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Abstract
High blood pressure is a major risk factor for
cardiovascular disease, necessitating accurate
blood pressure (BP) measurement. Clinicians
measure BP with an invasive arterial catheter
or via a non-invasive arm or finger cuff. How-
ever, the former can cause discomfort to the pa-
tient and is unsuitable outside Intensive Care
Unit (ICU). While cuff-based devices, despite
being non-invasive, fails to provide continuous
measurement, and they measure from periph-
eral blood vessels whose BP waveforms differ
significantly from those proximal to the heart.
Hence, there is an urgent need to develop a mea-
surement protocol for converting easily mea-
sured non-invasive data into accurate BP val-
ues. Addressing this gap, we propose a non-
invasive approach to predict BP from arterial
area and blood flow velocity signals measured
from a Philips ultrasound transducer (XL-143)
applied to large arteries close to heart. We de-
veloped the protocol and collected data from
72 subjects. The shape of BP (relative BP)
can be theoretically calculated from these wave-
forms, however there is no established theory
to obtain absolute BP values. To tackle this
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challenge, we further employ data-driven ma-
chine learning models to predict the Mean Ar-
terial Blood Pressure (MAP), from which the
absolute BP can be derived. Our study inves-
tigates various machine learning algorithms to
optimize the prediction accuracy. We find that
LSTM, Transformer, and 1D-CNN algorithms
using the blood pressure shape and blood flow
velocity waveforms as inputs can achieve 8.6,
8.7, and 8.8 mmHg average standard devia-
tion of the prediction error respectively with-
out anthropometric data such as age, sex, heart
rate, height, weight. Furthermore, the 1D-CNN
model can achieve 7.9mmHg when anthropo-
metric data is added as inputs, improving upon
an anthropometric-only model of 9.5mmHg.
This machine learning-based approach, capa-
ble of converting ultrasound data into MAP
values, presents a promising software tool for
physicians in clinical decision-making regarding
blood pressure management.

Data and Code Availability In this study, we
recorded ultrasound data and the gold standard cuff
BP measurements from various healthy volunteers
within the age group of 18 to 60 years. The study
was approved by IRB and was conducted after re-
ceiving written, informed consent from all partici-
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pants. Individuals with any prior cardiovascular dis-
ease other than hypertension were excluded from the
study. More detailed information about data collec-
tion can be found in Section 3.1. We have made our
code available at this link.

Institutional Review Board (IRB) Our re-
search requires IRB approval. All the human study
described in the paper was approved by Institutional
Review Board (IRB) at MIT (1405006402).

1. Introduction

Hypertension is a major cardiovascular risk factor;
hence, accurate blood pressure (BP) measurement is
of high clinical interest. In an Intensive Care Unit
(ICU), physicians can use an invasive arterial catheter
to measure the BP waveform with high resolution. In
non-ICU settings, arterial catheters are not used, and
clinicians must rely upon isolated spot measurements
from a non-invasive arm-cuff device. These devices
measure systolic and diastolic pressure values and
cannot output the arterial BP (ABP) waveform. As a
result, these devices cannot track the dynamic nature
of the arterial system and measure the beat-to-beat
variations of BP, which may reveal information on
the underlying pathophysiology. Alternatively, clini-
cians can use non-invasive devices based on the vol-
ume clamping method to acquire the ABP waveform
from peripheral blood vessels like the digital arter-
ies in the finger. Since the BP waveform measured
at large arteries proximal to the heart (aorta, sub-
clavian, brachial) are clinically more valuable than
the distal digital arteries, there is strong interest in
developing non-invasive devices to measure the ABP
waveform in the larger arteries. Such a device may
offer a quantitative method to perform rapid hemody-
namic profiling of patients who cannot undergo inva-
sive BP measurements. Clinicians may use such non-
invasive devices in an emergency room, step-down
clinical ward, outpatient clinic, or even in a home
setting to monitor the ABP waveform of the patient
for quick diagnosis.
In this work, we present an ML model to convert

data from large arteries recorded from an ultrasound
transducer to the mean value of the ABP waveform,
referred to as the Mean Arterial Pressure (MAP).
Using the MAP, we can obtain the absolute ABP
waveform by centering the relative ABP waveform
(computed directly from the ultrasound device) on
the MAP value. Ultrasound devices are best suited
for non-invasive MAP monitoring for several reasons.

First, ultrasound devices are low-risk, non-invasive
devices that are easy to use with fewer clinical pre-
cautions and may be easily utilized outside of an ICU.
Second, these devices can measure physiological sig-
nals (arterial diameter and blood flow velocity wave-
form) in their respective absolute units. These sig-
nals have a close relationship with the pulse pressure
(PP) of the subject; one may easily derive their rela-
tionship with the PP using basic fluid-dynamic equa-
tions, as discussed elsewhere. Third, clinicians can
easily use ultrasound devices to record data from non-
superficial arteries, unlike many other non-invasive
methods such as photoplethysmogram. While ultra-
sound devices can produce accurate pulse pressure
waveforms, there is no established theory that pro-
vides absolute blood pressure values. Therefore, es-
timating the MAP from ultrasound devices generally
requires establishing a baseline using a cuff-based de-
vice, which is inconvenient, inaccurate (due to long
distance to heart) and cannot provide MAP results
in real time. In this paper, we propose a novel ap-
proach that leverage data-driven ML models to learn
the knowledge of absolute blood pressure and predict
the MAP from the ultrasound devices. In summary,
the contributions of this work are three folded:

• We design the data collection protocol and use
Philips transducer device to measure and collect ul-
trasound data from 72 subjects.

• We present three kinds of machine learning mod-
els (LSTM, Transformer and 1D-CNN) to learn the
absolute blood pressure that cannot be deducted from
existing theory using ultrasound signals.

• We show that with the ML model, the
ultrasound-based prediction can achieve 7.9mmHg er-
ror std, which is 1.6mmHg lower than the model
based on anthropometric data only. We also provide
comprehensive discussions of experimental results.

The remaining of the paper is presented as follows:
We first discuss previous work on measuring absolute
blood pressure, then our data collection method, fol-
lowed by a detailed description of the algorithms to
estimate MAP, and the results.

2. Background and Related Work

2.1. Blood Pressure Measurement

The current standard for measuring BP involves us-
ing an arm cuff device that inflates and deflates a
physical elastic cuff around the upper left arm (Ward
and Langton, 2007). However, this method only pro-
vides the systolic and diastolic values and cannot es-
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timate a continuous BP waveform; hence, there is a
strong interest in developing devices that can mon-
itor absolute BP continuously. A few investigators
explored light-based transducers, often referred to as
photoplethysmogram (PPG) sensors (Kyriacou and
May, 2022), in combination with machine learning
algorithms as an alternative for cuff-based BP mea-
surement (Xing and Sun, 2016). The vasomotor tone
and skin temperature heavily influence PPG signals
from the distal arteries; hence, these measurement lo-
cations may not be ideal for long-term BP tracking
(Allen, 2007). PPG sensors are not used on the proxi-
mal arteries, for instance, the carotid blood vessel, as
light-based measurements cannot record data from
non-superficial arteries. Ultrasound-based technol-
ogy can potentially be an ideal sensor for measuring
data from blood vessels deeply embedded from the
skin’s surface (Wang et al., 2021a). Quite a few inves-
tigators have used ultrasound-based sensors to mea-
sure BP waveform features (Wang et al., 2018), (Seo
et al., 2015). Wang et al. (2018) developed a method-
ology to design ultrasound sensors to record morphol-
ogy of the BP waveforms measured from the carotid
artery. Seo et al. (2015) used data recorded from
the ultrasound sensors for monitoring pulse pressure
from the carotid artery. There also exists work using
transmission line model based method (Harabedian,
2022; John, 2004) to estimate the bp from ultrasound
signals but the performance is not satisfactory (error
mean -19.6, std 28.8mmHg). Hill et al. (2021) cali-
brate the non-invasive signals measured from the fin-
ger using a photoplethysmogram sensor to obtain ab-
solute BP with ML models. In contrast, we estimate
blood pressure from the neck that offers a wide spec-
trum of clinical utility, ranging from investigating the
pressure at which the heart feeds blood to the brain
to an opportunity to study the hemodynamic status
of patients with Traumatic Brain Injury (TBI). Mea-
suring the pressure at which the heart feeds blood
to the brain may help clinicians guide therapy for
TBI patients while titrating medications to improve
blood circulation to the brain. Moreover, measured
data from the peripheral circulation at an arterial lo-
cation distal from the heart that is often influenced
by the temperature of the extremities. We addressed
this problem by using data recorded from an arterial
site closer to the heart, which is less susceptible to
body temperature, offering us an advantage on the
signal quality.

2.2. Machine Learning for Time Series Data

There has also been extensive work on using ML
models for time series data, particularly with CNN,
LSTM and Transformer models. For instance, Zhao
et al. (2017), Fauvel et al. (2021) and Wang et al.
(2021c) employed 1D-CNN-based models for time se-
ries classification. Kim and Kang (2019) applied both
1D-CNN and LSTM algorithms for time series pre-
diction, and Widiputra et al. (2021) and Essien and
Giannetti (2019) used CNN-LSTM stacked models
for time series forecasting. Recently, attention-based
Transformers (Vaswani et al., 2017; Devlin et al.,
2018; Radford et al., 2019; Brown et al., 2020; Wang
et al., 2022) are becoming main-stream models be-
cause of its ability to model both short-term and long-
term dependencies. Yang et al. (2021) and Rußwurm
and Körner (2020) leveraged transformer models for
time series classification, and Grigsby et al. (2021)
and Wu et al. (2020) used transformer models for
time series forecasting. Radford et al. (2022) lever-
age transformer (GPT) model for speech recognition
and translation. There are also works (Wang et al.,
2020b,a, 2021b; Zhang et al., 2020) on improving ef-
ficiency of Transformer models for fast time series
analysis.

3. Methods

3.1. Data Collection

In this study, we recorded ultrasound data and the
gold standard cuff BP measurements from various
healthy volunteers within the age group of 18 to 60
years. The study was approved by the committee
on the use of Humans as Experimental Subjects at
MIT (IRB #1405006402) and was conducted after
receiving written, informed consent from all partici-
pants. Individuals with any prior cardiovascular dis-
ease other than hypertension were excluded from the
study.

A total of 72 subjects volunteered for the study.
The data from 8 subjects were excluded due to miss-
ing information and the anthropomorphic details of
the 64 participants are illustrated in Table 1. The
data was collected using a well-defined clinical pro-
tocol approved by the IRB. The study began with
a resting phase. The subject was allowed to rest in
a supine posture for a period of 5 minutes to stabi-
lize the heart rate and prevent any BP fluctuations
or fast breathing during the experimental interval.
Cuff blood pressure was recorded at the end of the
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resting phase using a standard omron 7-series blood
pressure monitor. These cuff BP measurements were
measured from the left upper arm and were recorded
twice. The average of two BP measurements was
reported as the subject’s starting BP. Next, an ul-
trasound probe (Philips: Transducer XL-143, EPIQ
system) was placed over the left neck of the sub-
ject after requesting the individual to tilt the neck
by 45 degrees towards the right side to expose the
left common carotid artery. Sufficient ultrasound gel
was used between the transducer and skin to improve
the signal-to-noise ratio of the recorded images. The
transducer was gently placed over the location of the
blood vessel distal from the carotid bifurcation. Dur-
ing this experimental interval, the B-mode ultrasound
data were recorded for a period of 30 s. The focus
and depth of the ultrasound images were adjusted to
get sufficient contrast for the B-mode images. The
investigator confirmed that the recorded images were
clear and the subject did not swallow saliva during
this period to prevent motion artifact on the mea-
sured data. Next, the pulsed doppler technique was
used to record blood flow velocity at the same ar-
terial location. Note that the B-mode images and
blood flow velocity waveforms were recorded with
ECG gating for synchronization. The experiment ter-
minated with a BP measurement over the left upper
arm which was recorded as the ending blood pres-
sure of the subject. The B-mode images and pulse
doppler data were processed to get the arterial diam-
eter and blood flow velocity waveform. In summary,
we measure the arterial diameter waveform and blood
flow velocity waveform from each subject and we also
collect the anthropometic data.

Table 1: Statistics on the distribution of MAP and
anthropometric data features in out collected dataset.
ρ is the Spearman correlation coefficient of the fea-
ture with the MAP value.

Mean Stdev ρ
MAP (mmHg) 93.24 10.94 1.00

Age (yrs) 30.44 12.69 0.52
Heart rate (bpm) 73.14 11.72 0.27

Height (cm) 166.7 9.530 0.13
Weight (kg) 66.84 19.04 0.39

3.2. Dataset Split

Since the dataset is quite small (64 subjects in total),
we require the validation set to have a sufficient range

of MAP values in order for the model to converge.
If the range of target MAP values is not sufficiently
large, the model can achieve a low error on the vali-
dation set by predicting values near the mean MAP
value, and will thus fail to converge on the training
and testing sets. Therefore, we split the dataset into
k = 5 folds as follows:

1. Sort the subjects by MAP value and split them
into n/k consecutive buckets of size k, where n =
64 is the total number of subjects.

2. For each bucket, randomly assign a different sub-
ject from the bucket to each of the k folds.

Using this method, we obtain 5 folds with 12-13
subjects per fold. We then use 3 folds for training,
1 for validation, and 1 for testing. In addition, we
repeat this process using 3 different random seeds
in order to further reduce the variance of the final
evaluated metric.

3.3. Input Features

3.3.1. Blood Pressure Shape Waveform

We scale the raw arterial area waveform A by the
compliance in equation 5 to obtain the blood pressure
shape waveform bp shape as seen in equation 1. An
example of the full blood pressure shape waveform
can be seen in Figure 1.

bp shape =
A−mean(A)

AC
(1)

The arterial area waveform A is computed using
the formula:

A = π
D2

4
(2)

Where D is the arterial diameter that is directly
measured from the ultrasound data.

While the compliance value used in the experi-
ments is computed using measurements from the arm
cuff, it can also be calculated directly from synchro-
nized arterial area (A) blood flow velocity (V ) wave-
forms using equation 3 (Seo et al., 2015) where ρ is
blood density.

AC =
4 ·

∣∣∣ d
dF

√
A(t)

∣∣∣2
reflection free period

ρ

F (t) = V (t) ·A(t)

(3)
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3.3.2. Blood Flow Velocity Waveform

We also use the raw blood flow velocity waveform
measured from the ultrasound device, as shown in
Figure 1.

(a) The full bp shape waveform

(b) The full (V ) waveform

Figure 1: The full 30-second blood pressure shape
(bp shape) and blood flow velocity (V ) waveforms

3.3.3. Anthropometric Features

We also include the age, heart rate, height, weight,
and sex as inputs to some of the models.

3.4. Prediction Target

3.4.1. MAP

We obtain the ground truth MAP by calibrating the
arterial area waveform (A) using the systolic and di-
astolic blood pressure measurements (SBP and DBP)
from the arm cuff according to equation 4 (Chemla
et al., 1998). Then our models are trained to predict
this value.

Figure 2: Reconstructed absolute bp shape.

MAP = DBP+
mean(A)−min(A)

AC

= DBP+
mean(A)−min(A)

max(A)−min(A)
· PP

= DBP+
mean(A)−min(A)

max(A)−min(A)
· (SBP− DBP)

(4)

Where AC is the arterial compliance and PP is the
pulse pressure, defined by the following equations:

AC =
max(A)−min(A)

PP
(5)

PP = SBP− DBP (6)

The MAP from equation 4 is recorded as the
ground truth to be compared with the values ob-
tained from various ML models. Using the MAP
value, we can center the relative blood pressure shape
waveform bp shape on the MAP value to obtain the
full absolute ABP waveform as shown in figure 2.

3.5. Models

We compare the performance of 5 different models
for predicting mean arterial blood pressure:

1. Anthro-only model: A fully-connected model
(Haykin, 1994) trained using only anthropomet-
ric data: Age, height, weight, sex, and heart rate.

2. MLP: A fully-connected model (Haykin, 1994)
trained using the blood pressure shape and blood
flow velocity waveforms.

3. LSTM: An LSTM model (Hochreiter and
Schmidhuber, 1997) trained using the blood
pressure shape and blood flow velocity wave-
forms.
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Figure 3: Anthro-only fully-connected model archi-
tecture

4. Transformer: A transformer encoder model
(Vaswani et al., 2017) trained using the blood
pressure shape and blood flow velocity wave-
forms.

5. CNN: A 1d convolutional neural network (Good-
fellow et al., 2016) trained using the blood pres-
sure shape and blood flow velocity waveforms.

Each of the models are trained for 200 epochs with
Adam optimizer (Kingma and Ba, 2015) and learning
rate 0.001.

3.5.1. Anthro-only Model

In order to establish a baseline for comparison for
the MAP prediction models and to determine how
much information is contained in the arterial area and
blood flow velocity waveforms, we first train a fully-
connected model using only anthropometric data as
inputs.

Inputs As inputs to this model, we use five
scalar anthropometric data features: the age, height,
weight, sex, and heart rate of the subject.

Model We first project the inputs (1×5) into a new
feature map of dimension 1×64 using an initial fully-
connected layer. We then feed this into three fully-
connected layers of dimension 64 and ReLU activa-
tion function (Agarap, 2018), along with a final fully-
connected layer to regress the MAP value. The model
architecture is shown in Figure 3.

3.5.2. MLP

We first experiment with a simple fully-connected
model using the two waveforms as inputs, to deter-
mine if more complex models are necessary for this
prediction task.

Inputs As inputs to this model, we use the ensem-
bled (1×100) blood pressure shape and blood flow
velocity waveforms as inputs.

Model We first project the inputs (100×2) into a
new feature map of dimension 100×128 using an ini-
tial fully-connected layer. We then feed this into
three fully-connected layers of dimension 128 and

ReLU activation function (Agarap, 2018), along with
a final fully-connected layer to regress the MAP value.

3.5.3. LSTM

Inputs We use two waveforms as inputs to
the model: the blood pressure shape waveform
(bp shape), and the blood flow velocity waveform
(V ). The original measurements taken from the ul-
trasound device contain around 30 seconds of data,
with 30-50 heartbeats per waveform. However, these
measurements are quite noisy, so we average each of
the two waveforms into a single ensembled heartbeat
and resample them into 1×100 vector features, as
shown in Figure 4.

(a) The ensembled bp shape waveform

(b) The ensembled (V ) waveform

Figure 4: The ensembled blood pressure shape
(bp shape) and blood flow velocity (V ) waveforms

Model We first project the inputs (100×n, where
n is the number of input features) into a new feature
map of dimension 100 × 256 using a fully-connected
layer. We then feed this into a unidirectional LSTM
with 3 layers, followed by a final fully-connected layer
to regress the MAP value, as shown in Figure 5.
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Figure 5: LSTM model architecture

3.5.4. Transformer

Inputs Just as in the LSTM model, this model
uses the ensembled (1×100) blood pressure shape and
blood flow velocity waveforms as inputs.

Model We first project the inputs (100×n, where
n is the number of input features) into a new feature
map of dimension 100 × 256 using a fully-connected
layer, and we convert this into input embeddings via
a positional encoding layer. We then feed this into a
transformer encoder module with 4 layers and 8 at-
tention heads, along with a final fully-connected layer
to regress the MAP value. The model architecture is
shown in Figure 6.

3.5.5. CNN

Inputs Just as in the LSTM model, this model
uses the ensembled (1x100) blood pressure shape and
blood flow velocity waveforms as inputs.

Model We first project the inputs (100xn, where n
is the number of input features) into a new feature
map of dimension 100×64 using a fully-connected
layer. We then feed this into three layers of 1D con-
volution with stride 1, kernel size 3, padding 1, and
dropout 0.3, along with a final fully-connected layer
to regress the MAP value. The model architecture is
shown in Figure 7.

3.5.6. Adding Anthropometric Data as
Additional Inputs

We also experiment with adding anthropometric data
(age and heart rate) as additional features alongside
the two waveform inputs. To do this, we create a fea-

Figure 6: Transformer model architecture

Figure 7: CNN model architecture

ture map of dimension 100x4 using the 4 features (2
scalar, 2 vector) as inputs to the LSTM, Transformer
and CNN models.

3.6. Ablation Studies

Without regularization, we find that the Transformer,
LSTM, and CNN models severely overfit to the train-
ing data. To address this issue, we perform ablation
studies on the dropout ratio, L2 norm, and also model
size in order to reduce the amount of overfitting. Fol-
lowing the standard ML training protocol, we select
the best hyperparameters on the validation set and
test on the testing set.

Furthermore, as stated earlier, the arterial compli-
ance (AC) value used in the experiments is computed
using equation 5 which uses measurements from the
arm cuff, as opposed to using equation 3 which is cal-
culated directly from synchronized arterial area (A)
and blood flow velocity (V ) waveforms. So, in order
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to verify that the information contained in the two
waveforms improves the accuracy of the estimated
MAP value compared to the anthro-only model, we
perform an ablation study substituting the arterial
area waveform for the bp shape waveform as input
to the model, such that the arterial compliance is not
used.

3.7. Beat-to-beat Calibration

To increase the amount of input data available for
training, we experiment with splitting the original 30-
second raw waveforms into individual beats instead
of using one single ensembled beat. To determine
the MAP value for each beat, we compute a linear
equation MAPk = m · mean(ak) + c, where ak is the
arterial area waveform of the k-th beat, and MAPk is
the calibrated MAP value for the k-th beat. We then
solve for the values of m and c by calibrating based
on the first beat for each subject as well as the MAP
and DBP values from the ensembled beat, so we have
the equations:

MAP = m ·mean(a1) + c

DBP = m ·min(a1) + c
(7)

Solving for m and c and substituting in equation 5,
we get the following equation for the calibrated MAP
values:

MAPk = ((MAP− DBP) ·mean(ak)

+
mean(a1) ∗ DBP−min(a1) ∗ MAP

mean(a1)−min(a1)

(8)

Using this method, we produce a single MAP value
for each beat for each patient, resulting in a total of
2210 data points overall. We find that the calibrated
MAP values can have a large range for a single pa-
tient, as shown in Figure 8.

3.8. Evaluation Criteria

To quantitatively compare the performance of differ-
ent models, we compute the average standard devia-
tion of the prediction error on the test set across all
folds as the metric for evaluation. We use this metric
instead of the raw prediction error because we can
use post-processing methods to correct biases in the
MAP predictions.

Figure 8: Calibrated MAP values vs. Single (ensem-
bled) MAP value, where each color represents a dif-
ferent subject

4. Evaluation

4.1. Ensembled Beat Results

Using only the two waveforms (blood pressure shape
and blood flow velocity), we find that all four mod-
els improve upon the anthro-only data model. As
shown in figure 9 and table 2, the transformer model
achieves an average error standard deviation of 8.7
mmHg, the LSTMmodel achieves 8.6 mmHg, and the
CNN achieves 8.8 mmHg, compared to the anthro-
only model which achieves 9.5 mmHg. The MLP
model with waveforms as inputs also improves upon
the anthro-only model, but to a lesser extent, achiev-
ing 9.1 mmHg.

We also experiment with adding anthropometric
data (age and heart rate) as features in addition to
the two waveforms, to see if this information can
further improve the models’ performance. With the
CNN model, adding these features improves the av-
erage error standard deviation from 8.8 mmHg to 7.9
mmHg. The transformer model improves to a lesser
degree, decreasing the error standard deviation from
8.7 mmHg to 8.4 mmHg. With the LSTM model, we
find that the model does not improve, achieving an
average error standard deviation of 8.8 mmHg. The
RMSE, mean, and standard deviation of the error are
shown in figure 9 and table 2.

Furthermore, to evaluate the extent of overfitting,
we show the results of the RMSE, mean error, and
the average error standard deviation on the test set
compared to the train set in figure 9. We find that
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Figure 9: RMSE, mean and standard deviation of the
error on the test set vs. training set for each model

Figure 10: Average error std (mmHg) vs dropout ra-
tio

while there is overfitting, it is not severe for most
models.

4.2. Ablation Studies

4.2.1. Dropout Ratio

We perform an ablation study on the effect of the
dropout ratio applied after each layer for the LSTM,
Transformer, and CNN models using only waveforms
as inputs. We find that the CNN and Transformer
models especially tend to benefit from a moderate
amount of dropout as shown in Figure 10. Table 3
shows the average error standard deviation for each
of the three models with varying dropout ratios.

Figure 11: Average error std (mmHg) vs L2 Norm

Figure 12: Average error std (mmHg) vs Model Size
(# Layers)

4.2.2. L2 Norm

We also perform an ablation study on the effect of
the L2 norm on the three models. We find that the
performance improves for all three models with suffi-
ciently large L2 norm as shown in Figure 11. Table 4
shows the average error standard deviation for each
of the three models with different L2 norms.

4.2.3. Model Size

We perform an ablation study on the model size for
all three models by varying the number of layers in
each model. We find that a larger model size does not
necessarily improve performance, as shown in Figure
12. Table 5 shows the average error standard devia-
tion and number of parameters for each of the three
models with different model sizes.
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Table 2: RMSE, Mean and standard deviation of the prediction error for 7 models: Anthro-only, MLP (wave-
forms only), LSTM (waveforms only), Transformer (waveforms only), CNN (waveforms only), Transformer
+ anthropometric data, CNN + anthropometric data. The average RMSE, mean error, and std of the error
are shown, along with the number of parameters and FLOPs of each model.

Model Mean Error Error Std RMSE # Params MFLOPs
Anthro-only -0.011 9.51 9.67 12.9K 0.026
MLP -0.548 9.10 9.45 50.1K 9.98
LSTM -0.192 8.62 8.90 1.58M 317.5
Transformer -0.481 8.67 8.98 3.16M 629.3
CNN -0.339 8.81 9.11 37.3K 7.44
LSTM + anthro -0.240 8.75 8.98 4.73M 317.6
Transformer + anthro 0.478 8.37 8.63 3.16M 629.4
CNN + anthro -0.424 7.92 8.20 37.4K 7.48

Table 3: Ablation Study: Dropout Ratio vs. Average
Error Std (mmHg)

Dropout LSTM Transformer CNN

0.1 8.62 8.94 9.22
0.3 9.21 8.85 8.81
0.5 9.07 9.05 8.85
0.7 8.87 9.36 8.80
0.9 9.23 9.02 9.34

Table 4: Ablation Study: L2 Norm vs. Average Error
Std (mmHg)

L2 Norm LSTM Transformer CNN

0 9.05 9.07 9.13
0.0001 9.21 9.10 9.01
0.001 9.56 9.18 9.05
0.01 8.77 9.38 8.81
0.1 10.83 8.85 10.64

4.2.4. Using Area Waveform As Input

We also try using the arterial area waveform (instead
of bp shape waveform), velocity waveform, and an-
thropometric data (age, heartrate) as inputs. Figure
9 and table 6 shows the average error standard devia-
tion, mean error, and RMSE for each of the 3 models.
We find that the CNN and Transformer models still
outperform the anthro-only model, achieving 9.1 and
8.9 mmHg std of the error respectively.

4.3. Beat-to-beat Calibration

We analyze the result of using the beat-to-beat cali-
bration method described in section 3.7. To compute
the error in a uniform way compared to the ensem-
bled beat setting, we first average out the measure-
ments for each patient to produce a single prediction
and target value per patient. We then compute the
average standard deviation of the error for these mea-
surements. Table 7 displays the average standard de-
viation of the error when training and testing on indi-
vidual calibrated beats. In terms of the raw metrics,
we find that the ensembled beat method outperforms
the beat-to-beat calibration method. It is likely that
this is partially due to the error introduced through
the calibration, since it depends heavily on the wave-
form measurements of the first beat. However, within
the predicted values for each patient, the correlation
between predicted and ground truth MAP values is
quite strong. This is shown in figure 13, which dis-
plays the prediction results for a single fold using the
LSTM model. This suggests that it may be possible
to achieve better results with a more accurate cali-
bration method.

5. Conclusion

We utilize ML algorithms to estimate Mean Arte-
rial Blood Pressure from ultrasound measurements of
arterial area and blood flow velocity waveforms. In
our work, we use patient data we collected by our-
selves. We evaluate the performance of three algo-
rithms: LSTM, Transformer, and CNN, and we com-
pare them to a anthro-only fully-connected model
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Table 5: Ablation Study: Model Size (# Params) vs. Average Error Std (mmHg)

# Layers LSTM Transformer CNN

#Params Error Std #Params Error Std #Params Error Std
1 0.53M 9.13 0.79M 8.79 12.6K 8.88
2 1.05M 8.80 1.58M 8.70 25.0K 9.00
3 1.58M 9.21 2.37M 8.71 37.3K 8.81
4 2.11M 9.64 3.16M 8.67 49.7K 8.84
5 2.63M 9.52 3.94M 8.72 62.0K 9.39

Table 6: Ablation Study: Using area (instead of
BP shape) and velocity waveforms + anthropometric
data (age, heartrate) as inputs

Error Std Per Seed
Model 1 2 3 Avg
LSTM 9.71 9.35 10.29 9.79
Transformer 8.98 8.86 8.75 8.87
CNN 9.09 9.26 8.90 9.08

Table 7: Standard deviation of the error (mmHg) per
random seed and on average for each model using
calibrated beats and MAP values

Error Std Per Seed
Model 1 2 3 Avg
Anthro-only 13.30 12.81 13.29 13.13
LSTM 14.09 13.82 14.02 13.98
Transformer 17.70 17.72 17.69 17.70
CNN 18.05 17.97 18.13 18.05

trained with only anthropometric data. Compared
to the average error standard deviation of 9.5 mmHg
with the anthro-only model, the LSTM with only
waveform data can achieve an average error standard
deviation of 8.6 mmHg, and the CNN algorithm with
both waveform and anthropometric data can achieve
an average error standard deviation of 7.9 mmHg.
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