CF-VAE and other
prior methods on generating CFs for a model trained on the home hospital task. Note that we choose the
publicly available MIMIC-III for our experiments since it facilitates replication. In reality, ICU patients are
not candidates for home hospital care. However, the methods proposed in this paper are transferable to a
home hospital dataset.

We frame the home hospital task as a ranking problem where we rank patients based on the predicted time
to the next acute intervention. A patient who is likely to require an acute intervention far into the future is
more suitable for home hospital when compared to one who might require an acute intervention within the
next few hours. We frame this as a pairwise ranking task: given patients A and B, we rank them based on
who will first require a critical intervention. We model the pairwise ranking function using a neural network,
as proposed in Burges et al. (2005).

We train a multitask model (Fig. 15 (a)) to perform two tasks: (1) produce a ranking score, and (2) predict
if an acute intervention is required in the next 24 hours. We believe that adding the second task would not
hurt the ranking performance (which is the main focus of home hospital) since the two tasks are related. The
architecture and training methodology is shown in Fig. 15 (b).

The ranking and intervention prediction performance of our model demonstrates the effectiveness of our
solution to the home hospital problem. We are able to reliably rank patients, predict interventions, and
generate high quality CFs to explain the ML model’s decision. In this section, we discuss the limitations of
our model and some of the opportunities to improve upon it.

In our experiments, we focused on a single intervention such as a vasopressor as an example of an acute
intervention. This helped us understand whether vasopressor-related CFs were meaningful. However, ideally,
we would predict whether any acute intervention is needed. One complexity that arises is that future acute
interventions are influenced by earlier sub-acute interventions. If a condition is caught early enough, then
future acute interventions may not be necessary. Hence, a home hospital algorithm when implemented should
account for the complex relationship across all interventions.

B.1. Ranking and intervention prediction results

A pair of 48 hour patient windows A and B are input to the model, and the model produces a ranking order
based on who requires acute intervention I first. For the purpose of our experiments, we show results on two
acute interventions I separately: ventilator and vasopressor.

The pairwise ranking and acute intervention prediction performance are shown in Table 4. We see that the
model achieves over 90% accuracy for both tasks. We also notice that using the entire temporal sequence
in the 48 hour window improves the performance of the ranking and prediction task as compared to the
slope-intercept representation, indicating that the hourly pattern of the temporal data helps us rank and
predict acute intervention more accurately. For some interventions, such as ventilators, the presence of past
interventions is very predictive of similar interventions being required in the near future. To test this, we
perform an ablation study excluding information about the history of the target intervention. We find that
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while there is a reduction in ranking and prediction accuracy, the model still learns a good representation
from only the vitals and other interventions.

Experiment Slope-intercept input Temporal input

Vaso Vent Vaso Vent

All features &
Ranking

ACC 0.88± 0.01 0.93± 0.01 0.96± 0.00 0.94± 0.00
AUC 0.95± 0.01 0.98± 0.00 0.99± 0.00 0.98± 0.00

Intv pred
ACC 0.83± 0.01 0.83± 0.12 0.90± 0.01 0.91± 0.01

all patients AUC 0.88± 0.02 0.91± 0.01 0.96± 0.00 0.92± 0.01

Ablation study:
Ranking

ACC 0.89± 0.00 0.86± 0.00 0.96± 0.00 0.88± 0.00
w/o history of AUC 0.96± 0.00 0.93± 0.00 0.99± 0.01 0.94± 0.01
target intv

Intv pred
ACC 0.84± 0.01 0.79± 0.01 0.91± 0.00 0.83± 0.01

as feature AUC 0.89± 0.00 0.83± 0.00 0.96± 0.00 0.86± 0.00

Only patients
Ranking

ACC 0.72± 0.08 0.95± 0.00 0.94± 0.01 0.97± 0.00
who need AUC 0.80± 0.00 0.99± 0.00 0.97± 0.00 0.99± 0.00
intervention

Table 4: Multitask model results from three experiments: 1. Ranking and acute intervention prediction using history

of vitals, interventions and demographics, 2. Results without using the history of the target intervention as

an input feature (to rule out any data leakage), 3. Results when we perform ranking only on the patients

who require acute intervention within the next 24 hours. Error bars generated by running the experiment

with 10 random seeds. Here, ACC = Accuracy, AUC = Area under ROC curve, Intv = intervention.

B.2. Additional figures

We analyze the errors on the pairwise ranking task and observe that the majority of such mistakes are
made when the time difference between the pairs is small which is a harder problem (e.g., ranking patients
who might need intervention 5hr vs 7hr into the future). Figure 13 quantifies the error. For the home
hospital ranking problem, the most important case is being able to distinguish between patients who require
acute-intervention > 24 hours apart - and our error is low in these cases.

Appendix C. Dataset details

We use the vitals, interventions, and other events recorded from patients in the publicly available MIMIC III
dataset (Johnson et al., 2016) in our experiments. We segment the temporal patient data into 48 hour windows
as datapoints to perform ranking and acute intervention prediction over the next 24 hours. We perform a
patient-wise split of 70%-15%-15% for training, validation, and testing. We use features corresponding to
vital signs (heart rate, systolic blood pressure, diastolic blood pressure, oxygen saturation, respiratory rate,
temperature), interventions (ventilator, vasopressor, adenosine, dobutamine, dopamine, epinephrine, isuprel,
milrinone, norepinephrine, phenylephrine, vasopressin, colloid bolus, crystalloid bolus), and demographics
(age, gender). We use the data pre-processing pipeline in (Wang et al., 2020) to transform the MIMIC III
raw vital signs and interventions into hourly time series.

We use the publicly available MIMIC III data set for the experiments in our paper. MIMIC III consists of
deidentified data from 53,000 patients admitted to the Beth Israel Deaconess Medical Center in Boston. The
temporal patient data is segmented into 48 hour windows, where each window is a data point. For each 48
hour patient window, we have an associated time to next acute intervention (tintv) and a binary label of
whether they receive an acute intervention within the next 24 hours (intv24). Given the 48 hour window
of features for patient A and B, the multitask model produces 3 outputs: 1) pairwise ranking of A, B; 2)
prediction that A receives an acute intervention within 24 hours; 3) prediction that B receives an acute
intervention within 24 hours.
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Figure 13: Pair-wise ranking error rate based on the difference in time to intervention between the pairs.
In the top figure, the error rate is lower when one of the patients requires an intervention in >
24 hours. This is important since we want to identify such candidates for home hospital. The
bottom shows ranking performance when evaluated only on pairs where an acute intervention was
required within 24 hours - we see a larger error rate when the two patients are < 5 hours apart.

To construct the pairs for ranking, we randomly choose two data points that have different values of tintv.
We randomly choose 50000 pairs of data points for training and 20000 for validation and test. In this paper,
we present results on two acute interventions: vasopressor and ventilator. Out of all the patients, 36% receive
a vasopressor and 52% receive a ventilator. The motivation for our choice of 24 hours as the intervention
prediction window is the home hospital design where patients sent to home hospital are visited by a physician
at home every day. Hence, we need to ensure that the patient does not crash within 24 hours, before a
physician visit.

Appendix D. Effect of the weight terms in the loss function

The different terms in the loss function are in tension with each other. The VAE loss is optimizing for
the reconstructions to lie on the data manifold, whereas the counterfactual loss is trying to produce a
reconstruction that lies on the opposite side of the boundary. It is interesting to see how the weight on the
counterfactual loss term (λcf ) affects the CFs in terms of the evaluation metrics considered here.

In these experiments, we set the sparsity term (λS) to zero, since the effect of the sparsity term is already
demonstrated in Figure 5. We vary the λcf to be between 1 and 105 and evaluate the generated counterfactuals
in two ways: 1) Validity: how often the output is of the opposite class, 2) Likelihood: log likelihood of the
counterfactual under a KDE fit to the training data. We show these results in Figure 14(a) and Figure 14(b).

We observe a competing effect between these methods of evaluation. On the one hand, as the weight on
λcf grows, the more likely the generated point is of the opposite class. On the other hand, as the weight on
the VAE regularization and reconstruction terms grows, the more likely the generated point arises from the
KDE on the input space. Hence, we are making a trade-off while selecting the weight for this loss term.

Appendix E. Model implementation details

The data were pre-processed using the pipeline presented in MIMIC-Extract (Wang et al., 2020).
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Figure 14: (a) Validity - percentage of produced reconstructions that lie on the opposite side of the boundary
when using different values of λcf , (b) Log likelihood under a KDE model fit to the training data
computed when using different values of λcf .

Figure 15: (a) Model architecture for producing ranking and acute intervention prediction output. The architecture
consists of a transformer encoder for modeling the temporal sequence of patient data. (b) Training pipeline
for the ranking and predicting intervention.

In the case of the slope-intercept representation, the multitask model was an MLP with 3 layers with ReLU
activation and the CF-VAE encoder was an MLP with 4 layers with ReLU activation.

While using the time series representation, the multitask model consists of a linear embedding layer, a
multihead transformer encoder, followed by 3 Fully connected layers. The CF-VAE architecture consists of a
linear embedding layer and a multihead transformer layer followed by 1 Fully connected layer.

The hyperparameters for the multitask model and CF-VAE are presented in Tables 5 6, for both the
slope-intercept and time series representation of the vital signs. The hyperparameters were chosen by
performing a grid search on the validation data. The experiments were performed on an NVIDIA Tesla V100
GPU.

Appendix F. Proximity of counterfactuals to the original input

We can measure the mean squared error between the original input and the generated counterfactual as a
measure of the deviation of the CF, which we call proximity. Proximity ensures that we do not produce a very
different synthetic patient as a counterfactual for a given target patient. Prior methods like DICE directly
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(a) Multitask model (b) CF VAE

Hyperparameter Value
Size of FC layer 1 30
Size of FC layer 2 10
Size of FC layer 3 10

batch size 32
learning rate 1e−05

epochs 50

Hyperparameter Value
Size of FC layer 1 40
Size of FC layer 2 100
Size of FC layer 3 60
Size of FC layer 4 30

batch size 32
learning rate 1e−03

epochs 50

Table 5: Hyperparameters in the slope-intercept representation setting

(a) Multitask model (b) CF VAE
Hyperparameter Value

Size of linear embedding layer 30
# transformer encoder layers 4

# heads in multihead self-attention 5
Size of FC layer 1 10
Size of FC layer 2 20

batch size 64
learning rate 1e−04

epochs 100

Hyperparameter Value
Size of linear embedding layer 100
# transformer encoder layers 2

# heads in multihead self-attention 2
Size of FC layer 100

batch size 64
learning rate 1e−05

epochs 100

Table 6: Hyperparameters in the time series representation setting

optimize for proximity at test time. CF-VAE does this implicitly via a soft constraint: the log likelihood
term Eq.1, under a Gaussian output distribution, reduces to the MSE between the counterfactual and input
Eq. 3. The method in Delaney, et. al. (Delaney et al., 2020) encourages proximity by changing only certain
regions of the time series and keeping the rest as in the original signal. We compute the mean squared error
between the original input and generated counterfactual across the test patients for the different methods
presented in Table 7. We see that our method outperforms both DICE and Delaney, et. al.

Ventilator Vasopressor
DICE 34.48 1.8

Delaney et. al. (Delaney et al., 2020) 4.8 0.48
CF-VAE 0.008 0.10

Table 7: Proximity (MSE) between CF and input; lower is better.

Appendix G. Comparison to (Delaney et al., 2020) - time series counterfactual

In (Delaney et al., 2020), the authors present a method to produce CFs. We believe that this could work
for ECG signals (which have been studied in (Delaney et al., 2020)) - replacing a segment (e.g, the QRS
complex) of the ECG signal of one patient with the QRS complex of another patient. However, given the
amount of variability that exists in vital signs data, combining patients’ vital signs can lead to implausible
counterfactuals. Figure 17 is an example of a CF generated using (Delaney et al., 2020).

We compare the validity and run time of (Delaney et al., 2020) with our time series CF VAE method. We
see that (Delaney et al., 2020) has a 100% validity since the method is designed to at least return the nearest
unlike neighbor in the training set as a counterfactual. The training time of CF VAE with time series is
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Figure 16: Example 2: Counterfactual produced with and without the sparsity term.

higher compared to (Delaney et al., 2020), which does not require training. However, CF VAE is 80× faster
than (Delaney et al., 2020) while generating a CF at test time.

Ventilator Vasopressor

Method % CF % CF Time (s) Time (s)
validity validity (train) (test)

Delaney et. al. (Delaney et al., 2020) 100% 100% - 1.66
CF VAE time series 95% 96% 550 0.02

Table 8: Comparison of the validity and run time of Delaney, et. al. (Delaney et al., 2020) and time-series
CF VAE. The validity of (Delaney et al., 2020) is 100% because at minimum, it returns the nearest
unlike neighbor in the training set as a counterfactual.

Appendix H. Visualization of mistakes made by CF VAE

Note that the crossentropy loss is minimized to obtain a counterfactual - this does not guarantee a coun-
terfactual 100% of the time. Additionally, the black-box binary prediction model is also not guaranteed
to produce correct labels. See Figure 18 for one such example of an incorrect counterfactual. The original
patient required a vasopressor the next day. The counterfactual decreased the systolic blood pressure for the
scenario when a vasopressor would not be required - which does not align with how vasopressors are used
clinically. We would have to increase the binary prediction model accuracy and increase CF validity of CF
VAE to minimize the number of such mistakes.
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Figure 17: CF generated using the method of Delaney et. al.

Appendix I. Experiments on images of handwritten digits (MNIST)

So far in this paper, we consider clinical time series from MIMIC III and present results based on CFs
generated on this data. However, CF VAE is a general solution that can be applied to a given binary classifier
to generate counterfactuals. We demonstrate this with experiments on a popular image dataset of handwritten
digits (MNIST dataset Deng (2012)). We consider the task of classifying digits 8 vs 3 from handwritten digit
images.

We train a neural network with linear layers on this task and achieve an accuracy of 99% for performing
this classification given an input image containing the digit. We then train a CF VAE model to produce
a counterfactual image given an original image. The goal here is - given an original image of ‘8’, produce
an image that would be classified as ‘3’ under the blackbox classifier. Two example counterfactual images
produced are shown in Figure 19, 20. Note that, in both cases, CF-VAE creates an image that is no longer
an ’8’ and of a different class. Moreover, the type and angle of the ’3’ counterfactual matches the type and
angle of the ’8’.
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Figure 18: Example of an incorrect counterfactual: the CF indicates that the systolic blood pressure would
have to be lowered if vasopressor is not required. Vasopressors are given to increase a patient’s
blood pressure.

Figure 19: A binary classification model trained to classify images that are 8 vs 3 classifies the original image
(shown on the left) as an ‘8’. The corresponding counterfactual generated is shown on the right.
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Figure 20: A binary classification model trained to classify images that are 8 vs 3 classifies the original image
(shown on the left) as an ‘8’. The corresponding counterfactual generated is shown on the right.
Notice that the counterfactual maintains the style of the original input.
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