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Abstract

Machine learning models for healthcare com-
monly use binary indicator variables to repre-
sent the diagnosis of specific health conditions
in medical records. However, in populations
with significant under-reporting, the absence of
a recorded diagnosis does not rule out the pres-
ence of a condition, making it difficult to dis-
tinguish between negative and missing values.
This effect, which we refer to as latent miss-
ingness, may lead to model degradation and
perpetuate existing biases in healthcare. To
address this issue, we propose that healthcare
providers and payers allocate a budget towards
data collection (eg. subsidies for check-ups or
lab tests). However, given finite resources, only
a subset of data points can be collected. Ad-
ditionally, most models are unable to be re-
trained after deployment. In this paper, we
propose a method for efficient data collection
in order to maximize a fixed model’s perfor-
mance on a given population. Through simu-
lated and real-world data, we demonstrate the
potential value of targeted data collection to ad-
dress model degradation.

1. Introduction

ML algorithms that use electronic health records
(EHR) aim to capture a patient’s health status
through data like ICD codes, clinical notes, and lab

values (Goldstein et al. (2017); Rhee and Klompas
(2020); Seymour et al. (2016); Henry et al. (2019)).
However, in practice, medical records are prone to
missingness due to recording issues and low health-
care utilization (Goldstein et al. (2017); Haneuse and
Daniels (2016)). For example, one study found that
89% of acute psychiatric services were not captured
in EHR (Madden et al. (2016)), while another found
that upwards of 80% of lab values were missing per
patient (Tan et al. (2023)). Under high rates of
missing data, ML algorithms can perpetuate exist-
ing disparities in healthcare, as healthcare utilization
can be confounded with protected attributes like race
and socioeconomic status (Pierson et al. (2021); Ra-
jkomar et al. (2018); Goodman et al. (2018); Ferry-
man and Pitcan (2018); Nordling (2019); Vyas et al.
(2020)). In this study, we are particularly inter-
ested in data missingness in a target population that
a model is deployed on. First, while data may be
carefully curated during the training and evaluation
phase, there are fewer guarantees of data quality once
deployed at new institutions (Wu et al. (2021)). Sec-
ond, while patterns of missingness can be learned in
training and initial evaluation phases, models are of-
ten deployed to multiple institutions, making this
problem difficult to address in model development
alone (Futoma et al. (2020)).

Latent missingness Typically, patients with miss-
ing features either have their values imputed or may
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Collecting data when missingness is unknown

Figure 1: (1A) A schematic of how data collection on potentially missing binary features influences model predictions.
For a given patient’s attributes, zero values which may mask missing features are checked through an intervention
(eg. check-up, lab test, or survey). Changes in the patient values resulting from data collection in turn influence the
model’s prediction. (1B) A diagram of the steps of our algorithm. Given a set of potentially missing data points, we
estimate the value of collecting each one. The costs, budget, and values are inputs to the 0-1 knapsack algorithm,
returning the subset of data that maximizes model performance while under budget.

be dropped from the dataset altogether (Hu and Du
(2020); Wells et al. (2013)). However, missingness
is not always indicated in medical records. EHR-
based models commonly use binary features that de-
note the presence of a health condition, where the
positive value 1 indicates the condition is found in
medical records, and the negative value 0 indicates
otherwise. This binary encoding scheme is prone to
latent missingness, where the negative value 0 can ei-
ther refer to the absence of a condition or the failure
to capture the diagnosis. As an example, suppose
a model considers patients to have had sepsis if the
ICD code A41.9 is found in their hospital encoun-
ters. Previous work has found that clinicians were
less likely to document severe sepsis when patients
were less ill (Whittaker et al. (2013)). In this situa-
tion, it would be unclear whether patients with nega-
tive values actually had sepsis, masking the missing-
ness in data. In theory, missingness can be indicated
when explicit negative diagnoses are not found (eg.
NaN values). However, in practice, negative diag-
noses may be missing for a high percentage of patients

when not recorded for billing purposes (eg. ICD or
CPT codes) (Romano and Mark (1994); Fette et al.
(2018); De Achaval et al. (2013)). As such, methods
like data imputation or deletion would be infeasible.

Targeted data collection As a response, we pro-
pose an approach where a monetary budget is spent
towards targeted data collection. Possible examples
of budget-driven data collection include:

1. Partial or complete subsidies for patient check-
ups, screening exams, or lab panels.

2. Data cleaning measures (eg. reconciling medi-
cal records across multiple institutions, patient
questionnaires for self-reported data).

3. Subjecting individual patient data to retrospec-
tive chart review by physicians, which have been
shown to add sensitivity when compared to ICD-
based assessments (Campbell et al. (2011)).

Healthcare providers and payers who deploy ML
algorithms face competing interests. First, deployed
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models need to be fair with respect to protected
patient subgroups. Beyond moral imperatives, fed-
eral and state regulatory agencies increasingly reg-
ulating AI algorithms to address bias (Pesapane
et al. (2018)). Second, healthcare delivery is always
resource-constrained, with cost-savings as a major
factor in ML adoption (Callahan and Shah (2017);
Sujith et al. (2022); Escudero et al. (2012)). In or-
der to balance these two opposing forces, providers
need methods to maximize the efficiency of data col-
lection. A data-centric approach to addressing under-
reporting in data can be used in parallel with model
development efforts to prevent model degradation.

In our paper, we provide the following analyses:
(1) we formulate the cost-performance tradeoff as a
combinatoric optimization problem, (2) we propose a
Shapley value-based method for estimating the value
of collecting individual data points, and (3) we show
that model-guided data collection strategies can sig-
nificantly outperform random data collection without
knowledge of ground-truth labels.

2. Related Works

Latent missingness The concept of unknown
missing variables is found in positive and unla-
beled (PU) learning (Bekker and Davis (2020);
Wawrzeńczyk and Mielniczuk (2022)), where mod-
els only have access to positive and unlabeled data.
In PU learning, only positive labels for y are known
and the negative labels are dispersed within the re-
maining labels. Previous work has also studied the ef-
fects of biases when establishing ground-truth labels
for healthcare algorithms (Obermeyer et al. (2019);
Chang et al. (2022)). In contrast, we focus on un-
known missingness when applied to binary features
within X. Previously, Zhou et al. (2022) uses the
synonymous term missingness without indication to
describe cases where missingness is not known. The
paper studies the effects of distribution shifts in pat-
terns of missingness in X between training and target
populations, and proposes an analytic adjustment for
linear models. We extend this work to the case where
the model cannot be re-trained and a budget can be
used to reveal missing features.

Active learning Budget-constrained data collec-
tion is a common theme in active learning, which has
the goal of identifying a subset of points to label in or-
der to improve model training (Settles (2009)). This
approach has been used specifically on EHR data in

order to efficiently label outcome conditions (Chen
et al. (2013); Nissim et al. (2016); Ji et al. (2019). Ac-
tive learning methods commonly use model gradients
to guide data selection (Ash et al. (2019); Bouneffouf
(2016); You et al. (2014); Settles and Craven (2008))
and recently, a Shapley-value based framework has
been proposed as well (Ghorbani et al. (2022)). Work
by Natarajan et al. (2018) focuses on active feature
elicitation, where the goal is to find an optimal set of
examples where collecting missing features for those
given examples can best improve classifier perfor-
mance. This is related to our work in that missing
features are collected in reference to the objective of
model performance. In contrast, our work focuses on
a fixed model, and we focus on the case where miss-
ingness is also unknown. Kanani and Melville (2008)
focuses on prediction-time active feature-value acqui-
sition, where a subset of a model’s features can be
acquired for a given cost during inference. This work
shares the theme of cost-constraint data collection
during inference, but differs from our work in that
(1) the set of missing features are fixed and known,
and (2) they use a classifier’s uncertainty rather than
feature sensitivity to guide data acquisition.

Missing features There has been extensive pre-
vious work on handling missing features in EHR
through data imputation (Hu and Du (2020); Wells
et al. (2013)), autoencoders, and representation
learning (Malone et al. (2018); Beaulieu-Jones et al.
(2017); Xu et al. (2021)), and discarding values (Lit-
tle and Rubin (2019)). However, such approaches
assume that missingness is made known. Unknown
missingness is also referred to in survey literature as
false negative responses to questions (eg. maternal
smoking in epidemiological studies) (Sechidis et al.
(2017)). Prior work in this space has involved es-
timating rates of missingness by incorporating prior
knowledge and statistical tests (Sechidis et al. (2017);
Lazkecka et al. (2021)) with the goal of inference,
rather than prediction.

3. Preliminaries

Notation: We let (X,Y, Z) be a random vector
that refers to the observed data, the labels, and the
true data, respectively. The support of these distri-
butions are X × Y × Z ⊆ {0, 1}dX × R × {0, 1}dX

for some dX ∈ N. Additionally, we use a binary ma-
trix O ∈ {0, 1}N×dX to indicate whether data are
observed, such that Oij = 1(xij is observed). Fi-
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nally, C ∈ RN×dX is a cost matrix representing the
marginal cost of collecting each data point in X. For
data points already collected, (ie. oij = 1), the
marginal cost is 0. The model’s performance at a
data (x, y) ∈ X × Y is given by L(h(x), y) for some
loss function L : Y × Y → R and a fixed, pre-trained
model h : X → Y.

Assumption 1 (Latent missingness) For a given
event zij ∈ {0, 1}, let oij ∈ {0, 1} be a latent variable
indicating whether zij was observed. A feature xij
with latent missingness is encoded as follows:

xij =

{
zij , if oij = 1

0, if oij = 0

In particular, we do not make any assumptions about
the type of missingness in the dataset (eg. Missing
Completely at Random (MCAR) vs. Missing Not at
Random (MNAR)).

Definition 1 (Data collection) We refer to data
collection as a secondary check on existing data, as
opposed to the process of gathering new data points.
For example, if the data state that a given patient does
not have hypertension, data collection would refer to
an intervention (such as a check-up) that verifies this
value. The new data point would then be updated in
the EHR for the model to use. In our notation, zij
would refer to the true value of patient i’s feature j,
whereas xij refers to the initially observed (potentially
masked) value. The indicator matrix Oij refers to all
points which are not potentially missing. In the most
naive setting, we can set O = X, where all zeros are
considered potentially missing. In practice, a subset
of zeros may have verified negative tests. We assume
that the true value of a binary variable is always able
to be unmasked through data collection.

4. Missing Feature Discovery

The goal of our method is to identify the subset of po-
tentially missing data to collect in an evaluation set
that will yield the greatest improvement in model per-
formance on the whole set. For example, a healthcare
provider or payer may be faced with the decision to
either subsidize metabolic panels for 100 high-risk pa-
tients or general check-ups for 200 low-risk patients.
In this case, the model’s improvement from access-
ing true lab values may be greater than the potential
conditions revealed in the 200 check-ups. However,

the lab tests may be more expensive than the check-
ups, posing a trade-off between budget and model
performance.

4.1. Optimization problem

We pose this trade-off as the following combinatoric
optimization problem:

max
oij

N∑
i

dX∑
j

Vijoij (1)

s.t.

N∑
i

dX∑
j

Cijoij < b (2)

Here, oij is an indicator variable for whether we per-
form data collection on xij , and C and b are the costs
and total budget, respectively. Finally, V is our proxy
for the performance improvement from collecting xij ,
which we define below. This combinatoric optimiza-
tion problem is solvable with the 0-1 Knapsack algo-
rithm, which identifies the maximum value which can
satisfy a given budget constraint given V .

Definition 2 The value of the ith individual’s jth

feature is defined as the difference in model perfor-

mance after collecting xij, where ∆ij
∆
= zij − xij and

ej is the unit vector with zeros everywhere except the
jth element:

Vij
∆
= L(yi, h(xi))− L(yi, h(xi + ej∆ij))

Our approach makes the simplifying assump-
tion of linearity in model improvement through∑N

i

∑dX

j Vijoij . In practice, the model’s improve-
ment from one data point collection can be depen-
dent on other data points. We aim to address this ef-
fect through an observation-dependent Shapley value,
which we describe below.

Value of data collection depends on feature
sensitivity The change in loss from data collection
can be approximated using a first-order Taylor ex-
pansion into the following three parts: The data col-
lection’s effect on xi, the feature sensitivity, and the
loss sensitivity:

Vij ≈ ∆ij︸︷︷︸
Change in xi

× h(xi + ej)− h(xi)︸ ︷︷ ︸
Feature sensitivity

× ∂L(yi, h(xi))

∂h(xi)︸ ︷︷ ︸
Loss sensitivity
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Figure 2: Cost curves displaying the efficiency of each method in improving model performance across data points
collected. The x-axis represents the fraction of the total number of potentially missing data points collected as guided
by each method, while the y-axis represents the improvement in model performance after those data points have
been collected. Improvement is measured by evaluating the model’s performance (AUC) after N data points have
been collected. Each curve’s solid line represents the average performance across 500 runs, while the shaded region
represents the 95% confidence interval at each time step. The dotted horizontal line refers to the maximum model
performance after collecting all potentially missing data points. For visual clarity, the x-axis is cropped to fit curves
for the three non-random methods, so the curves for random allocation may extend beyond the graphs.

Intuitively, this means that the estimated change
in loss is composed of (A) whether data collection will
change the data, (B) how much the model’s predic-
tion changes as the data changes, and (C) how much
the loss changes as the model’s prediction changes.
Direct calculation of the change in xi and the loss
sensitivity requires knowledge of the true value of fea-
tures, zij , and the ground-truth label yi, which are
not available during model deployment. However, the
feature sensitivity, h(xi+ej)−h(xi), is available with
only access to model inference. As such, our analysis
focuses on ways to estimate feature sensitivity.

Estimating feature sensitivity when other fea-
tures change As data is collected sequentially, the
feature sensitivity at time t depends on the order of
observations {O(0), ...O(t)}. In non-linear models, in-
teractions between features mean that the sensitivity
is non-stationary as data is collected. For example,
if two potentially missing lab test features interact
in a model, the model’s sensitivity for lab test A de-
pends on the current value of lab test B, which may or
may not be missing. To account for possible changes
in other features when computing feature sensitiv-
ity, we instead aim to estimate the average marginal
change in model prediction over all permutations of

possible changes due to data collection. This can be
formulated as the Shapley value of each feature over
a subset of unobserved features:

Definition 3 (Observation Dependent SHAP)
Fix i ∈ {1, . . . , n}, let Gi := {j : oij = 0}. Then,
for j ∈ Gi, the observation-dependent Shapley value
(OD SHAP) for each data point is:

φij =
∑

S⊆Gi\{j}

|S|!(|Gi| − |S| − 1)!

|Gi|!
[fi(S∪{j})−fi(S)]

(3)
We use the notation fi(S) = h(x∗i (S)), where
x∗i (S) := xi � 1Sc + 1S and 1S is a dX-dimensional
vector whose element is one if its index is S, zero
otherwise. Gi represents the set of indices for all fea-
tures which have not been observed for patient i, and
πGi

is the set of all permutations of those indices. In-
tuitively, fi is a wrapper function for h that counter-
factually sets all features in S to 1, while preserving
the value of all the other features not in S. Finally,
we use the absolute value of φij in our calculation of
Vij since we aim to measure the magnitude of feature
importance rather than the direction.

Comparison to standard SHAP The OD SHAP
value φij corresponds to the counterfactual model
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prediction when xij = 1. In particular, OD SHAP
only considers permutations in features that have not
been observed, whereas the standard implementation
of SHAP (Lundberg and Lee (2017)) value considers
permutations in all features in xi. Under OD SHAP,
φij = 0 for all j where oij = 1. Additionally, the
intercept, φi∅, is equal to the model’s current predic-
tion on xi under OD SHAP, whereas the intercept for
standard SHAP is equal to the model prediction when
all features are equal to 0 (when all features are bi-
nary). For example, we assume a patient has a known
diagnosis of hypertension, but an unknown value for
diabetes. A standard SHAP calculation would take
into consideration both the possibility of positive and
negative hypertension as part of the calculation for
the Shapley value for diabetes. In the observation-
dependent version, we would only include the posi-
tive value since we already know the patient has a
positive diagnosis.

4.2. Algorithm

Our algorithm estimates how each data point will
change the model’s prediction, and then prioritizes
collecting data points that will yield the largest
change.

Given b budget and C costs:

1. Initialize O as the indicator matrix for data that
are not potentially missing.

2. Compute Vij = |φij | according to Equation 3.

3. Run 0-1 Knapsack algorithm with budget b, costs
C, and weights V to obtain subset of data indices
I = {(i, j) | i ∈ [N ], j ∈ [dX ]}

4. Sort indices in I according to their value in V ,
from greatest to least:

Iordered = sort(I, [Vij∀(i, j) ∈ I], desc)

The model user then takes list I and performs data
collection in order. In practice, φij may assign zero
values for features that do not change model predic-
tion. As such, our algorithm only recommends data
collection for the subset of data points which have
non-zero values.

5. Evaluation

Metric Let A = {O(0), ..., O(T )} be a sequence of
data observations made, where O(t) is an indicator
matrix for the set of data collected after time t. We

define reward r(O(t)) as the model’s performance af-
ter t data are collected:

r(O(t)) =
1

N

∑
L(yi, h(xi + ejo

(t)
ij zij))

We evaluate an entire sequence of choices by taking
the average model improvement over all time steps:

Avg. Model Improvement :=
1

T

T∑
t=0

(r(O(t))−r(O(0)))

(4)

Baselines We compare our method against three
baselines:

1. Random We collect potentially missing data
points at random, which represents a potential
default policy.

V random
ij =

{
Unif(0, 1), if oij = 0

0, otherwise

2. Feature Gradient We use a naive feature im-
portance approach that takes the model perfor-
mance difference at each step as an indicator of
which feature to choose. This approach is naive
in that it does not take into account possible
feature interactions that occur during data col-
lection.

V grad
ij =

{
|h(xi + ej)− h(xi)|, if oij = 0

0, otherwise

3. Standard SHAP We also evaluate the SHAP
method for feature attribution as originally pro-
posed by Lundberg and Lee (2017). The formula
for φij in the standard case is the same as Equa-
tion 9 but uses the notation Gi = {1, ..., dX} and
x∗i (S) = 1S .

Metrics We use negative log loss in our estimation
of Vij , while using AUC (Area Under the ROC Curve)
to measure overall performance with respect to a set
data collection.

5.1. Data

We use both simulated and real-world data to evalu-
ate our method.
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Simulated data We aim to simulate a classifica-
tion algorithm with EHR-derived features. First, we
generate true data Z as independent binary random
variables: Zj ∼ Bernoulli(pj), pj ∼ Unif(0.5, 1).
The range [0.5, 1] reflects a high degree of missing-
ness where data collection would be necessary. Next,
a masking variable M is generated as binary random
variables as well, with Mj ∼ Bernoulli(qj), where
qj ∼ Unif(0.5, 1). The initial observed dataset X is
the elementwise dot product of Z and M , ie. X =
Z � (1 −M). The labels are generated as Bernoulli
random variables parameterized by the linear com-
bination of Z and β = {β1, ..., βdX

}, βj ∼ Exp(10),
such that y ∼ Bernoulli(σ(ZTβ)), where σ is the
logistic function. We generate 1000 total synthetic
patients with 20 features and leave 200 rows to be
used for the evaluation set. In our experiments,
we use a Gradient Boosting classifier, implemented
in Python’s Scikit-Learn package (Pedregosa et al.
(2011)).

MIMIC-IV ICU data To evaluate our method on
EHR, we use the MIMIC-IV dataset (Johnson et al.
(2023)). Our dataset preprocessing uses benchmark-
ing from Xie et al. (2022), which provides an open-
source implementation for data extraction, clean-
ing, and filtering on several ICU-related outcomes in
MIMIC-IV. In particular, we use the following out-
comes for prediction tasks: critical outcomes, ED re-
visits, ICU transfers. ICU transfers refer to criti-
cally ill patients who are moved to the ICU within
12 hours. Critical outcomes are a broader category
of ICU transfers that also include patient mortalities
within 12 hours. ED revisits refer to patients who
return to the emergency department within 72 hours
after their previous discharge. There are 39 total fea-
tures used in each prediction task, which fall into the
categories of previous hospital stay durations, triage
values, chief complaints, and comorbidities. To bet-
ter evaluate the effects of binary missing variables,
we binarize continuous features by encoding values
either above or below their mean values. In total,
353150 patients are used in the training set.
Due to the nature of latent missingness, we can-
not access naturally occurring missingness labels in
MIMIC-IV. As a proxy, we choose a subset of pa-
tients with greater rates of positive features and ap-
ply a missingness mask over these data. In effect,
we aim to capture the effect of masked features while
preserving the natural correlation between features
and outcomes. For our evaluation set, we sample 500

patients that have a high rate of positive features and
apply the same masking procedure as described in our
simulated data.

5.2. Experiments

We compare OD SHAP to the three baseline meth-
ods in three experiments: (1) cost curves, (2) average
model improvement, and (3) missingness rates.

Cost curves The methods are evaluated first by
producing a curve where the x-axis is the fraction of
potentially missing data points collected and the y-
axis is the model improvement (in AUC). Each curve
represents the model’s performance after observing
the true values of the data points selected by each
method at each time step t.

Average model improvement We additionally
summarize each curve by computing the average
model improvement according to Equation 4, which
is the average area under each cost curve relative to
the model’s performance without any data collection.
We run each experiment 100 times such that miss-
ingness rates are randomized each time. Confidence
intervals are produced using bootstrap sampling over
the missingness of all the runs.

Missingness We examine the performance of each
method under increasing rates of missingness in each
feature. Rather than generate missingness across
Unif(0.5, 1), we select a fixed missingness rate α in
the range [0.5, 1.0] (in intervals of 0.1), and evaluate
each method’s average model improvement when all
features are missing at rate α.

6. Results

Prediction Task
Method Critical Outcome ED Revisit ICU Transfer

Feature Gradient 48.1% 55.1% 59.5%
Standard SHAP 50.3% 59.0% 56.2%

OD SHAP 73.7% 90.9% 79.5%

Table 1: Percent improvement over random for each
method, which is derived from Figure 4 by dividing val-
ues for each method by random for each task.

We present the following four results:

1. Cost curves (Figure 2). We show four cost
curves that represent each method’s efficiency
at discovering valuable missing features. The
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Figure 3: The model improvement from each method across different rates of missingness in each feature. The x-axis
is the missingness rate, while the y-axis shows the model improvement in AUC. Each line’s solid portion represents
the average performance across multiple runs, while the shaded region represents the 95% confidence interval at each
time step.

Figure 4: The average improvement for each method (fea-
ture gradient, standard SHAP, and OD SHAP) across
three prediction tasks (critical outcome, ED revisit, ICU
transfer). The methods are compared against a random
baseline (in gray). The 95% confidence intervals for each
method are provided in the black lines.

top left presents the results from the simu-
lation, while the other three present the re-
sults from the MIMIC-IV dataset. The curves
show that OD SHAP performs stronger than the
three baselines, achieving the maximum perfor-
mance achieved by collecting all data points at
a fraction of the cost. Notably, we find that
the standard SHAP method for feature attribu-
tion can actually underperform compared to the
naive feature gradient, whereas the observation-

dependent adjustment made in OD SHAP im-
proves upon both.

2. Performance of Methods Across Prediction
Tasks (Figure 4). Each curve is summarized
through the average model improvement. Our
results show that OD SHAP yields a statistically
significant improvement upon the three base-
lines.

3. Percentage over random (Table 1). We present
an alternative interpretation of our results in the
form of each method’s improvement over the ran-
dom baseline. We find that OD SHAP can im-
prove upon a random strategy by 73.7%, 90.0%,
and 79.5% for critical outcome, ED revisit, and
ICU transfer prediction, respectively.

4. Missingness (Figure 3). We find that the relative
improvements from using OD SHAP outperform
the three baselines as missingness rates increase.
We also find that the relative performance of
standard SHAP compared to OD SHAP drops
as missingness rates increase, indicating that a
standard SHAP calculation would not account
for potential changes in other covariates at ear-
lier time steps. Importantly, by fixing a single
missingness rate, we isolate each method’s abil-
ity to estimate feature influence alone, rather
than simply find features that are missing at high
rates.
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7. Discussion

Missing data poses a significant hurdle to the de-
ployment of medical AI algorithms. As an increas-
ing number of EHR-derived algorithms are deployed
into healthcare settings, it is crucial that healthcare
providers can address the negative effects of missing-
ness on model performance. In this paper, we pro-
pose a targeted data collection approach to address-
ing missingness from under-reporting. Our results
show that the feature gradient and standard Shap-
ley value do not adequately account for the covariate
shift that occurs during data collection. We propose
a modification to the Shapley value feature impor-
tance, OD SHAP, that addresses this issue.

Implications for model fairness Budget-driven
data collection can be specifically directed towards
addressing model biases with regard to protected
subgroups such as race and socioeconomic status,
which can have significantly lower healthcare uti-
lization compared to majority groups (Alegria et al.
(2011); Dickman et al. (2022)). Our method allows
for healthcare providers to target data collection ef-
forts to specific individuals and features, whereas
complementary efforts such as community outreach
and public health initiatives may be less specific. Fu-
ture work in this field can include approaches for opti-
mizing tradeoffs between multiple subgroups as well.

Regulatory context As EHR-derived algorithms
are increasingly subject to government regulation
(Food et al. (2019)), deployed models face restric-
tions with regard to model retraining and adjust-
ments (Gilbert et al. (2021)). This regulatory envi-
ronment underscores the need for a data-centric ap-
proach to improving model performance since models
may generally be considered fixed after deployment.
Furthermore, algorithms are typically deployed to a
large number of sites, challenging notions of a one-
size-fits-all approach to algorithmic evaluation (Fu-
toma et al. (2020)). Our method can be flexibly
used on a chosen subgroup and only requires infer-
ence access to the model. As with any interventional
approach, data collection needs to be done so in ac-
cordance to ethical and legal considerations so as to
prevent further harm.

Deployment considerations Our proposed ap-
proach is an extension of existing efforts by health-
care spenders to encourage positive health outcomes
through subsidies. Currently, insurance plans com-
monly offer reduced copayments for preventive care

services such as annual physical exams or screen-
ings, which has been shown to have a sizable im-
pact on increasing healthcare utilization in patient
subgroups (Gruber (2006)). A specific example is
UnitedHealthcare’s HouseCalls, where the insurance
company provides a free yearly check-in directly to
patients’ homes. More broadly speaking, healthcare
subsidies have been used as a tool to encourage a vari-
ety of desired health outcomes for under-represented
groups such as farm workers, low-income women, and
African-American and Latino males at risk of STIs
(Gorter et al. (2003)). Our proposal frames algorith-
mic performance as the intermediate outcome of in-
terest. In general, such an approach may face practi-
cal obstacles in deployment, as active data collection
and cleaning pipelines may not be readily available
in every organization (Zhang et al. (2022)). How-
ever, with regulatory standards for EHR-derived al-
gorithms increasing over time (Ross (2022)), such
pipelines will likely be justifiable investments for any
organization that deploys such models.

Additionally, in practice, EHR-based algorithms
may also include time-sensitive variables such as a
daily heart rate reading, diet, or location. In such
cases, rather than a one-off data collection scheme,
healthcare payers may want to allocate a budget to-
wards ongoing data monitoring. For example, rather
than subsidizing a one-time survey of a patient’s eat-
ing habits, the budget can be allocated towards con-
tinuous monitoring. In such cases, an allocated bud-
get can be partitioned given period of time (ie. bud-
get per month or year).

Dependence on feature sensitivity The extent
to which feature sensitivity alone can be a reliable
indicator of a data point’s value depends on (1) the
rates of missingness and (2) the model’s error with
respect to the true (revealed) data distribution. By
focusing only on feature sensitivity, we are defaulting
to a value of ∆ij = 1, which is the assumption that
all possibly missing data are indeed missing. In cases
where some features have very low rates of missing-
ness, the gap between feature sensitivity alone and
the true value of Vij will be more drastic. A possible
remedy can include informed data imputation, where
domain experts can measure population-level disease
rates and infer whether the current covariate rates are
higher or lower than expected. Missingness rates are
heavily domain-dependent, but this information can
be easily integrated into our approach by multiplying
each data point’s value by its expected probability as
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outlined in the decomposition of the Taylor approx-
imation. Next, our method also assumes equal loss
sensitivity for each data point. In situations where
the model exhibits much higher error rates for certain
data points than others (eg. a bias towards specific
patient subgroups), the information gained from loss
sensitivity is higher. While not covered in this paper,
a potential way to address this may involve using the
model’s uncertainty as a proxy for loss sensitivity.

A consequence of operating under limited knowl-
edge of groundtruth labels is the fact that not all
data collection will result in improved model per-
formance. In expectation, data acquisition improves
model performance when the model has lower error
under the true distribution vs. the corrupted distri-
bution (ie. when E[L(yi, h(Zi))] < E[L(yi, h(Xi))].
However, when the model exhibits error w.r.t. the
true distribution, collecting certain data points may
result in a (locally) worse performance. Empirically,
we see this effect more apparent in our baseline meth-
ods (standard SHAP and feature gradient).

Limitations Due to the nature of latent missing-
ness, the natural distribution of missing data in
MIMIC-IV is unknown to us. As such, we simu-
late missingness in a subgroup of patients with high
healthcare utilization. However, additional empirical
evaluations of our methods may include real-world
evidence where data collection is actually carried out
and reported. Furthermore, in practice, data collec-
tion costs may not be strictly linear as paying for
one type of data collection could change the costs of
additional data collection.

While the Shapley value is a commonly used inter-
pretability method, other methods such as LIME also
yield the additivity property required for our method
(Ribeiro et al. (2016)). In general, there may be lim-
itations in the extent to which the axiomatic prop-
erties of Shapley values hold in practice (Fryer et al.
(2021)), although our paper only requires that the
additivity property holds.

Our paper underscores the viability of a data-
centric approach toward improving model perfor-
mance when deployed across sites with latent missing
features. Overall, we find that targeted data collec-
tion can be a useful tool to improve the performance
of a deployed model. In particular, the cost curves
in our results suggest that the efficiency of data col-
lection is convex, such that a small portion of the
total budget is enough to achieve the majority of
the performance gains. As algorithms are deployed

in increasingly complex healthcare settings, providers
will need the ability to tradeoff between model per-
formance and costs in order to adhere to regulatory
requirements and internal standards.

Data and Code Availability This paper uses the
MIMIC-IV dataset (Johnson et al., 2023), which is
available on the PhysioNet repository. The code used
in this paper will be made available on GitHub.

Institutional Review Board (IRB) Because
data was de-identified or a Limited Data Set in com-
pliance with the Health Insurance Portability and Ac-
countability Act and customer requirements, Institu-
tional Review Board approval or waiver of authoriza-
tion was not required.
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Appendix A. Additional
Experimentation

Varying costs We additionally explore how vary-
ing costs of the features affect our data collection
strategy. We synthetically generate feature costs
both a uniform distribution (Cj ∼ Unif(0, 1)) and
exponential distribution (Cj ∼ Exp(1)). In total,
we sample costs across 500 random seeds and report
the average cost curves across the fraction of the total
budget spent. In our experiments, we use a fractional
knapsack algorithm for computational feasibility.

The results from these cost structures are shown
in Figure 5. In general, we find that our method
(OD SHAP) is robust to different cost distributions
and that adding in a variable cost structure improves
the relative performance of OD SHAP compared to
a setting with equal costs. We also find that for ex-
ponentially distributed costs, each method requires a
higher fraction of the total budget to achieve max-
imum model performance. As the costs are more
heavy-tailed, more valuable data points can be down-
weighted by their costs, such that other less valuable
but cheaper data points may be chosen first.
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Figure 5: Cost curves displaying the efficiency of each method in improving model performance across data points col-
lected. The x-axis represents the fraction of the total budget required to collect all potentially missing data points, while
the y-axis represents the improvement in model performance after those data points have been collected. Improvement
is measured by evaluating the model’s performance (AUC) after N data points have been collected. Each curve’s
solid line represents the average performance across 500 runs, while the shaded region represents the 95% confidence
interval at each time step. The dotted horizontal line refers to the maximum model performance after collecting all
potentially missing data points. In subplot (A), we generate feature costs according to a uniform distribution, whereas
in subplot (B), we generate them according to an exponential distribution.
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