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Abstract

Only about one-third of the deaths world-
wide are assigned a medically-certified
cause, and understanding the causes of
deaths occurring outside of medical facil-
ities is logistically and financially challeng-
ing. Verbal autopsy (VA) is a routinely
used tool to collect information on cause
of death in such settings. VA is a survey-
based method where a structured question-
naire is conducted to family members or
caregivers of a recently deceased person,
and the collected information is used to in-
fer the cause of death. As VA becomes an
increasingly routine tool for cause-of-death
data collection, the lengthy questionnaire
has become a major challenge to the imple-
mentation and scale-up of VA interviews as
they are costly and time-consuming to con-
duct. In this paper, we propose a novel ac-
tive questionnaire design approach that op-
timizes the order of the questions dynami-
cally to achieve accurate cause-of-death as-
signment with the smallest number of ques-
tions. We propose a fully Bayesian strat-
egy for adaptive question selection that is
compatible with any existing probabilistic
cause-of-death assignment methods. We
also develop an early stopping criterion
that fully accounts for the uncertainty in
the model parameters. We also propose a
penalized score to account for constraints
and preferences of existing question struc-
tures. We evaluate the performance of
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our active designs using both synthetic and
real data, demonstrating that the proposed
strategy achieves accurate cause-of-death
assignment using considerably fewer ques-
tions than the traditional static VA survey
instruments.

Data and Code Availability The data
and code to replicate this paper are publicly
available. ~ We use synthetic data generated
with the replication codes, and the Population
Health Metrics Research Consortium (PHMRC)
gold-standard VA dataset, which is publicly
available at https://ghdx.healthdata.org/re
cord/ihme-data/population-health-metrics
-research-consortium-gold-standard-ver
bal-autopsy-data-2005-2011.

Institutional Review Board (IRB) The
study does not require IRB approval.

1. Introduction

Data on cause of death is essential for under-
standing the heterogeneous burden of diseases.
Most low- and middle-income countries, however,
do not have vital statistics systems that produce
high quality statistics on cause of death. As a
result, about two thirds of deaths worldwide are
not registered or assigned a cause (World Health
Organization, 2021). Verbal autopsy (VA) is
a widely used tool to collect information on
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cause of death when medically certified cause-of-
death information is not available. VA is con-
ducted through a structured questionnaire ad-
ministered to family members or caregivers of a
recently deceased person. The questionnaire col-
lects information about the circumstances, signs,
and symptoms leading up to a person’s death.
VAs are widely implemented in health and de-
mographic surveillance systems, as well as na-
tional and multi-national mortality surveillance
programs (see, e.g., Chandramohan et al., 2021,
for an overview). Data collected by VAs can
be interpreted and assigned a cause of death by
physician panels, or more commonly, analyzed
by statistical algorithms. Algorithmic and statis-
tical models have been developed and routinely
used to classify individual cause of death and es-
timate the population-level cause-specific mortal-
ity fractions. The earlier and more widely used
models typically assume symptoms are condition-
ally independent given causes and perform cause-
of-death assignment using different variations of
the Naive Bayes classifier (e.g, Byass et al., 2019;
McCormick et al., 2016). Several extensions to
McCormick et al. (2016) have been recently pro-
posed to further improve VA cause-of-death as-
signment using more complex Bayesian hierarchi-
cal models (e.g., Kunihama et al., 2020; Li et al.,
2020; Moran et al., 2021). More flexible machine
learning models have also been used in analyzing
text-based narratives collected during VA inter-
views but it has been shown that they do not im-
prove cause-of-death assignment using only the
data from the structured questionnaire (Blanco
et al., 2020). An overview of existing cause-of-
death assignment algorithms can be found in Li
et al. (2022).

Much of the literature analyzing VA data fo-
cuses on automating the process to classify causes
of death. The data collection process has re-
ceived much less attention in the literature. One
of the main barriers for scaling up VA imple-
mentation is the challenge to conduct the overly
complex and long questionnaires. For example,
the current WHO 2016 standardized VA instru-
ment includes 480 questions. While each inter-
view evokes only a subset of the questions, a typ-
ical VA interview still needs to go through 100 to
200 questions. Lengthy interviews increase the
emotional stress to both the respondents and in-
terviewers, and can lead to survey fatigue and de-
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creased acceptance of the interview (Loh et al.,
2021; Nichols et al., 2022; Hinga et al., 2021).
To the best of our knowledge, two attempts have
been made in the last two decades to systemati-
cally reduce the length of VA questionnaires. Se-
rina et al. (2015) measured the marginal associa-
tions between symptoms and causes of death, and
removed symptoms based on the ranking of their
importance. However, they evaluated symptom
importance based on a single highly simplified
classification algorithm; thus the results are heav-
ily influenced by the parametric assumptions of
the algorithm. A more recent development to
simplify the VA questionnaire was carried out by
the WHO in producing the 2022 standard VA
instrument, described in Chandramohan et al.
(2021) and Nichols et al. (2022). A more thor-
ough process was carried out in which symptom
response patterns and importance were evaluated
in a model-agnostic fashion, and mixed-methods
analyses were conducted to identify around 100
questions that can be removed.

Both previous approaches to shorten the VA
interview are limited by the nature of the tra-
ditional survey instrument: the questionnaire
needs to capture relevant symptoms associated
with all potential causes of death. As the cause
of death is the target of inference and unknown
to the interviewer ahead of time, all questions
need to be answered with the same priority by
each respondent. Therefore, for a single inter-
view, a large fraction of the collected data could
potentially provide little relevant information in
determining the cause of the particular death.

In this paper, we propose a statistical frame-
work to adaptively conduct VA interviews by ac-
tively choosing the most informative questions to
ask based on the collected responses, and stop-
ping when enough information has been collected
to determine the cause of death. Unlike the static
screening approach to reduce the length of the
questionnaire for all respondents, our approach
leads to a dynamic and individualized question-
naire design that is optimized for the classifica-
tion of each death. Our approach is motivated
by the methods developed in the field of active
learning and computerized adaptive testing. We
focus our attention to its application in verbal au-
topsy questionnaires, as this is the first time an
adaptive design is considered for the purpose of
verbal autopsy questionnaires. The proposed ap-
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proach, however, can also be generally useful for
surveys with the aim of classifying respondents
into pre-defined groups. The main contributions
of our work can be summarized as follows:

1. Our active question selection strategy op-
timizes the cause-of-death classification of
each individual death dynamically. We
demonstrate that for most deaths, a small
number of actively selected questions is
enough to achieve the same level of classifi-
cation accuracy as when using all questions.

. Our active questionnaire design is compati-
ble with any existing probabilistic cause-of-
death assignment algorithms, and thus can
be applied regardless of the choice of anal-
ysis models used to describe the joint dis-
tribution of symptoms and causes. This al-
lows more flexibility in practice, as an ana-
lyst can choose the most appropriate analy-
sis model to conduct the cause-of-death as-
signment and seamlessly adopt the proposed
active questionnaire design for data collec-
tion.

Our approach extends existing work in psy-
chometrics to a more principled Bayesian
strategy that fully accounts for the un-
certainty of the cause-of-death classifica-
tion model, and we show that it leads to
uncertainty-aware stopping rules that are
more appropriate for high-stake tasks such
as VAs.

We also propose a novel penalized version
of the adaptive questionnaire strategy to ac-
count for practical constraints and prefer-
ences for the order of the questions.

2. Preliminaries
2.1. Active Learning

Active learning has been studied extensively in
many areas of machine learning. Active learning
algorithms seek to choose the optimal data in-
stances to be used for the learning system. Most
of the work in active learning focuses on choosing
data points to be labeled to improve the perfor-
mance of classification algorithms (Settles, 2011).
Many types of data query strategies has been
proposed in the literature, including uncertainty
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sampling (Lewis, 1995), query-by-committee (Se-
ung et al., 1992), and approaches that aim to re-
duce the variance (Cohn et al., 1996) and general-
ization errors (Roy and McCallum, 2001). More
similar to the context of this paper, active learn-
ing approaches have also been used to query com-
plete feature vectors within a pool of observa-
tions with missing values (Melville et al., 2004;
Li and Oliva, 2021). Active learning has been
successfully applied to natural language model-
ing (Kaushal et al., 2019), computer vision (Dor
et al., 2020), any many other applications. Pre-
vious work on active learning to collect survey re-
sponses is scarce. The work most related to our
approach is the active matrix factorization ap-
proach for surveys measuring voter opinion pro-
posed in Zhang et al. (2020). They developed an
active question selection strategy to optimize the
estimation of latent profiles of respondents under
a low-rank matrix factorization model.

2.2. Computerized Adaptive Testing

Computerized adaptive testing (CAT) is a mode
of testing which aims to find the optimal set
of questions for each individual, thus resulting
in more efficient and accurate recovery of latent
traits of examinees (Weiss and Kingsbury, 1984).
CAT was originally proposed for item response
theory (IRT) in Lord (1971). The items are se-
lected to maximize the test information at the
current estimated ability based on IRT from an
item bank. Omne main application of CAT is in
the cognitive diagnosis models (CDMs), which
is termed as cognitive diagnostic computerized
adaptive testing (CD-CAT) (see, e.g., Cheng,
2009; Huebner, 2010). As CDMs have a discrete
attribute space, standard CAT approaches for
IRT are not directly applicable to CDMs. Several
CD-CAT methods have been proposed in the lit-
erature with different item selection criteria. Two
of the most widely adopted class of methods are
the Shannon entropy approach, proposed by Tat-
suoka (2002) and Tatsuoka and Ferguson (2003),
and various procedures based on the Kullback-
Leibler (KL) information (e.g. Xu et al., 2003;
Cheng, 2009). Other information metrics include
mutual information (Wang, 2013) and large devi-
ation (Liu et al., 2015) are also proposed for CD-
CAT. We will utilize a similar strategy based on
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KL information for selecting optimal questions
for VA surveys in this paper.

3. Method

3.1. Bayesian Active Questionnaire
Design

We assume that there exists a question bank with
J questions. Let X;; denote the response to
question j for death i, and Y; € {1,...,C} de-
note the categorical variable indicating the cause
of death. We consider X;; € {0,1} in this pa-
per since most of the questions collected by VA
surveys are binary. The extension to general X
is straightforward, and does not change the ac-
tive design formulation. We consider the situ-
ation where a probabilistic model was fitted on
a dataset (X;,Y;);=1,. , and produced estimates
for the distribution p(X,Y).

Our approach follows the KL information pro-
cedures in the CD-CAT literature (Cheng, 2009).
In the context of VA, after ¢ questions have been
asked, we let S; denote the set of questions al-
ready asked and among the questions j & S;, we
identify the question with the most different dis-
tribution under the current estimated cause of
death compared to alternative causes. That is,
for an alternative cause y and the j-th question,

we define
gz | ")
i@y )’

@ | y) = quyl 1og<

where ¢j(z | y) = p(Xy; = o | Yi = y) is
the conditional distribution of the j-th indica-
tor given the cause of death being y, and g A(t

argmaxp(Y; | {X;; : j € S;}) is the estlmated
cause of death given the collected information
at step t. Several different methods have been
proposed to combine the KL distances to all al-
ternative classifications in the CD-CAT litera-
ture. We adopt the idea of posterior weighted KL
(PWKL) algorithm (Cheng, 2009) and maximize

the weighted score for each question j defined by

Score; = ZD 5 I v)p(Y;

=y {XU JESt}).

(1)

The existing CD-CAT literature typically as-
sumes that the conditional distributions involved
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in computing the scores are known or can be es-
timated with high precision from existing data
(Chang et al., 2019). In the context of VA, how-
ever, these quantities need to be estimated using
a cause-of-death assignment model with usually
limited training data D. Several Bayesian meth-
ods have been introduced to infer cause of death
using VAs (McCormick et al., 2016; Kunihama
et al., 2020; Li et al., 2021; Wu et al., 2021) and
it has been shown that considerable uncertain-
ties exist in the classification and parameter esti-
mations in these models. To account for the full
posterior uncertainty of the conditional probabil-
ities used to construct the PWKL score, we in-
stead propose the following posterior predictive
PWKL score

PScore; = /Score]( )p(¢ | D)

B
E COI‘GJ
b:

where we use ¢ to denote all parameters used
in the assignment model, ¢(*) to denote the b-th
draw of ¢ from the posterior distribution p(¢|D)
and Score;(¢®)) is the PWKL score defined in
Equation 1 with ¢® plugged in. In the rest of
the paper, we refer to the active question selec-
tion strategy that maximizes Scorej(q?))7 where
é is the posterior mean of ¢, as the design us-
ing point estimates and the strategy maximizing
PScore; as the design using posterior predictive
scores. We note that this is a further extension
that accounts for the full model uncertainty, com-
pared to the modified PWKL score proposed in
Kaplan et al. (2015), where only the uncertainty
of the latent classification was integrated over.

3.2. Cause-of-Death Assignment Model

The proposed active selection strategy does not
depend on any particular choice of the cause-
of-death assignment model used to analyze the
data, as long as the conditional probabilities in
Equation 1 can be computed. In this paper,
we consider a simplified version of the algorithm
proposed in McCormick et al. (2016) to analyze
training dataset D. Our analysis model assumes
the following data generating process

Y; ~ Cat(m),
p(Xi = |Y;=c) He”f” 1—6,) o,
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with conjugate priors 6.; ~ Be(ac,b.) and 7w ~
Dir(«) respectively. The posterior distributions
of the parameters are

7 | D ~ Dir(ny + a1,...,n¢c + ac),
ch | D ~ Be <GC+ Z xij, bc+nc— Z {Iiij>
:Y;=c :Y;=c

where n, = > 1(Y; = ¢) for ¢ = 1,...,C.
When some of the Y; are unknown in the
data, this assignment model can also be triv-
ially extended to generate posterior draws of
(77507Ymi88)'

3.3. Stopping Criterion

In adaptive testing settings where the test dura-
tion is the main constraint, it is usually reason-
able to stop the test after a pre-specified number
of questions (e.g. Chen et al., 2012; Wang et al.,
2011; Cheng, 2009). A fixed length stopping rule
is straightforward to implement in our active VA
questionnaire design as well. However, it is usu-
ally more appropriate to stop the interview only
when enough precision has been achieved. Sev-
eral related approaches on early stopping were
developed in the literature. Tatsuoka (2002) pro-
posed a stopping criteria where the largest proba-
bility of the classified class reached a given value,
which was later adapted by Hsu et al. (2013)
where another condition on the second largest
probability was added. In our notation, the crite-
rion proposed in Hsu et al. (2013) suggests stop-
ping the questionnaire when the largest value of
p(Y; = y [ {Xi; : j € &}) is larger than pig
and the second largest value is smaller than po,q
where p1st > pong are two pre-specified thresh-
olds.

The simplicity of this stopping rule is appeal-
ing, but when parameters are estimated with
large uncertainty, stopping the questionnaire
based on point estimates of classification proba-
bilities may lead to erroneous early stopping. In-
stead, we compute the posterior predictive prob-
ability of meeting a pre-specified stopping rule
similar to that introduced in Hsu et al. (2013). At
each iteration, for the b-th posterior draw ¢(®, we
compute pg(,b) =pYi=y | {Xi: 7€ S} o®).
The current most likely cause assignment is then
y* = modey(argmax,_; o p?(,b)). We can com-
pute the posterior predictive probability for the

*

event

p(Yi =y | {Xij 1 j € St}) > pists
p(Yi =y | {Xij:j €S}) < ponds

Yy #y*

We can then stop the survey when this proba-
bility exceeds a certain tolerance threshold r €
(0,1). More generally, while we adopt this spe-
cific stopping criteron in this paper, the fully
Bayesian nature of the proposed score formula-
tion also allows other stopping criterion to be
similarly plugged in.

3.4. Accounting for Existing Flow of the
Questionnaire

For traditional static VA surveys, the question-
naire structure usually follows a carefully de-
signed order that leads to a natural flow of the
questions. The dynamic nature of the active
questionnaire design inevitably breaks such an
ordering of questions, and may lead to consecu-
tive questions that are concerned with very differ-
ent aspects of an individual’s death. While this
is desired from the perspective of maximizing the
collected information quickly, one practical con-
cern for jumping across different topics is that it
may increase the chance of inaccurate responses
from the respondents. It is straightforward to
impose deterministic skip patterns by modifying
the search space S; at each iteration based on
the collected responses. For example, VA surveys
typical include questions that are only triggered
when a root question has been answered. We
may let Sy include only root-questions and any
sub-questions are added to S; only after the cor-
responding root-question has been answered. In
addition, it may also be useful to maintain some
of the natural ordering of the questions in a ‘soft’
fashion. The proposed active design strategy can
be easily extended to incorporate such preference
by adding a penalization for certain moves across
the questions, i.e., let j* denote the index of
question asked in the ¢-th iteration, and define
the penalized score

PScore); = PScore; — AD(j, 1)

where A > 0 is a parameter that regulates the
degree of penalization for the jumping behavior
and D(j, k) is a pre-specified distance metric be-
tween the j-th and k-th questions. For example,
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when there is a group of questions that we would
like to ask together but have no preference for the
order within the group, we may let D(j,k) = 0
if the questions are within the same group and 1
otherwise.

4. Experiments
4.1. Synthetic Data

We first generate synthetic data to evaluate the
performance of the active questionnaire design
strategy. We consider the following two data gen-
erating processes:

1. Correctly specified model: we generate ob-
servations using the model described in Sec-

tion 3.2. We let C = 10, J = 50, o =
(1,..,1) and (ac,b.) to be (0.5,0.5) for ¢ =
1,2,3, (3,3) for ¢ = 4,5,6, and (1,3) for
¢=17,8,9,10.

. Misspecified model: we generate observa-
tions by a latent class model such that each
cause of death consist of multiple unobserved
sub-categories. That is, we generate Z; |
Y; = ¢ ~ Cat(X.) and

T (1B

p(Xz :wz‘Y; =c, Zz :k (‘kj

H9

We let )\C = (/\017 /\CQ, )\03) ~ Dir(l, 1, 1) and
Ocr; ~ Beta(l,1) for all ¢, k, and j.

In each case, we generate n; = 200 and 1000
training observations, respectively, and evaluate
the performance of different questionnaire de-
signs on ng = 200 test observations.

In the first experiment, we consider running
the questionnaire with a fixed number of ques-
tions. Figure 1 shows the probability of correct
classification of cause of death in the test set,
given different lengths of the questionnaire. In all
cases, the two active question selection strategies
reaches high classification accuracy faster than
asking the questions sequentially with a fixed or-
der. In the case of the correctly specified model,
we also evaluate the accuracy of the oracle strat-
egy when the parameters of the true data gener-
ating process are known, and both active strate-
gies perform similarly to the oracle when the
training data is sufficiently large.

n_train = 200

n_train = 1000

1091100

(@]
5
2061 g
:
o )
00‘4 =%
2
o

30 40 50 0O 10 20 30 40 50

Number of Questioned Asked

0 10 20

— Fixed Order — Active Order: Point Estimate

— Active Order: Oracle — Active Order: Posterior Predictive

Figure 1: Classification accuracy of different
questionnaire design as the the num-
ber of questions increases.

We then evaluate the performance of the active
design under different varying-length stopping
rules under the same data generating processes
as in the first experiment. We compare the classi-
fication accuracy of different active design strate-

_gi(;s under the two data generating processes, re-
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spéctively, when different stopping criteria are
satisfied. We consider three stopping rules: when
using the point estimates to select questions, we
consider the same criterion in Hsu et al. (2013);
when using the posterior predictive scores, we
consider stopping when r = 50% and 70% of the
posterior draws meet the same criterion. Table 1
and 2 summarize the results. We fix pis; = 0.8
and 0.9, and for the second threshold, we com-
pute pond = (1 - plst)/c + d(O - 2)(1 - plst)/c
for various choices of d € [0, 1], as suggested by
Hsu et al. (2013). Overall, classification accuracy
increases as we increase p1s; and decrease papq (or
equivalently decrease d), as more questions need
to be asked before the more stringent stopping
criterion are met. Due to the space limitation,
we present results for d = 0 and 0.5 only. In
addition to accuracy, we also compare the me-
dian, and 5th and 95th percentiles of the ques-
tionnaire length. It is worth noting that in Table
2, when the analysis model is misspecified, the
stopping rule with 70% posterior probability of
satisfying the stopping criterion leads to similar
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median questionnaire length compared to consid-
ering only point estimates, while also having a
longer tail in the number of questions asked. This
leads to higher overall accuracy. In high-stake
contexts such as VA, it is often more appropriate
to favor conservative strategies and collect more
information for deaths that are difficult to clas-
sify, especially when the analysis model driving
the questionnaire design is not accurate enough.

Table 2: Classification accuracy and question-
naire length for the synthetic data un-
der the misspecified model. Median,
5th and 95th percentile of the question-
naire length are shown for each stopping
rule conditions.

p1st d Stopping Rule Acc Median Lower Upper
I h h; i le with
s coes e gl soppig e W e s 5 0
& gt bep P ' Pred 7 =05 088 4 3 18
Predr=0.7 0.94 5 3 27
Table 1: Classification accuracy and question- (0.8 0 Point Est 0.96 6 5 17
naire length for the synthetic data un- Pred r=0.5 0.94 6 4 30
der the correctly specified model. Me- Pred r =0.7 0.99 8 5 50
dlan’t. Sth .ancli 955}111 per‘fntﬂef of thﬁ 0.9 0.5 Point Est 094 6 4 13
atomaeleth s 20 0%l s o 50w
i ' Pred =07 098 7 4 50
- - 0.9 0 Point Est 0.96 7 6 20
p1st d Stopping Rule Acc Median Lower Upper Pred r — 05 098 3 5 49
0.8 0.5 Point Est 0.85 5 3 14 Pred r = 0.7 0.99 9 5 50
Pred » =0.5 0.92 10 4 50
Pred r=0.7 095 14 6 50
0.8 0 Point Est 0.96 8 5 3%ion 3.4 with A\ = 2 and 10. We consider the
Pred r=0.5 0.96 13 6 5game data generating process as in the first ex-
Pred » = 0.7 0.96 20 7 5@eriment, and both a low noise setting (h = 10)
09 05 Point Est 0.95 - 5 nd a high noise .settmg (h = 2)'. Figure 2 shows
hat the unpenalized active designs lead to sub-
Pred r=05"0.95 12 6 0 timal classification accuracy in high noise set-
Pred r =0.7 096 18 L racy m e .
ings, as the responses include more errors in-
0.9 0 Point Est 097 10 7 5duced by the non-sequential order of the ques-
Predr=0.5 096 16 8 S@ions. Active designs based on the proposed pe-
Pred r=0.7 096 23 8 Sthalized score are able to mitigate the effect of re-

Finally, we consider situations where the re-
sponses may be subject to errors when the ques-
tionnaire deviates from a natural flow. Let j®
denote the index for the t-th question asked, we
simulate noisy responses during the interview by

letting

Here we consider the distance metric D(j, k) =
|7 — k|/p. In this setup, asking questions sequen-
tially leads to the least amount of added noise.
We compare different active questionnaire de-
signs using the penalized score described in Sec-

DD 5™
1— Xij(” @] i)

Xij(t)

. w.p. - )
6 = D=1 (0
J w.p. 1— DG 7)) - J7)

sponse errors and achieve classification accuracy
comparable to or higher than static questionnaire
designs with the optimal order.

4.2. PHMRC Data

In this section, we consider the application
of the adaptive questionnaire strategy on the
Population Health Metrics Research Consortium
(PHMRC) gold-standard VA dataset (Murray
et al., 2011). The PHMRC dataset is widely
used for validating VA cause-of-death assign-
ment methods (McCormick et al., 2016; Ku-
nihama et al., 2020; Moran et al., 2021). It
consists of 7,841 adult deaths collected from
six study sites (Andhra Pradesh, India; Bohol,
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Figure 2: Classification accuracy of different
questionnaire design when responses
include order-induced noises. The red
curves correspond to fixed sequential
order.

Philippines; Dar es Salaam, Tanzania; Mexico
City, Mexico; Pemba Island, Tanzania; and Ut-
tar Pradesh, India). Gold-standard causes were
determined based on laboratory, pathology and
medical imaging findings. In this dataset, there
are C' = 34 cause-of-death categories and we pre-
processed the raw dataset into J = 168 binary
indicators using the steps described in Li et al.
(2022).

We again consider both stopping at fixed
length and when using the varying-length stop-
ping rules. We conduct a 10-fold cross validation
analysis, where we evaluate different active ques-
tionnaire strategies on each fold of data with the
rest of data being used to estimate model pa-
rameters. We treat missing values in the dataset
to be missing at random when fitting the model,
as is commonly assumed in existing VA cause-of-
death assignment algorithms (McCormick et al.,
2016; Kunihama et al., 2020; Li et al., 2021).

Figure 3 shows the accuracy of the active ques-
tionnaire using point estimates and posterior pre-
dictive scores, and compare them with the tra-
ditional questionnaire with fixed question order.

Both strategies achieve a considerably higher
classification accuracy compared to the static de-
sign after as few as 10 questions. In fact, the
overall accuracy of the active designs is optimal
when around 30 to 40 questions have been asked,
and then the accuracy slightly decreases as the
questionnaire becomes longer. This is not sur-
prising, as the analysis model in this experiment
is likely overly simplistic and does not approxi-
mate the complex distribution of symptoms and
causes well in the real data. However, while the
design of better cause-of-death assignment algo-
rithms remains an important research topic, the
experiment clearly demonstrates that even with
a simple analysis model, the active questionnaire
design can lead to highly accurate cause-of-death
classifications using only 1/4 of the questions.
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Figure 3: Classification accuracy of different
questionnaire designs on the PHMRC
data as the the number of questions in-
creases.

Lastly, we apply the adaptive early-stopping
rule to the same cross validation experiment. We
consider p1s; = 0.7, 0.8, and 0.9 and fix d = 0.5.
We present additional sensitivity analysis using
different values of d in the supplementary mate-
rials. We again compare the stopping rules based
on the point estimate, and posterior predictive
probabilities with » = 0.5 and 0.7. Figure 4 ex-
amines the relationship between the proportion
of correctly specified deaths when the question-
naire stops and the median number of questions
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of-death assignment algorithms using all symptoms. Red line: InSilicoVA (McCormick
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asked, disaggregated by the true cause of death.
For most causes, classification accuracy is not
sensitive to the choice of thresholds we use and
only the length of the conducted questionnaire
changes as the thresholds become more strin-
gent. This is as expected from the observations in
the first experiment that only a small number of
questions is needed to achieve high classification
accuracy. However, we note that for causes such
as maternal deaths, breast cancer, cervical can-
cer, drowning, homicide, and bite of venomous
animals, the active questionnaire design achieves
high classification accuracy quickly regardless of
stopping criterion. This is likely due to the strong
associations between these causes and a small
number of key symptoms. This observation is
highly useful in practice as it allows interview-
ers to terminate the VA interview considerably
sooner when sufficient information has been col-
lected to identify certain causes that are easier
to classify. We also compare the performance of
the active questionnaire strategy with two widely
adopted VA cause-of-death assignment methods,
InSilicoVA (McCormick et al., 2016) and InterVA
(Byass et al., 2019) in Figure 4. The active ques-
tionnaire strategy is able to achieve comparable
and usually higher accuracy compared to both of
the state-of-the-art VA algorithms using the full
dataset.

5. Discussion

In this paper, we introduced a novel active ques-
tionnaire design strategy for verbal autopsy sur-
veys. We proposed a principled Bayesian formu-
lation to estimate posterior predictive scores of
questions based on the KL information of ques-
tions in the bank. Our approach takes into
account the uncertainty from any probabilistic
cause-of-death assignment models and can facil-
itate adaptive early stopping rules and incorpo-
rate the existing flow of the questionnaire. We
demonstrated improved performance on cause-
of-death classification with both fixed and adap-
tive length of the questionnaire. More broadly,
while we focus on verbal autopsy surveys in this
work, the same methodology can be applied to
other medical and health surveys in resources-
constrained settings.

The proposed active questionnaire can be read-
ily adopted in the field as electronic data collec-
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tion through tablets is already the standard prac-
tice for VA field interviews (World Health Orga-
nization, 2022). The computation of the analy-
sis model only needs to be performed once, or
updated routinely, in a separate backend before
data collection. The only computation required
for real-time question selection involves the com-
putation of Equation 1 given pre-computed pa-
rameter values, which can be efficiently imple-
mented on existing tablets. The choice of the
analysis model is contextual and depends on the
implemented pipeline of VA data analysis. We
anticipate that field experiments are needed to
determine the choice of tuning parameters for
early termination of the questionnaires, which is
beyond the scope of this paper.

While this work provides a novel approach to
questionnaire design in VA studies, we acknowl-
edge several limitations for the approach to be
directly useful in practice. First, the analysis
model we used in this paper is over simplified
compared to the more recent work in the liter-
ature (e.g., Kunihama et al., 2020; Li et al.,
2021; Wu et al., 2021). As a result, while we ob-
serve advantage in the posterior predictive scores
in determining early stopping rules, the overall
classification accuracy is not significantly differ-
ent from active ordering based on only the point
estimates of the parameters. Combining the ac-
tive design with more complex analysis models is
beyond the scope of this work and is an impor-
tant future direction. Second, there is extensive
domain knowledge on the relationship and logic
behind the questions on VA surveys. Such infor-
mation may allow researchers to construct more
useful penalty functions to regulate the flow of
the active questionnaire and provide guidance on
choosing the tuning parameter for the penalty.

Several future directions of research could fur-
ther address the methodological challenges of ac-
tive questionnaire design for VAs. First, this
work focuses on the situation where a cause-of-
death assignment model has been chosen to an-
alyze existing data. The active questionnaire
strategy may be further improved to account
for more than one analysis models. Ensemble
prediction has been shown to improve the per-
formance of cause-of-death classification (Datta
et al., 2021) and could lead to active question-
naire designs and stopping rules that are more
robust to model misspecification. Second, the
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recent work on domain adaptive VA algorithms
illustrates that VA data are typically heteroge-
neous across different populations and the model
parameters fitted with data from one population
may not lead to good predictions for another pop-
ulation (Li et al., 2021; Wu et al., 2021). The pro-
posed adaptive design could be adapted to also
account for this additional layer of uncertainty.
Third, while we focus on the task of optimiz-
ing questionnaire design for future data collec-
tion given models estimated on existing data, it
remains an open question how to efficiently com-
bine and jointly analyze data collected via dif-
ferent adaptive and traditional instruments. Fi-
nally, it is an important practical research area
to understand how VA interviewees respond to
questionnaires with different orders and the po-
tential impact of instrument on data quality.
Furthermore, VA questions have different emo-
tional burdens on the respondents, take varying
amounts of time to conduct, and are subject to
different types of bias across populations. It is
also important to quantify the differential cost of
each question to better understand the trade-off
between classification accuracy and cost of the

interview. We leave these directions for future
research.
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