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Abstract

Healthcare datasets often include patient-
reported values, such as mood, symptoms, and
meals, which can be subject to varying lev-
els of human error. Improving the accuracy
of patient-reported data could help in several
downstream tasks, such as remote patient mon-
itoring. In this study, we propose a novel de-
noising autoencoder (DAE) approach to de-
noise patient-reported data, drawing inspira-
tion from recent work in computer vision. Our
approach is based on the observation that noisy
patient-reported data are often collected along-
side higher fidelity data collected from wearable
sensors. We leverage these auxiliary data to im-
prove the accuracy of the patient-reported data.
Our approach combines key ideas from DAEs
with co-teaching to iteratively filter and learn
from clean patient-reported samples. Applied
to the task of recovering carbohydrate values for
blood glucose management in diabetes, our ap-
proach reduces noise (MSE) in patient-reported
carbohydrates from 72g2 (95% CI: 54-93) to
18g2 (13-25), outperforming the best baseline
(33g2 (27-43)). Notably, our approach achieves
strong performance with only access to patient-
reported target values, making it applicable to
many settings where ground truth data may be
unavailable.

Data and Code Availability Code and simulated
data are available at tinyurl.com/ctdae4pat. Sim-
ulated data were generated with a publicly avail-
able implementation of a commonly used simulator of
type-1 diabetes (Man et al., 2014; Xie, 2018). Real-
world data came from the 2020 and 2022 Ohio BGLP
challenges, which are publicly available (with a data-
use agreement) (Marling and Bunescu, 2018, 2020).

Figure 1: Overview. In our setting, given access
to both subjective patient-reported data
and higher-fidelity data from wearable sen-
sors, we aim to denoise subjective measure-
ments.

Institutional Review Board (IRB) This work is
not regulated as human subjects research since data
from the BGLP Challenge are stripped of identifiers.

1. Introduction

Motivation & Problem. With the increasing ubiq-
uity of wearable sensor technology (e.g., fitbit), there
has been an explosion in the number of studies seek-
ing to correlate data from these technologies with
patient-reported data (e.g., near-falls), with the goal
of remote patient monitoring (Kious et al., 2019;
Hauth et al., 2021). Patient-reported outcomes have
been used in studies of cancer treatment (Nguyen
et al., 2020), multiple sclerosis (D’Amico et al., 2019),
diabetes (Wee et al., 2021), and mental health (McIn-
tyre et al., 2022), and are also used to quantify
patient-experience of care (Bull et al., 2019). How-
ever, patient-reported data are often noisy and dif-
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ficult to validate (Churruca et al., 2021). The ac-
curacy of these data may change day-to-day or even
hour-to-hour (McKenna, 2011), making it challeng-
ing to detect meaningful changes over time (van der
Willik et al., 2020). Moreover, in many cases, ground
truth is difficult if not impossible to obtain. In light of
these limitations, we aim to develop an approach that
can denoise patient-reported data and increase their
utility in downstream tasks (e.g., adverse outcome
prediction). Our approach is based on the observa-
tion that while ground truth values for the target
variable may be unavailable, other more reliable data
streams (i.e., data collected from wearable sensors)
are often collected alongside noisy patient-reported
measurements. We hypothesize that these more reli-
able related data streams can help in recovering the
noisier variables (Figure 1).

Healthcare Inspired Use Case. Throughout
this work, we take inspiration from a specific real-
world problem affecting millions in the US: blood glu-
cose management. Individuals with diabetes monitor
several variables over time, including their blood glu-
cose, insulin administrations, and carbohydrate in-
take. Blood glucose, when measured by a continu-
ous glucose monitor (CGM), has relatively little noise
(Shah et al., 2018), while the amount of carbohy-
drates in a meal are patient-reported and subject to
error (Brazeau et al., 2012; Mehta et al., 2009). Rec-
ognizing this variation in the level of noise across sig-
nals, we propose an approach that utilizes objective
measurements (e.g., blood glucose) to update noisy
patient-reported data. In the context of diabetes, ret-
rospective correction of carbohydrates could help in
downstream tasks: patients can learn when they are
over- or under-reporting and adjust in the future, ul-
timately improving disease management. While we
focus on challenges related to blood glucose man-
agement, our approach could apply to many other
settings in which patient-reported data are collected
alongside data from wearables: patient-reported near
falls paired with data collected from inertial mea-
surement units, mood scores paired with step count
data collected from a fitbit, and self-reported symp-
toms paired with heart rate and other data (Kious
et al., 2019; Hauth et al., 2021; Quer et al., 2020). As
wearable technologies become increasingly prevalent
(Smart, 2018; Samet, 2022), we expect this setting
will only become more common.

Gaps in Existing Work. Denoising autoen-
coders (DAEs) (Vincent et al., 2008) have been used
to accurately denoise signals, including medical im-

ages (Gondara, 2016), ECG signals (Xiong et al.,
2016), and power system measurements (Lin et al.,
2019). However, this approach generally requires
access to both patient-reported measurements and
ground truth measurements at training. In many
real-world settings (including ours), only patient-
reported target samples are available at training (we
don’t have access to paired ground truth patient-
reported data). Work in computer vision has ad-
dressed this problem through extensions that either
require paired noisy samples for each data point (e.g.,
multiple images of the same object) (Lehtinen et al.,
2018) or rely on patch-based analysis (Krull et al.,
2018; Laine et al., 2019; Xie et al., 2020; Batson and
Royer, 2019). Similar approaches do not extend to
patient-reported data, where paired samples rarely
exist and patch-based techniques do not apply due
to a lack of spatial feature dependencies. Others
have proposed techniques that leverage knowledge of
the noise distribution to recover the clean signal, but
their applicability is limited in our setting, as noise
for patient-reported variables is rarely weak or known
(Kim and Ye, 2021; Moran et al., 2019; Xu et al.,
2020). In contrast to prior work that has focused on
missingness in patient-reported datastreams (includ-
ing meal reports in diabetes management), we focus
only on de-noising existing measurements.

Our Contributions. In light of these gaps, we
adapt DAEs for patient-reported data. Our ap-
proach, ‘Noise+2Noise’, learns to denoise a target sig-
nal (e.g., patient-reported meals) given only poten-
tially noisy target samples (without access to ground
truth) and an auxiliary clean signal (e.g., blood glu-
cose measurements). Inspired by work in image de-
noising (Lehtinen et al., 2018; Xu et al., 2020), our
approach augments existing DAEs with the auxiliary
signal, leveraging the relationship between the aux-
iliary and target signals. In addition, we adapt a
novel co-teaching approach from the noisy label liter-
ature (Han et al., 2018) to train two DAEs. Our
approach works by iteratively selecting lower-noise
target samples for training. Through a case study
in blood glucose management, we demonstrate that
our proposed approach can more accurately recover
patient-reported data in the presence of noise com-
pared to several baselines. Our contributions are as
follows:

•We formalize an important problem in remote
patient monitoring related to denoising patient-
reported data.
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Figure 2: In vanilla DAE training, access to a clean
target identified a priori to training (x) is
assumed. Noise (m) is added to x to create
noisy sample y, and the DAE is tasked with
reconstructing x.

•We propose a novel approach based on DAEs that
leverages an auxiliary low-noise signal to denoise a
target variable without access to ground truth target
data.

•We demonstrate improved denoising of carbohy-
drate values for blood glucose management compared
to baselines in a simulated data setting.

•We propose and validate a proxy measure for eval-
uating carbohydrate denoising when ground truth is
unavailable. Our approach outperforms baselines on
a real-life dataset based on this metric.

2. Background and Related Work

Our approach takes inspiration from work in DAEs,
commonly used in image denoising, and work in in
noisy label learning. Below we briefly provide back-
ground on these topics.

In DAE training, a model input is corrupted and a
network is tasked with recovering the original input
(Figure 2). In this way, the network cannot learn the
identity, unlike in basic autoencoder training (Vin-
cent et al., 2008). Recent work has focused on using
DAEs to recover clean signals from only noisy signals.
The vast majority of this work lies in image analy-
sis and builds off of “noise2noise” (Lehtinen et al.,
2018), an approach that uses multiple noisy instances
of the same image to learn to denoise the image. The
approach relies on the fact that if the noise is zero
mean, using a secondary noisy instance (besides the
input image) as a target will produce a network that
learns the clean image, in expectation, when enough
training data are available. When paired samples are
unavailable, other approaches exploit patches sam-
pled from the image (Laine et al., 2019; Xie et al.,
2020; Batson and Royer, 2019), but these do not ap-

ply to our setting since the target data we aim to
correct are univariate. Other approaches eschew re-
lying on inter-variable relationships but rely heavily
on a known noise function (Moran et al., 2019; Kim
and Ye, 2021) or a low expectation and variance noise
function (Xu et al., 2020). Our approach builds off
Xu et al. (2020), learning to reconstruct a signal from
only potentially noisy samples of that signal, but in
contrast to Moran et al. (2019) or Kim and Ye (2021),
we do not make strong assumptions about the noise
distribution. Instead, we leverage an auxiliary signal
and iteratively filter out noisy samples.

Our approach is, in part, related to work in noisy-
label learning, where a common approach involves
identifying and reweighting samples with clean la-
bels during training. Samples are filtered based on
gradient values (Ren et al., 2020), Jacobian rank-
ing (Mirzasoleiman et al., 2020) or some latent state
(Lee et al., 2019; Wu et al., 2020). Co-teaching (Han
et al., 2018), which builds off of mentor net (Jiang
et al., 2018), filters out incorrectly labeled samples
by utilizing two networks in parallel. For each net-
work, backpropagation is performed using only sam-
ples within the current mini-batch for which the loss
of the other network is lowest. Intuitively, samples
with incorrect labels are likely to have higher loss and
therefore be removed. Using two networks in parallel
provides robustness to outliers and initially misclas-
sified samples, to which single-network boosting-style
approaches are sensitive. To date, these approaches
have been primarily explored in supervised and semi-
supervised settings. In contrast, we consider an un-
supervised setting in which ground truth labels are
unavailable and, instead, the input signals themselves
are corrupted. To the best of our knowledge, such a
co-teaching approach has not been explored in the
context of denoising.

3. Problem Setup

Problem Overview. Given a noisy target variable
and a reliably measured auxiliary time-series, we aim
to recover the true values of the target variable. We
assume there exists a relationship between the auxil-
iary and target variables, and that some samples from
the noise distribution associated with the target vari-
able will be close to zero, although which samples is
unknown in advance.

Formalization. Given dataset D with k samples
D = {yi,bi}ki=1, where yi ∈ R denotes a noisy target
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Figure 3: ‘Noise+2Noise’. Sample selection is performed with each DAE’s output when given the uncorrupted
y signal, but backpropagation is performed on the model’s output when given a corrupted y signal.
The loss values of DAE1 are used to select the sample for backpropagation for DAE2 and vice
versa. PR(t) denotes the R(t)th percentile, where R(t) is a function of iteration t. b signals are
aligned so that non-zero y values always occur exclusively at the first position in the input window.
The value of y is passed through to the decoder at each timepoint in a separate channel from b.

sample and bi ∈ RT denotes an auxiliary time-series.
True target values, {xi}ki=1, are unknown. For each
sample, yi = xi + ni, where ni denotes a random
variable drawn from some unknown distribution, i.e.
ni ∼ N . We aim to learn some mapping: f : (y,b) →
x, given D.

Assumptions. We assume that the distribution
N is independent of both b and y. We assume that b
is related to x, such that some approximate mapping
b → x exists. Implicitly, we assume that the timing
of the target variable, relative to b, is fixed and that
the ordering is such that a mapping is possible (i.e.,
if x causes a change in b, then b values must follow
y in time so x can be learned retrospectively). We
also assume that some values of n are near zero such
that within training data D, there exists a subset S
with sufficient size for training such that the mean
and variance of ns∀s ∈ S are negligible compared
to the mean and variance of xs∀s ∈ S. We assume
that the distribution of low noise samples is such that
they cover all regions of the input; i.e. that S does
not exclude entire regions in the range of possible
y values. Finally, we assume that the relationship

between b and x can be accurately captured with a
recurrent neural network (RNN).

While we note that these assumptions allow for
noise of arbitrary average magnitude, access to some
low-noise (though unlabeled) samples is assumed.
Similar assumptions are common in healthcare appli-
cations (Chang et al., 2020; Geng et al., 2022; Zhang
et al., 2021), where access to a small number of low
noise or ground truth samples (through data cura-
tion) is possible but labor intensive and costly (e.g.,
prospective data collection or clinician review).

4. Methods

Overview. Our method, ‘Noise+2Noise’ (N+2N),
is summarized in Figure 3. At a high level, we fil-
ter out noisy samples during training, refining the
model parameters on selected samples of y estimated
to have the least noise. To identify these higher fi-
delity samples within a batch, we identify the subset
of samples with loss values below theR(t)th percentile
of the batch, where R(t) is an increasing function of
iteration t. These ‘low-noise’ samples are augmented
with additional noise and, along with corresponding
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b vectors, are input to the DAE, which outputs a
reconstruction ŷ. We then backpropagate using the
squared error between ŷ and y. This corresponds
to training on the samples estimated to have the
least noise, while utilizing the noisy signal as input.
To increase robustness, we consider an ensemble ap-
proach in which we use co-teaching to train two DAEs
(DAE1 and DAE2). During training, the samples
identified as low-loss by DAE1 are augmented and
passed to DAE2 for backpropagation, and vice-versa.
The auxiliary signal b is input to the model during
both the sample selection and backpropagation steps,
allowing our approach to function even when the vari-
able of interest y is too noisy or low-dimensional to
be denoised alone.

Denoising Autoencoder. In our setup, addi-
tional noise (m) is added to y to produce z, a ‘dou-
bly’ noisy measurement of x. z and b are input to
a network (henceforth denoted DAE) that outputs
ŷ = DAE(z,b), and the network is trained to recon-
struct y: loss is measured between y and ŷ. As shown
by Xu et al. (2020), when the expectation and vari-
ance of the noise distribution N are negligible com-
pared to those of the signal, the model parameters
that minimize the loss between ŷ and y are very close
to the optimal parameters of a model trained on data
that is identified as clean prior to training. Thus, pro-
vided the signal to noise level is high enough, we can
pass y to DAE and expect a reduction in noise, with
an output much closer to x, at inference time.

Co-teaching DAEs. We do not expect the noise
value to be below a certain threshold at all times,
but we do assume that some of the samples will have
noise close to zero. We identify and train using these
samples via an adapted co-teaching approach (Han
et al., 2018). We utilize two DAEs, and for each, we
backpropagate using only the samples for which the
denoised y values from the other DAE are near the
original y values. If the denoised y values approach x,
we are then selecting samples for which the estimated
noise n is lowest.

Claim: When using co-teaching to train two DAEs
(DAE1 and DAE2) in parallel, denoised y values
ỹ1 = DAE1(y,b) and ỹ2 = DAE2(y,b) approach x.
Justification: Based on the main result of Xu et al.
(2020), if the two DAEs are trained in a standard
fashion, ỹ1 and ỹ2 converge to approximately x if,
in the training data, the expectation and variance of
the signal are much greater than those of the noise.
We have assumed that such a sub-sample exists in
our dataset, and propose that co-teaching is likely to

select such a sub-sample. Note that each model is
trained on data where additional noise is added to y
and is tasked with reconstructing y, so they will not
perform well if they output an identity function. Be-
cause the noise n is independent of both y and b, only
the true component of the signal can be learned dur-
ing training, so the models will learn some function of
x. The intuition motivating Han et al. (2018) is that,
in a noisy-label-learning setting, small-loss instances
occur either when both the model and label are cor-
rect, OR when the model has memorized an incorrect
label. By gradually decreasing the sample size of the
training data based on loss values at each iteration,
noisy label samples are dropped before the model can
memorize them. In a similar vein, in our setting, a
model will output a cleaned value ỹ that is close to y
when either it has learned the correct function x and
y is near to x, or if the model has memorized part
of the noise. By employing the co-teaching sample
selection method, we believe that the model selects
the clean samples before it can memorize the noisy
ones. We note that it is not impossible for the model
to learn a biased function of x, but in practice, we
have found that this approach works well even when
there is fairly substantial bias in the noise.

Sample Selection. We select the samples with
the lowest estimated noise for backpropagation. If
ỹ1 and ỹ2 approach each network’s estimated value
of x, then DAE1’s estimate of n, the noise between
x and y, is approximately y − ỹ1 (and similar for
DAE2). For loss function L, we use L(ỹ1, y) and
L(ỹ2, y) to select samples. Given a batch {yi}ni=1, at
iteration t, we identify the subset of samples with
values of L(ỹ1i , yi) below the R(t)th percentile as
J1 = {j : L(yj , ỹ

1
j ) < PR(t)(L({yj}, {ỹ1j }))}, where

PR(t) denotes the R(t)th percentile, and similarly de-
fine J2 for DAE2. As in Han et al. (2018), we begin
by training on the full sample. Over the course of
training, as the DAEs are expected to become more
accurate, we gradually reduce the sample. This pre-
vents the memorization of noisy samples that can oc-
cur later in training. Hyperparameter τ ∈ (0, 1) in
the pseudocode of Figure 3 represents the maximum
proportion of samples removed and Ek represents the
iteration at which we stop increasing the proportion
of samples removed. A linear decrease in sample size
as a function of iteration t is implemented by using
the lowest-loss R(t) = (1−Maximum( t

EK
τ, τ))·100%

of samples for backpropagation.

Training. Each DAE is trained on the samples for
which the other network estimates that the noise is
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lowest: samples selected by DAE1 (yj where j ∈ J1)
are augmented with additional noise mj ∼ M to
generate zj values. zj , along with corresponding bj

vectors, are input to DAE2, which outputs a recon-
struction of yj : ŷ2j . We then backpropagate using

the squared error between ŷ2j and yj . Similarly, we

only use samples yj where j ∈ J2, augmented with
mj ∼ M , to backpropagateDAE1. By selecting sam-
ples based on L(ỹ, y) rather than based on L(ŷ, y),
we are able to select a sample independent of sec-
ondary noise value m. Selecting samples dependent
on m would be confounding because samples might
then be selected based on how low the value of m
is at the current iteration, rather than the value of
n, which is hidden. Back-propagation is performed
on an input that does not include unaltered y val-
ues, so the model is not likely to learn the identity
function. Sample selection is always performed by
the other DAE, so compared to boosting or other
one-network approaches, our method is less sensitive
to error propagation from wrongly selected samples
early in training.

Co-teaching+. We utilize co-teaching+ (Yu
et al., 2019), where samples for which the models dis-
agree are selected for backpropagation. As a result,
each model learns from the samples for which the
other model’s estimates were better. This prevents
the models from learning from the samples that they
agree upon, which prevents convergence (Yu et al.,
2019), maintaining unique strengths in each model.
We remove the σ% of samples for which the models’
outputs are closest (σ is a hyperparameter). This
step is performed prior to the sample selection step:
the σ% of samples for which the distance between ŷ1

and ŷ2 are lowest are removed, and then the remain-
ing samples for which L(ỹ1, y) is lowest are used for
the backpropagation of DAE2 and vice versa.

5. Real-world Problem Setup: Blood
Glucose Management

To explore the benefit of our proposed approach, we
consider a real-world problem setup based on blood
glucose management that inspired the setting de-
scribed in Section 3. Nearly two million people in
the US have type I diabetes and require insulin to
maintain healthy glucose levels. They must deliver
boluses of insulin through an injection or an insulin
pump prior to eating to counteract the rise in blood
sugar that results from meals. Bolus amounts are cal-

culated based on patient-reported estimates of carbo-
hydrates. Carbohydrates and bolus insulin generally
cause blood glucose values to increase or decrease af-
ter a delay of 30 minutes to an hour. In our setup,
carbohydrates correspond to x values, glucose levels
and insulin values correspond to b values.
Blood glucose forecasting and control have been

extensively studied (Silvia Oviedo, 2016; Fox et al.,
2020). Accurate models for blood glucose dynamics
are critical to the development of algorithms for man-
aging blood glucose in individuals with diabetes both
in terms of patient-selected treatment options and
automated solutions. However, carbohydrates con-
sumed are patient-reported and as a result are often
inaccurate Brazeau et al. (2012); Mehta et al. (2009).
This in turn leads to inappropriate doses of insulin
and poor blood glucose management. Besides mis-
estimation, there are other sources of inconsistency
between recorded carbohydrate values and their ef-
fects on blood glucose. Variability in meal types is
generally poorly captured, which is problematic be-
cause the effect of carbohydrates on blood glucose can
be moderated by how quickly a meal was consumed,
or the amount of protein, fat and other nutrients in-
gested. Additionally, the timing of a meal may not
be recorded accurately. These factors alone make uti-
lizing carbohydrate information difficult, even when
carbohydrates are accurately recorded. In an un-
supervised setting, denoising approaches could learn
representations of carbohydrate values that incorpo-
rate these other sources of variability. These repre-
sentations could be more relevant to blood glucose
management than the exact number of grams con-
sumed. This could improve performance of forecast
and control algorithms.

6. Experimental Setup

We evaluate our approach in the context of learning
to correct noisy patient-reported carbohydrate mea-
surements. We compare performance to several base-
lines across real and simulated datasets.

6.1. Datasets

We utilize two type I diabetes-based datasets. The
simulated dataset provides access to ground truth
to which we can directly compare our method’s de-
noised outputs. The real dataset provides a more
challenging setting for quantifying the efficacy of
our approach, but corresponds to real-world scenar-
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ios. Both datasets are publicly available and have
been previously explored in the context of forecast-
ing and control (Man et al., 2014; Xie, 2018; Marling
and Bunescu, 2018, 2020). Both datasets consist of
blood glucose, bolus (fast-acting) insulin, basal (slow-
acting) insulin, and carbohydrate values. All vari-
ables were scaled to be between zero and one. For
both datasets, time-series trajectories for each pa-
tient were split into windows of 2 hour length (T = 24
5-minute time points). We ignore windows where a
carbohydrate occurs in anywhere but the first posi-
tion, using only windows with no carbohydrates or
carbohydrates at the beginning of the window during
training. This means we also ignore windows with
more than one carbohydrate present. In a real-world
setting these values could be updated recursively, but
we simplify our setting here. The auxiliary signal is
assumed to be cleaner than the highly noisy target
variable, but not completely noise-free. In practice,
the auxiliary signal can have noise- there is approxi-
mately 5% noise in both the simulated and real blood
glucose monitor data used in experiments.

Simulated. Our primary analyses are performed
on data generated using the UVA-Padova simulator
(Man et al., 2014) via a publicly available implemen-
tation (Xie, 2018). For ten simulated individuals (the
“adult” patients modeled in the simulator), we gener-
ated approximately 150 days worth of data each, in 30
day roll-outs of the simulator. Carbohydrate values
serve as x values, while CGM values and insulin deliv-
ered as output by the simulator serve as b values. We
use noise proportional to the true carbohydrate value,
as studies on the accuracy of carb counting report er-
rors relative to the total carbs consumed (Brazeau
et al., 2012). Also based on Brazeau et al. (2012),
we use a noise distribution with a negative bias, as
the carbs were found to be more-often under-reported
than not. We therefore set y = (1 + N (−.25, .5))x.
We then cap y below and above at 1 and 200 to keep
values realistic. We consider additional noise distri-
butions as sensitivity analyses. Bolus values were cal-
culated based on the noisy carbohydrate values. See
Appendix A for more details on data generation.

Real. This dataset includes both the OHIOT1DM
2018 and 2020 datasets, developed for the Knowledge
Discovery in Healthcare Data Blood Glucose Level
Predication Challenge (Marling and Bunescu, 2018,
2020). The data pertain to 12 individuals, each with
approximately 10,000 5-minute samples for training
and 2,500 for testing. 12% of glucose values are miss-
ing, but we do not include windows with missing glu-

cose values. We do not include windows with more
than one carbohydrate measurement in our analy-
sis. We sum carbohydrates to the first timepoint if
they are less than 15 minutes apart to maximize the
amount of usable data. We include only individu-
als with at least 100 training carbohydrate measure-
ments, as fewer are not sufficient for learning a model.
We note that ground truth carbohydrate measure-
ments are not available for this dataset. Only poten-
tially noisy patient-estimated values are reported.

6.2. Baselines and Upper Bound

For all non-coteaching methods, we train two DAEs
in parallel and report results on their averaged output
for a fair comparison. We also note that all models
receive the same auxiliary variables (blood glucose/
insulin) as input in an identical fashion. Overall time
complexity is similar for all methods because there is
only one back propagation per sample per-DAE.

• CAE: An upper performance bound. This model
is an autoencoder trained with ground truth data,
which we would expect to perform better than any
method without access to ground truth data. In this
oracle approach, x values are substituted for y values
during training, but y values are used during testing.

• NAC: Our first baseline. A DAE that treats the
noisy data as clean which has been shown to perform
well in low noise settings (Xu et al., 2020).

• NR2N: Our second baseline is noisier2noise
(Moran et al., 2019), which uses the known noise dis-
tribution to recover the clean signal. NR2N trains
similarly to NAC, but at evaluation time a trans-
form is used to recover the clean values (briefly, if the
distribution of N is known and we set M = N , the
model should learn to recover half of the noise so the
value used at evaluation is 2ŷ − z).

• SUP: Our motivating setting can be re-framed
as a supervised learning problem: predict y (or x)
values using b values as input. Depending on the
noise distribution, it is possible that a model trained
on noisy y values could learn to predict the correct
x, using similar logic to that found in Lehtinen et al.
(2018). We therefore use this supervised setting as
a naive baseline. We simply input b to the same
network used in the DAE setting and calculate loss
as (ŷ−y)2 during training, but here the model has no
information regarding y or z. As in the DAE setting,
at test time we evaluate (ỹ − x)2.

• SUPCT: We apply co-teaching to the supervised
setting (SUP), to ensure that performance gains ob-
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served are due to the combination of DAEs and co-
teaching, and not co-teaching alone. Here, the model
is tuned and trained identically to N+2N, except the
model does not receive y or z values.

6.3. Implementation & Training Details

Each DAE is implemented as a 2-layer bidirectional
LSTM with 100 hidden units. The LSTM model
was chosen because it has been shown to perform
well in blood glucose forecasting, which is a closely
related challenge (Rubin-Falcone et al., 2020; Mir-
shekarian et al., 2019; Rabby et al., 2021).The final
hidden state is passed to a fully connected layer with
a single output. The output of the model is added
to the input value corresponding to y, so that the
network is tasked with learning the error term rather
than a complete reconstruction. Because we only aim
to correct a single carbohydrate (y) value but use a
time-based model, we set one dimension of the model
input to be y for all timepoints. Multiple auxiliary
b signals are input to the LSTM through separate
channels: blood glucose values and bolus and basal
insulin are included in this way. We also carry over
bolus insulin values (which occur sparsely) to the end
of the input window, to increase their impact on gra-
dient calculations. We threshold the output of each
DAE at 0, because carbohydrates (our x and y) values
cannot be negative. For each co-teaching method and
NR2N, hyperparameters were selected based on tun-
ing to a single individual adult#001. A small num-
ber of options was considered through a simple grid
search. Once selected, these hyperparameters were
used across all datasets. In tuning on adult#001, a
ground truth signal was used for validation. This is a
limitation, as such a signal is generally not available
in real-world scenarios. However, the fact that the
hyperparameters were not tuned to each individual,
highlights the robustness of the approach. Tuning is
described in Appendix B. At evaluation we report
the result of the average correction learned by both
networks when y values are given as input (i.e., where
ỹi = DAEi(y,b), we report L(x, (ỹ1 + ỹ2)/2)).

For sample selection during co-teaching, we use
mean squared percentage error (100% · ((ŷ − y)/y)2)
to avoid eliminating all high-valued y samples, as
they are likely to have higher noise values. As a
noise function during training, we use z = (1 +
N (0, .5))Bern(.5)y, i.e. we add random noise to half
of the samples so that the model can learn to utilize
noisy z information, and zero-out the other half so

that the model has to learn to distinguish zero from
non-zero y values based on b alone. See Appendix
C for additional training details.

6.4. Evaluation

Simulated Data Metrics. When ground truth car-
bohydrate values are available, we use MSE between
the denoised carbohydrates and true carbohydrate
values as our metric to report the remaining noise
(mean((x− ỹ)2), where ỹ = (ỹ1 + ỹ2)/2). The lower
this value, the more noise has been removed. Al-
though we assume that these data are not available
at training time, we use them for evaluation. Since it
can be difficult to interpret the meaning of a differ-
ence in MSE, we also consider a clinically motivated
evaluation metric: time in range. Time in range is
a measure of blood glucose management and varies
with the accuracy of the carbohydrate measurements.
The more accurate the carbohydrate estimates the
more time an individual will spend ‘in range.’ Here,
we run a simulation of the subject of interest with the
default basal-bolus controller using bolus values cal-
culated from the updated carbohydrate values, and
report the proportion of time in the simulation that
each individual spent with blood glucose values be-
tween 70 and 180, or the euglycemic/healthy range.
This metric serves to indicate the real-world impact
each approach might have. For both metrics, 95%
confidence intervals are calculated for each subject
using 1,000 bootstrap re-samples, and the average
2.5th and 97.5th percentiles across subjects are re-
ported.

Sensitivity Analyses. To evaluate our model un-
der different noise assumptions, we repeat our analy-
sis with multiple noise generation methods (x → y),
without altering hyperparameters or our y → z func-
tion. We use various Gaussian and uniform distribu-
tions reported in Appendix D, which include zero
and negative mean multiplicative and additive noise
functions. We do not aim at a comprehensive eval-
uation of all possible noise types, but rather we aim
to include various distributions that are likely similar
to those that might arise in our motivating domain.
To further test the ability of the approach to recover
the target values, we varied the amount of noise in the
auxiliary signal from 5% to 25% magnitude by adding
a multiplier to the noise component generated by the
simulated CGM, and evaluated each approach as this
b signal became increasingly noisy (Appendix E).
We also examine our model’s sensitivity to including
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Table 1: Our approach outperforms baselines for all evaluation metrics and both datasets, falling only 2%
short of the upper bound for the clinical measurement ‘Time in Range.’ 95% CIs are calculated from
1,000 bootstrap re-samples. CRC r and p values are calculated from the Spearman correlation.

————————————SIMULATED———————————— ——REAL——
Model Remaining Carb MSE(g2)[95% CI] Time in Range (%)[95% CI] CRC (r)[p] CRC (r)[p]

N/A-clean carb 0.00 [0.00, 0.00] 73.18 [72.49,73.88] N/A N/A
N/A-noisy carb 72.26 [54.16, 92.58] 65.43 [64.70,66.16] N/A N/A
CAE (Oracle) 6.96 [5.03, 9.18] 72.44 [71.76,73.11] 0.32 [< 0.001] N/A

SUP 58.37 [45.11, 73.31] 64.59 [63.89,65.30] 0.04 [0.14] 0.19 [< 0.001]
SUPCT 100.50 [84.12,118.40] 60.22 [59.43,60.94] < 0.001 [0.91] 0.03 [0.61]
NAC 36.40 [27.02, 46.95] 68.22 [67.53,68.93] 0.11 [< 0.001] 0.13 [0.05]
NR2N 33.44 [26.59, 43.23] 68.79 [68.09,69.51] 0.11 [< 0.001] 0.13 [0.05]
N+2N (Ours) 17.91 [12.61,24.98] 71.24 [70.54,71.90] 0.19 [< 0.001] 0.22 [< 0.001]

varying amounts of noisy data in the final training
sample by varying hyperparameter τ , which controls
the proportion of samples within each minibatch used
in backpropagation (Appendix F).

Real Data Analysis. Without access to ground
truth carbohydrate values at test time for the real
dataset (unlike the simulated dataset), we evaluate
the performance of our denoising approach based on
a proxy. We take advantage of the fact that poorly es-
timated carbohydrates result in inappropriate bolus
calculations, which result in poor blood glucose man-
agement. We expect that inaccurate carbohydrates
estimates (large [x−y] values) result in the poor blood
glucose management. For a model that has come
close to estimating x correctly, we would observe a
correlation between [ỹ − y] values and blood glucose
control in the time period following a meal. We assess
this with Correction-Risk-Correlation (CRC), defined
as the Spearman correlation between the squared car-
bohydrate correction value ((ỹ − y)2) and the aver-
age Magni Risk (Magni et al., 2007) of blood glu-
cose in the second hour following the carbohydrate.
We use the Spearman correlation to account for non-
linearities in the risk and correction value distribu-
tions. Magni risk is a measure of how far from a safe
value blood glucose is; higher risk values correspond
to blood glucose values that are either dangerously
high or dangerously low. We use the second hour
following the carbohydrate because the effects of the
carbohydrate consumption and insulin bolus have not
fully taken effect in the first hour. We calculate this
correlation across all carbohydrates observed in all in-
dividuals. For validation purposes, we also calculate
this metric for the simulated dataset.

7. Results and Discussion

Through our experiments, we aim to answer the fol-
lowing questions.

• Does our approach meaningfully reduce error
across a variety of simulated individuals, com-
pared to existing approaches?

• Is our model robust to different domain-
appropriate noise distributions?

• Does our model show strong performance in real
data, indicating accurate denoising?

Error Reduction for Simulated Data. Our
approach, N+2N, outperforms baselines in terms of
noise reduction (MSE) (Table 1). N+2N reduces
MSE from 72g2 to 18g2, but falls short of the value
achieved by our oracle approach CAE (7g2), as ex-
pected. CAE does not achieve perfect MSE, prob-
ably due to insufficient training data or to a small
amount of noise in the CGM signal. Our approach’s
reduction in noise is meaningful since it leads to sig-
nificantly better time in range. Most methods offer
an improvement in % time in range when used in a
basal bolus controller, with baselines increasing over
the noisy value from 65% to 69%, and N+2N further
improving performance to 71%, recovering 6% time in
range out of a total of 8% lost when using noisy ver-
sus clean values. SUPCT performs worse than any
other method including SUP, likely because with-
out the noisy carbohydrate measurement as input,
co-teaching cannot learn the relationship between b
and y as easily, and therefore does not identify the
less corrupted samples during training. This results
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in essentially random sub-sample selection, hamper-
ing performance as less training data becomes avail-
able. SUP does not suffer from this problem because
it always utilizes the entire dataset.

Sensitivity Analyses. N+2N outperforms all
baselines across the majority of noise distributions
(Figure 4). For zero-mean uniform multiplicative
noise, NAC outperforms the proposed approach. We
hypothesize that NAC performs well in this setting
because the expected value of the noise is zero and
the variance is lower than in other settings (it is 33%,
which is approximately 30g, compared to 75% in the
multiplicative normal setting, or 40g and 60g in the
additive noise settings, see Appendix D). Of note,
this analysis was carried out without additional tun-
ing, demonstrating the resilience of our approach to
varying noise assumptions. Across biased noised dis-
tributions, our proposed approach consistently out-
performs all baselines. This resilience is likely due
to our approach’s ability to select clean samples for
training, without reliance on the secondary noise
function used during training.

We found that our approach is fairly robust to ad-
ditional noise in the auxiliary signal: when we in-
creased the amount of noise in b by 5X, our approach
remained competitive with baselines trained with a
clean b signal. At all noise settings our approach
strongly outperformed baselines trained with similar
data. Details and figures are in Appendix E.

In our examination of final training sample size,
we found that performance is relatively stable with a
larger, noisier, sample, with all τ values between zero
and 0.5 (half of the samples excluded) offering sub-
stantial improvement over the best performing base-
line. Performance degrades for larger values of τ ,
which is likely due to the limited number of training
samples. See Appendix F for details and a plot of
model performance as τ is varied.

Experiments on Real Data. For the real
dataset, N+2N outperforms all baselines with re-
spect to CRC. For simulated data, we see that, with-
out exception, models with lower remaining MSE af-
ter denoising have a higher or equal CRC. This in-
dicates that our metric serves as a reasonable proxy
for remaining error when true values are unavailable.
Plots showing the components used to calculate CRC
(magnitude of carbohydrate correction versus Magni
risk an hour after the meal) can be found in Ap-
pendix G. Interestingly, the SUP baseline performs
fairly well for this task on the real dataset (r,p=0.19,
3e-3, vs. proposed approach 0.22, 9e-4). We hypothe-

size that this may be because carbohydrate measure-
ments are so unreliable for this dataset that learning
to predict them from scratch (without access to noisy
values at test time) is sufficient for an error estima-
tion proportional to the actual error, especially given
the implicitly correct timing data.

8. Conclusions

We propose a new approach to denoising,
‘Noise+2Noise’, that does not assume access to
ground truth target samples. Our approach lever-
ages an auxiliary time-series that is related to the
target signal to help identify target samples with less
noise. Our approach is the first to adapt co-teaching
to de-noising, extending the applicability of this
method to many potential settings. While the
approach recovers target data retrospectively and
cannot be used in real time for forecasting, it could
be used in a number of downstream tasks. For ex-
ample in the clinical context, errors in carbohydrate
measurements could aid in evaluating an individual’s
efforts in blood glucose management and provide
a potential target. In the context of carbohydrate
recovery for blood glucose management, compared
to existing approaches, ‘Noise+2Noise’ leads to
better signal reconstruction that is both statistically
significant and clinically significant.

While promising, our approach is not without lim-
itations. Our primary analyses are on simulated data
where ground truth labels are available, but in real
datasets common evaluation metrics (e.g., MSE) do
not apply and we must rely on proxies. As pre-
sented, our approach is designed for retrospective car-
bohydrate correction; more work is necessary to in-
vestigate its applicability to closer-to-real-time cor-
rection. Four individuals in the Real dataset had
too few carbohydrate measurements to reliably train
a de-noising model, which means that further work
on model efficiency is necessary for this model to
be broadly applicable. While our approach was de-
signed for and evaluated on denoising non-missing
measurements, our method could be extended to ad-
dress missing measurements as well, provided some
additional regularization is utilized to ensure that the
model does not impute meal announcements too ex-
cessively. Finally, while we have empirically shown
that co-teaching appears to select a low-noise sam-
ple, we have not provided statistical guarantees.

Despite these limitations, we have demonstrated
that it is feasible to correct a noisy variable with-
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Figure 4: Performance on datasets with multiplicative (×) vs. additive (+), Normal (N) vs. Uniform (U),
and zero (0) vs. negative mean (−) noise functions. N+2N generally outperforms baselines. Error
bars represent standard error (68% confidence interval) from 1000 bootstrap samples.

out access to ground truth samples during training,
expanding the utility of ideas from image analysis
and noisy label learning. Applied to domains in
which data are composed of both individual-reported
data and data measured from reliable sensors (e.g.,
mHealth), our approach could aid in improving the
fidelity of patient-reported data.
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Appendix A. Simulated Dataset
Details

During data generation, days where a patient either
had more than 25 timepoints of glucose at the min-
imum value of 40, or more than 35 timepoints over
450 were thrown out for being non-realistic. The meal
schedule used to generate simulated data was based
on the Harrison-Benedict equation (Harris and Bene-
dict, 1919) as implemented in (Fox et al., 2020). In
our simulation, for all datasets generated, we used the
default basal-bolus controller from the existing imple-
mentation of the simulator to administer insulin, but
we delayed five sixths (randomly selected) of the bo-
lus administrations up to 3.5 hours, with delay time
randomly sampled from a uniform distribution. The
delay allows for disentanglement between carbohy-
drate and bolus effects. 20% of carbohydrates are
not reported, to make the dataset more realistic, as
missingness is common.

Appendix B. Tuning Details

For each model, tuning was performed on simulated
adult#001 using validation performance. No addi-
tional tuning was performed for other individuals or
noise functions. For Noisier2Noise, we selected α, the
parameter that controls the relative noise distribu-
tions, from [0.1,0.3,0.5,0.7,0.9,1.0,1.25,1.5,1.75,2], ul-
timately selecting α = 1. Because we do not assume
access to the exact noise we would not expect this
method to perform spectacularly, but note that it of-
ten outperforms other baselines.
For co-teaching methods, we performed a simple

grid search over the values of Ek=[250,500] (where
500 is the minimum number of training iterations),
τ=[0.333,0.5,0.667], and σ = [0.1,0.3,0.5,0.7]. For
N+2N, we selected Ek = 250, τ = 0.333, and
σ = 0.1. For the supervised setting co-teaching
(SUPCT), we set selected Tk = 500, τ = 0.5 and
σ = 0.3.
Hyperparameter options were selected from a lim-

ited but comprehensive spectrum of values that cover
a reasonable search space (given that all hyperparam-
eters are limited to a fixed interval) without consid-
eration for task. Only a small number of options
were considered to avoid computational burden, as
a simple grid search was used. A ground truth sig-
nal was used for evaluation during tuning, which is a
limitation, as such a signal is generally not available
in real-world scenarios. However, we note that we

did not re-tune for each individual (tuning to sim-
ulated adult#001), nor did we retune for the real-
world dataset, which is substantially different from
the simulated dataset. Proxy measures such as CRC
may also be used for tuning.

Appendix C. Additional Training
Details

We split each dataset into training, validation and
test sets used for evaluation purposes. For the simu-
lated dataset, we use 80 days for training, 20 for val-
idation, and 50 for testing. For the real dataset, we
split the training data into 80% train and 20% valida-
tion. The held-out test data were used for evaluation
only. We implement and train our models in Pytorch
1.9.1 with CUDA version 10.2, using Ubuntu 16.04.7,
a GeForce RTX 2080, an Adam optimizer (Kingma
and Ba, 2014), and a batch size of 500. We use a
learning rate of 0.01 and a weight decay of 10−7. We
train for at least 500 iterations, and then until val-
idation performance does not improve for 50 itera-
tions, selecting the model for which validation per-
formance was best. For both datasets, we train and
test a model on each individual and report across-
individual averages. Such individual-specific mod-
els/evaluations are common in blood glucose control
and forecasting (Silvia Oviedo, 2016), since dynamics
vary greatly across individuals and individual-specific
training data are typically available.

We perform co-teaching on samples containing
non-zero y values only. However, when training all
models (including baselines) we also pass zero-valued
y samples (and their corresponding b values) through
both DAEs and take loss equal to ŷ2 for these sam-
ples. We do this because there are many more sam-
ples with zero-valued carbohydrates than there are
with positive values, and this allows the models to
learn from this larger collection. We report results
on only positive-valued y values, because denoising is
only applied to such values.

Appendix D. Alternate Noise
Functions

We consider noise functions that might arise in car-
bohydrate counting. None are highly dissimilar from
our main analysis noise function: we aim here at feasi-
bility, rather than a comprehensive survey on a broad
selection of loss functions, which our method would
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likely be unable to address without further tuning or
modification. Here, U(a, b) denotes a uniform distri-
bution with values between a and b. Carbohydrate
values range between 0 and 200. After adding noise,
y values are capped above and below by 1 and 200.
Alternate noise functions include:

1. Zero-mean multiplicative Gaussian: y = (1 +
N (0, .75))x

2. Negative-mean multiplicative Gaussian (primary
noise function): y = (1 +N (−.25, .5))x

3. Zero-mean additive Gaussian: y = x+N (0, 40)

4. Negative-mean additive Gaussian: y = x +
N (−30, 50)

5. Zero-mean multiplicative Uniform: y =
U(.5, 1.5)x

6. Negative-mean multiplicative Uniform: y =
U(0, 1.6)x

7. Zero-mean additive Uniform: y = x+U(−60, 60)

8. Negative-mean additive Uniform: y = x +
U(−60, 40)

Appendix E. Sensitivity to noise in
the b signal.

Although the auxiliary b signal is expected to be rel-
atively low noise compared to y, some noise is pos-
sible. In our motivating domain, CGM data contain
a non-negligible amount of noise. In the simulator,
this noise is modeled as additive time-varying Gaus-
sian (Man et al., 2014). To evaluate our approach’s
sensitivity to noise in the auxiliary signal, we added
an increasing multiplier to the noise term in the CGM
for each simulated individual. The multiplier ranged
from 1X to 6X, with 1X being the standard CGM.
At 6X noise the magnitude of the signal is more than
25% noise on average, and the original glucose signal
is barely detectable (Figure 5).

We found that at each noise setting, our approach
outperformed all baselines (Figure 6). Also encour-
agingly, even with 20% noise, our approach performs
similarly to the best baseline trained on clean data.
Taken together, this indicates that our approach is ro-
bust to noise in the relatively clean auxiliary signal,
up to levels more than four times what is typically
observed.

Figure 5: One day’s worth of blood glucose data for
simulated subject adult#002 with 1 x and
5 x additional simulator noise added. At 5
x, the signal is almost unrecognizable.

Figure 6: Our approach vs. strongest baselines for
varying levels of noise in the CGM signal,
average across all 10 simulated individu-
als with 1,000 sample bootstrap SEs as er-
ror bars. Our approach performs well even
when noise is fairly large.
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Figure 7: Risk following the carbohydrate vs. magnitude of carbohydrate correction learned for all models
and both datasets. Besides the clean autoencoder, N+2N performs best.

Appendix F. Sensitivity to
hyperparameter τ

In order to examine the impact of including various
amounts of data in our final training sample, we var-
ied hyperparameter τ , which controls the proportion
of samples within each minibatch that the networks
are backpropagated on. We note that low values of
τ , corresponding to a larger, noisier, sample, result
in relatively stable performance, with all values be-
tween zero and 0.5 (half of the samples excluded)
offering substantial improvement over the best per-
forming baseline (Figure 8). Performance degrades
for larger values of τ , which likely indicates that the
approach is robust until the final training sample be-
comes too small to be effective.

Appendix G. CRC Plots

With N+2N, we see a higher correlation between the
magnitude of carbohydrate correction and risk follow-
ing the meal compared to baselines for both real and
simulated data (Figure 7).

Figure 8: Model performance as a function of hyper-
parameter τ , with all else constant, across
all 10 simulated individuals. Our model
outperforms baseline as long as fewer than
50% of samples are excluded.
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