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Abstract
Type 2 diabetes mellitus (T2D) a↵ects over 530

million people globally and is often di�cult to

manage leading to serious health complications.

Continuous glucose monitoring (CGM) can help

people with T2D to monitor and manage the

disease. CGM devices sample an individual’s

glucose level at frequent intervals enabling so-

phisticated characterization of an individual’s

health. In this work, we leverage a large dataset

of CGM data (5,447 individuals and 940,663

days of data) paired with health records and ac-

tivity data to investigate how glucose levels in

people with T2D are a↵ected by external fac-

tors like weather conditions, extreme weather

events, and temporal events including local hol-

idays. We find temperature (p=2.37 ⇥ 10
�8

,

n=3561), holidays (p=2.23 ⇥ 10
�46

, n=4079),

and weekends (p=7.64⇥ 10
�124

, n=5429) each

have a significant e↵ect on standard glycemic

metrics at a population level. Moreover, we

show that we can predict whether an individ-

ual will be significantly a↵ected by a (poten-

tially unobserved) external event using only de-

mographic information and a few days of CGM

and activity data. Using random forest classi-

fiers, we can predict whether an individual will

∗
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be more negatively a↵ected than a typical indi-

vidual with T2D by a given external factor with

respect to a given glycemic metric. We find per-

formance (measured as ROC-AUC) is consis-

tently above chance (across classifiers, median

ROC-AUC=0.63). Performance is highest for

classifiers predicting the e↵ect of time-in-range

(median ROC-AUC=0.70). These are impor-

tant findings because they may enable better

patient care management with day-to-day risk

assessments based on external factors as well

as improve algorithm development by reducing

train- and test-time bias due to external factors.
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1. Introduction

Diabetes mellitus is characterized by issues with the
body’s ability to regulate blood glucose levels. It
currently a↵ects over 530 million people globally
(Sun et al., 2022). Moreover, it can lead to nu-
merous health complications including cardiovascular
disease, chronic kidney disease, diabetic retinopathy,
and diabetic neuropathy resulting in an annual cost
of over $327 billion in the US alone in 2017 (Associa-
tion, 2018). Diabetes can generally be classified into
one of two categories – Type 1 diabetes (5-10% of pa-
tients (Colberg et al., 2016)), which is characterized
by the body’s inability to produce insulin (DiMeglio
et al., 2018), and Type 2 diabetes (T2D) (90-95% of
patients (Colberg et al., 2016)), which results from a
heightened resistance to insulin (Nyenwe et al., 2011).

People with diabetes can rely on careful diet man-
agement, exercise, medication, and/or insulin doses
depending on the type of diabetes and its severity
(Colberg et al., 2016; DiMeglio et al., 2018; Nyenwe
et al., 2011). People use daily measurements of
blood glucose to help manage glucose levels. These
measurements are typically infrequent and conducted
through needle pricks where a small amount of blood
is used to measure the blood glucose level. However,
these pointwise measurements o↵er a limited window
into characterizing the ability to regulate glucose lev-
els.

Continuous glucose monitoring (CGM) o↵ers an al-
ternative that measures glucose levels throughout the
day enabling more sophisticated analysis and char-
acterization of an individual’s glucose management.
While CGM is typically recommended for people tak-
ing multiple daily doses of insulin and/or at high
hypoglycemia risk (ElSayed et al., 2023), prior re-
search has shown CGM data may be useful beyond
the current recommended uses with a range of appli-
cations including predicting activity and sleep times
(Karkkainen et al., 2022), identifying signs of predi-
abetes and cardiovascular disease (Hall et al., 2018),
and providing insulin dose recommendations (Ander-
son et al., 2016). However, partly due to the di�culty
in collecting large clinical datasets, research on CGM
data has been limited and there may be many addi-
tional applications.

In this paper, we utilize a large dataset of CGM
data collected from a cohort of people with T2D over
a 2.5-year period from October 2019-May 2022. All
people in our cohort are adults residing in the US.
In total, we have 12,909 people and 1,859,101 days

of CGM data collected. This data is paired with
health records including medical claims data, as well
as activity data (including heart rate and step count).
The data is also paired with datasets containing in-
formation on US weather conditions (Menne et al.,
2012) and air quality (US Environmental Protection
Agency) over the duration of the study. We use the
paired data to understand the environmental condi-
tions each person experienced on any given day. We
then analyze the resulting dataset to understand how
an individual’s ability to manage glucose is a↵ected
by external factors including weather conditions and
temporal events like holidays or weekends.

We find that people at a population level are af-
fected by temperature, holidays, and weekends. This
supports previous evidence that temperature can af-
fect blood glucose levels (Kenny et al., 2016) and of-
fers new evidence into how an individual’s behavior
is characterized by their environment and can a↵ect
their ability to manage glucose. We do not observe
a significant e↵ect at a population level due to other
external factors, though in some cases (e.g., for rare
events) we are still limited by amount of data due to
the rarity of the events.

Furthermore, we find that using only an individ-
ual’s medical history and a few days of CGM and ac-
tivity data can help predict whether an individual’s
glycemic metrics are likely to be significantly a↵ected
by various external factors including temperature,
rain, snow, holidays, weekends, and extreme weather
events like heat waves. This result is of particular
interest as it can enable doctors or health coaches to
have early warnings for treating an individual. And
importantly, it enables risk prediction without previ-
ously observing any of the events in question.

To summarize, our contributions are two-fold:
(1) we demonstrate population-level significance for
three external factors in inhibiting or supporting glu-
cose management and (2) we develop a method to
predict an individual’s likelihood of being at risk from
the external factors we investigate, further enabling
the utility of CGM devices.

1.1. Related Works

Past research has shown CGM data has been shown
to be useful in a range of applications. In (Karkkainen
et al., 2022), the authors use a U-Net neural net-
work architecture (Ronneberger et al., 2015) to pre-
dict various activities including sleep, walking, and
exercising using only a CGM recording and medical
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identifiers of a patient. CGM data can also be used
for early disease prediction and risk calculations, as
in (Hall et al., 2018) where the authors use spectral
clustering applied to CGM data to identify signs of
prediabetes and cardiovascular disease. CGM data
has also been used to provide real-time insulin dose
recommendations (Anderson et al., 2016) and early
prediction of hypoglycemia using logistic regression
and random forests applied to hand-selected features
applied to CGM data (Dave et al., 2021; Duckworth
et al., 2022).
In the medical literature, there has been much

research dedicated to finding how external factors
can influence various biological processes. Results
consistently show that while many external fac-
tors adversely a↵ect the general population, people
with diabetes are more susceptible to severe conse-
quences. Studies have shown that temperature a↵ects
blood glucose absorption, with higher temperature
being associated with a decrease blood glucose levels
(Kenny et al., 2016). Extreme temperatures, espe-
cially during heatwaves, can have significant, adverse
consequences; people with diabetes are particularly
susceptible to these weather conditions, with height-
ened risks of hospitalization or death (Xu et al., 2019;
Vallianou et al., 2021). Other weather conditions like
air pollution can also adversely e↵ect people with dia-
betes (Vallianou et al., 2021). In addition to weather
conditions, research has found seasonal variations due
to a mix of diet, holiday seasons, and weather con-
dition variation in biological metrics including fat,
cholesterol, and HbA1C values (Ma et al., 2006; Ock-
ene et al., 2004; Higgins et al., 2009).

2. Methods

We leverage an extensive dataset of CGM data that is
paired with activity data (heart rate and step count)
and medical records including demographic informa-
tion, disease history, medications, and claims data
for each person in our cohort. We also use a dataset
sourced from the Global Historical Climatology Net-
work (GCHN) containing historical daily weather
data (Menne et al., 2012) and a dataset sourced from
the US Environmental Protection Agency (EPA) for
historical daily air quality data (US Environmen-
tal Protection Agency). Below, we provide details
and preprocessing information about each of these
datasets respectively, before describing how to join
the datasets for our analysis. The analysis pipeline
is visualized in Figure 1. A summary of the external

events dataset indicating each external factor consid-
ered and a range of values for each external factor is
provided in Appendix, Table 4.

2.1. CGM and Activity Tracker Data

The people in our cohort are part of an ongoing pro-
gram to help them manage their diabetes. This pro-
gram involves tracking glucose through a CGM de-
vice for at least 20 days every 3 months. People
optionally also track their activity, recording their
heart rate and step count. We provide general de-
mographic information on the cohort (after filtering)
in Table 1, and the distribution of days recorded for
each individual is shown in the Appendix (Figure 4).
The CGM devices used measured blood glucose level
roughly once every 5 minutes over the duration the
device is worn and transmits the data via Bluetooth
to a nearby receiver or smartphone. As the device
has finite memory, issues during data transmission
can result in loss of data, though substantial loss of
data is rare in our dataset. The CGM monitoring
device lasts for 10 days, and once taken o↵ cannot be
put back on.

We preprocess this data by first partitioning the
dataset into individual days (each day starts at mid-
night). All our analyses will be conducted relative
to a day of data. While we could consider longer
or shorter intervals, we opt for a single day as there
is a clear glucose cycle within a single day period.
After this partition, we have 12,909 individuals and
1,859,101 days of data.

On each day, we interpolate the recorded data at
exactly 5-minute intervals. This gives us exactly 288
datapoints per day. In cases where there is too much
missing data (� 15 missing measurements over any
given day), we exclude this day from our dataset. We
exclude people who have < 5 days of data. We sim-
ilarly preprocess the activity data. We do require
individuals have at least one day of activity data as
we will use features derived from the activity data in
our analysis. All individuals also have medical his-
tory data associated with them. We do not explicitly
preprocess this data, but we do use it later in our
analysis to help predict events that significantly af-
fect an individual.

We make one final exclusion based on matching the
weather and air quality data to individuals. Individ-
uals have at least one zip code associated with them
based on the location of medical care received. We
exclude people who have zip codes that di↵er in loca-
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Figure 1: Overview of analysis procedure. We collect a dataset containing (a) standard glycemic metrics
computed using a CGM trace, (b) external factors related to temporal and environmental con-
ditions, and (c) “summary” demographic and medical information; we also compute summary
statistics on the CGM and activity (heart rate (HR) and step count (Step)) data. (d) We fit a
set of mixed e↵ects models; here, we do not use the summary statistics computed on CGM or
activity data. (e) This lets us assess the e↵ect of each external factor. (f) A random forest (RF)
classifier is trained to predict whether the external factor e↵ect on each individual using the full
set of summary information, giving us (g) the individual-level results.

tion by more than 10 miles during the 2.5-year period
used for our analysis. We assume all other individ-
uals generally spend their time close to the location
where they receive care.
After filtering, the size of our dataset is reduced to

5,447 individuals and 940,663 days of data. Note that
for each external factor we analyze, we may have to
exclude additional datapoints (e.g., some individuals
may not have any air quality data). For this filtering,
we require each person has at least 2 days of data
labeled with the external factor of interest.

2.2. External Factor Data

2.2.1. Weather and Air Quality Data

There are five weather measurements we use from the
GCHN dataset: maximum temperature (TMAX),
minimum temperature (TMIN), amount of rainfall
(PRCP), amount of snowfall (SNOW), and depth of
snow (SNWD). Note SNOW refers to snowfall on a

given day, while SNWD refers to how much snow is
on the ground on the given day (so it may include
a previous day’s snowfall). The EPA dataset con-
sists of one measurement for the air quality index
(AQI), which is calculated based on the concentra-
tion of small particulates (Lemeš, 2018). We show
general statistics for these datasets in Table 2.

Measurements are recorded at base stations daily.
The base stations have fixed, known locations (i.e.,
latitude and longitude are known). However, each
base station may not provide measurements every
day. So, to join these datasets with our CGM and
activity measurements, we find the closest measure-
ment to an individual’s zip code on each day. We
limit our search range to 10 miles and exclude the
measurement if we cannot find a base station.
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Table 1: Demographic information of Type II Diabetes cohort after filtering. In total, we have 5,447 indi-
viduals and 940,663 days of CGM data.

Category External Factor # Individuals # Days Age (µ± �) Sex (%M / %F)

Weather

Max Temperature 3,561 506,260 55.72 (±8.79) 51.92% / 48.08%
Temperature Range 3,559 503,374 55.72 (±8.79) 51.91% / 48.09%

Precipitation 3,079 350,064 55.87 (±8.62) 52.09% / 47.91%
Snow Depth 1,192 164,762 55.61 (±8.64) 51.74% / 48.26%

AQI 3,262 448,042 55.87 (±8.82) 52.40% / 47.60%

Extreme Weather

Max Temperature 365 7,930 56.98 (±8.49) 48.54% / 51.46%
Temperature Range 182 1,962 54.56 (±8.67) 56.52% / 43.48%

Precipitation 50 263 56.80 (±8.75) 44.11% / 55.89%
Snow Depth 35 187 57.97 (±7.80) 60.43% / 39.57%

AQI 172 2,222 55.94 (±9.36) 55.58% / 44.42%

Temporal Events
Weekends 5,429 940,549 55.75 (±8.76) 48.89% / 51.11%
Holidays 4,079 99,106 55.58 (±8.78) 48.84% / 51.16%

2.2.2. Extreme Weather and Air Quality

In addition to the continuous weather measurements,
we would also like to understand glucose behavior
relative to extreme weather events e.g., heatwaves.
While there is no standard definition for what consti-
tutes an extreme weather event, it is relatively com-
mon to consider heatwaves as anomalous high tem-
peratures relative to location and time of year (Heo
et al., 2019). We use this as a standard to calculate
extreme weather events for each of the five weather
conditions as well as for air quality.

For each condition, we first define regional clus-
ters. This was done as the thresholds for determin-
ing extreme events are typically calculated over a ge-
ographic region (e.g., a country) (Heo et al., 2019).
These clusters are based on clustering our population
into 20 groups using k-means and defining these clus-
ters as center points for regions. Within each cluster,
we then defined an extreme weather event as outside
two standard deviations of the mean over the 2.5-year
period of the collected data. Furthermore, to label a
time period as an extreme event, we required at least
three consecutive days of the extreme event within a
10-mile radius of an individual.

As these events are sparse, we selected a subset of
non-extreme days to use as controls in our analysis.
These control days were defined as the three days im-
mediately surrounding the extreme event (both three
days before and after). This led to a roughly even

split in the number of control and extreme days in
our analysis.

2.2.3. Temporal Events

We also include two events associated with cer-
tain dates during a year: holidays and weekends.
We include the following holidays: July 4th, Hal-
loween, Thanksgiving, New Year, and the individ-
ual’s birthday. In addition, for each holiday we in-
clude the preceding and following weeks, allowing for
“holiday-like” behavior over multiple days (e.g., eat-
ing Thanksgiving leftovers later in the week). As was
done for the extreme weather events, we selected a
subset of non-holiday days to use as controls in our
analysis – both a week prior and after a holiday were
kept as controls (due to the week-long padding mark-
ing the holiday, this is two weeks before and after the
holiday).

2.3. Glycemic Metrics

To evaluate the e↵ect of external factors, we con-
sidered several widely used metrics for quantifying
blood glucose management. These include time in
range (TIR) (Maiorino et al., 2020), interquartile
range (IQR) (Bergenstal, 2015), mean amplitude
of glycemic excursions (MAGE) (Bergenstal, 2015),
percent coe�cient of variation (%CV) (Bergenstal,
2015). Definitions of each are provided below. Here
g(t) refers to an individual’s glucose measurement (in
mg/dL) at time t on a given day, µg,�g refer to the
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mean and standard deviation of g(t) on a given day,
and Q1, Q3 refer to the 25th and 75th percentiles re-
spectively. E[·] refers to the expected value of a mea-
surement.

TIR = 100% · E[1[70mg/dL  g(t)  180mg/dL]]

IQR = Q3(g(t))�Q1(g(t))

MAGE = E[|(g(t)� µg) · 1|g(t)� µg)| > �g|]
%CV = 100%�g/µg

All measurements are calculated with respect to a
single day for a single person. We provide recom-
mended ranges for each of these metrics in Table 2.
We also include the range of values observed in our
dataset.

2.4. Population-level Analysis

To understand whether any of the external factors
have a statistically significant e↵ect at a population-
level e↵ect, we employ a linear mixed e↵ects model.
Our model assumes the following generative formula:

CGMmetric(i, t) = �0 + �e + xexternal(i, t)+

h�d,xd(i)i+ ↵0,i+

↵e,ixexternal(i, t) + ✏,

where CGMmetric(i, t) is the metric of interest
for individual i on day t, ↵,� are the fitted ran-
dom and fixed e↵ect parameters respectively, and
xexternal(i, t),xd(i) are the external factor and demo-
graphic information for an individual on day t (only
the external factor is time -dependent; we assume de-
mographic information is static over the duration of
our study). In particular, � are the fixed e↵ects with
�0, �e, �d being the population intercept, e↵ect due
to the external factor, and e↵ect due to demographic
information. Similarly, ↵0,iand ↵e,i are the random
intercept and slope specific for individual i. Together,
these terms can be thought of as a person-specific ad-
justment to better model individual i. Finally, ✏ is a
Gaussian noise term.
We use a mixed e↵ects model to correct for the

fact that our data is not independent. Recall that
each datapoint is a single day of data from a single
person. As we have multiple days of data coming
from each person, we will have dependence between
data coming from the same person. Therefore, the
standard statistical tests based on a linear model are

not valid; a mixed e↵ects model corrects for these
repeated measures.

We fit a separate model for each external factor
and each glycemic metric under consideration. Mod-
els are fit using the Statsmodels Python package
(Seabold and Perktold, 2010). This results in 48
separate mixed e↵ects models (one for each pair of
glycemic metric and external factor). We determine
which external factors have a significant population-
level e↵ect by identifying when the null hypothesis
that the e↵ect is zero can be rejected (p-value<0.05).
Here, we use the p-value provided by Statsmodels
which is based on a z-test where mean and �e are
estimated as part of fitting the mixed e↵ects model.
We correct for multiple hypothesis testing using the
Bonferroni correction.

2.5. Individual-level Analysis

Given the population-level models, we construct a set
of classifiers to identify which people are most signifi-
cantly a↵ected by each external factor. Note that we
can identify such people regardless of whether the ex-
ternal factor has a significant population-level e↵ect
(people are highly heterogeneous, and we can identify
some of that heterogeneity here).

For each external factor and glycemic metric, peo-
ple are separated into three groups – those who are
more negatively a↵ected, more positively, or similarly
a↵ected compared to the population e↵ect for the
given external factor. This separation is based on
the random slopes for the corresponding mixed ef-
fects model (recall, the random slopes are individual-
level corrections to the population-level e↵ect due to
the external factor). We take the distribution of ran-
dom slopes and partition the population into three
groups – those at least one standard deviation below
the mean, above the mean, or within one standard
deviation of the mean. One standard deviation was
chosen as a method for classifying outliers, as it en-
sures we have some data in each group (we need su�-
cient data to adequately evaluate the classifier perfor-
mance). We found that choosing another threshold
(e.g., 2 standard deviations) resulted in insu�cient
data to evaluate the classifier for most external fac-
tors.

We then assign a label to people based on their par-
tition and train a random forest classifier (split into
train, validation, and test sets using 60%, 20%, and
20% of the data respectively) to predict this label. To
train the random forests, we used the scikit-learn

550



Understanding and Predicting Environment Effects on Individuals with T2D

Table 2: Summary of glycemic metrics and how to interpret them. Glycemic metrics are computed on 24
hours of data. Percentiles computed across our filtered cohort.

Percentiles in our dataset
Metric Target Range 25th 50th (median) 75th

TIR > 0.70 (Maiorino et al., 2020) 0.62 0.85 0.97
IQR 13-29 mg/dL (Bergenstal, 2015) 26.0 37.0 52.5

MAGE 41-48 mg/dL (Bergenstal, 2015) 39.7 53.4 71.8
%CV 19-25% (Bergenstal, 2015) 14.9 18.8 23.6

Python library (Pedregosa et al., 2011). Classifiers
were trained using 100 trees, each with a max depth
of 5. In total, we trained 48 random forest clas-
sifiers, one for each external factor–glycemic metric
pair. Each classifier is input basic demographic and
medical information as well as a summary of the in-
dividual’s CGM and activity data (see Table 5 in the
Appendix for more details). We also evaluate perfor-
mance as a function of how much CGM and activity
data is used for generating the summary – 0 days
(i.e., exclude these features), 3 days (i.e., the first
three days of recorded data we have), 10 days, and
using all available data.
To report results, we use the receiver operating

characteristic area under curve (ROC-AUC) and pre-
cision recall area under curve (PR-AUC) metrics. For
each metric, we identified whether an increase or de-
crease in value is generally less desirable for someone
with T2D. We report the ROC-AUC and PR-AUC
values for identifying these individuals who are more
negatively a↵ected.

3. Results

3.1. Population-level Results

Here we select all external factors that have a signif-
icant e↵ect (p-value < 0.05) on TIR. Once selecting
those factors, we present the results from our models
with respect to all glycemic metrics for those factors.
These results are shown in Table 3. There are three
external factors that have a significant e↵ect at a pop-
ulation level: maximum temperature, holidays, and
weekends.
There are several main takeaways. (1) Higher tem-

perature leads to better glucose management. This
result is not surprising – as has been previously noted
in the literature, higher temperature has a physiolog-
ical e↵ect that can increase glucose absorption by the

body (Kenny et al., 2016). (2) Holidays harm an in-
dividual’s ability to manage glucose. While previous
studies have shown seasonal variations in fat, choles-
terol, and HbA1c values (Ma et al., 2006; Ockene
et al., 2004; Higgins et al., 2009), this is the first direct
evidence in a large-scale study to show how holidays
specifically a↵ect people using CGM data. (3) People
are also worse at managing glucose on weekends. This
is the first direct evidence for this result in a large-
scale study using CGM data. (4) These conclusions
largely hold across all glycemic metrics we measure.
While each metric o↵ers only a one-dimensional view
into the complexity of an individual’s glucose signal,
the fact that our analysis shows significant change re-
lated to the external events further suggest the e↵ect
of the external event is significant and has a measur-
able impact on health

3.2. Individual-level Results

Classifier performance, measured as ROC-AUC is
shown in Figure 2. Here we see that classifier perfor-
mance is consistently above chance (across classifiers,
median ROC-AUC=0.63). Performance is highest for
classifiers predicting the e↵ect of TIR (median ROC-
AUC=0.70). Similar results are found when measur-
ing PR-AUC (Appendix, Figure 5). These models are
based on using all available CGM and activity data
to compute summary statistics for an individual’s be-
havior.

We also analyze performance as a function of the
availability of CGM and activity data. Results are
plotted in Figure 3. Here, models are trained using
one of four feature sets: (1) just demographic fea-
tures, demographic features and summary statistics
based on (2) three, (3) ten, or (4) all days of CGM
and activity data. Performance consistently improves
when given more CGM and activity data. Moreover,
performance is already high given only ten days of
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Table 3: Population-level results. Reporting the fixed e↵ect slope from the corresponding mixed e↵ects
model. Bolded when statistically significant (↵ < 0.05, with the Bonferroni correction). A positive
value for TIR and a negative value for IQR, MAGE, %CV generally indicates an improvement in
health for the individuals in this dataset.

Temp. Max [°C] Weekends Holidays
TIR 6.34 x 10-4 -1.47 x 10-2 -1.90 x 10-2

IQR [mg/dL] -5.45 x 10-2 9.11 x 10-1 7.14 x 10-1

MAGE [mg/dL] -5.95 x 10-2 1.08 x 100 4.60 x 10-1

%CV -9.27 x 10-3 2.06 x 10-1 -4.92 x 10-2

data indicating a small amount of data may be suf-
ficient for high performance. As the features related
to the CGM and activity data are intended to repre-
sent an individual baseline rather than relate infor-
mation about any specific external event, increasing
the number of days used provides a better estimate of
the true individual baseline. For similar results with
the PR-AUC metric, see Appendix, Figure 6.

Figure 2: Performance (ROC-AUC) of models at pre-
dicting the e↵ect of an external factor in-
dividuals. Each bar represents a classifier.
External factors that have < 1000 data-
points (days of data) for training and eval-
uation combined are excluded.

Figure 3: Performance increases with additional
CGM and activity data. Showing ROC-
AUC of models predicting TIR e↵ect on
individuals. External factors that have <
1000 datapoints (days of data) for training
and evaluation combined are excluded.

4. Discussion, Limitations, and Future
Work

In this paper, we demonstrated that external factors,
including weather conditions and temporal events like
holidays, can a↵ect glucose management. We showed
these e↵ects on a day-to-day basis, where an individ-
ual’s daily environment a↵ects their glucose levels.
We also showed that these e↵ects can be predicted
with limited to no observed CGM or activity data;
when CGM and activity data are available, we see
improved performance.
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This second result is important. While with su�-
cient data, it is possible to directly analyze the e↵ects
of external factors on an individual, this data is not
available prior to long-term monitoring. Moreover,
for certain events like extreme weather situations, we
may rarely or even never observe these events for any
given individual. However, our method is still able to
infer the e↵ect of these external factors.
There are two key limitations in our findings:

(1) our analysis cannot distinguish between the be-
havioral and biological causes for variation in and
glycemic outcomes, and (2) we do not investigate
interactions between environmental e↵ects. Despite
these limitations, our findings are important. Our
ability to predict individual negative responses to ex-
ternal factors is an important finding and has several
implications. It may enable better care management
with day-to-day risk assessments based on external
factors, as well as improve algorithm development by
reducing train-time and test-time bias due to external
factors.
There are several future directions for our work. At

the population level, we used a linear model, while
the relation between our features and glucose man-
agement metrics are likely non-linear and may benefit
from non-linear modeling. Using non-linear model-
ing, we may also be able to detect population-level
significance for certain subgroups of people we were
not able to find in this paper. At the individual level,
we limited our modeling tuning for our classifier mod-
els. While we demonstrate we can predict the e↵ects
due to external factors at an individual level, it is
likely we can significantly boost performance by fur-
ther tuning our model choice; given our large dataset,
performance may benefit from deep learning.
In conclusion, we found that day-to-day variation

in glucose level can be partially explained by exter-
nal factors like the weather or temporal events like
holidays. These e↵ects are significant at a population
level. We also found that we could predict which spe-
cific individuals will see the largest negative e↵ects
based on summary data available prior to monitor-
ing and a limited amount of CGM and activity data.
This second result is important and could potentially
lead to more personalized care for diabetes.
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