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Abstract
Machine learning (ML) models deployed in
healthcare systems must face data drawn from
continually evolving environments. However,
researchers proposing such models typically
evaluate them in a time-agnostic manner, split-
ting datasets according to patients sampled ran-
domly throughout the entire study time period.
This work proposes the Evaluation on Medi-
cal Datasets Over Time (EMDOT) framework,
which evaluates the performance of a model
class across time. Inspired by the concept of
backtesting, EMDOT simulates possible train-
ing procedures that practitioners might have
been able to execute at each point in time and
evaluates the resulting models on all future time
points. Evaluating both linear and more com-
plex models on six distinct medical data sources
(tabular and imaging), we show how depending
on the dataset, using all historical data may be
ideal in many cases, whereas using a window of
the most recent data could be advantageous in
others. In datasets where models suffer from
sudden degradations in performance, we inves-
tigate plausible explanations for these shocks.
We release the EMDOT package to help facili-
tate further works in deployment-oriented eval-
uation over time.

Data and Code Availability We use the follow-
ing data: (1) the Surveillance, Epidemiology, and
End Results (SEER) cancer dataset (National Can-
cer Institute, 2020), (2) the COVID-19 Case Surveil-
lance Detailed Data provided by the CDC (Cen-
ters for Disease Control and Prevention, 2020), (3)
the Southwestern Pennsylvania (SWPA) COVID-19
dataset, (4) the MIMIC-IV intensive care database
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(Johnson et al., 2021), (5) the Organ Procurement
and Transplantation Network (OPTN) database for
liver transplant candidates (Organ Procurement and
Transplantation Network, 2020), and (6) the MIMIC-
CXR-JPG database of chest radiographs (Johnson
et al., 2019a,b). MIMIC-IV and MIMIC-CXR-JPG
(referred to as MIMIC-CXR in this paper) are avail-
able on the PhysioNet repository (Goldberger et al.,
2000). Except for the SWPA dataset, all are publicly
accessible (after accepting a data usage agreement).
Details for accessing each dataset are in Appendices
C–G. The code is publicly available on GitHub.

Institutional Review Board (IRB) This re-
search does not require IRB approval.

1. Introduction

As medical practices, healthcare systems, and com-
munity environments evolve over time, so does the
distribution of collected data. Features are depre-
cated as new ones are introduced, data collection may
fluctuate along with hospital policies, and the under-
lying patient and disease populations may shift.

Amidst this ever-changing environment, models
that perform well on one time period cannot be as-
sumed to perform well in perpetuity. In the MIMIC-
III critical care dataset, Nestor et al. (2019) found
that a change to the electronic health record (EHR)
system in 2008 coincided with sudden degradations in
AUROC for mortality prediction. In COVID-19 data
from the Centers for Disease Control and Prevention
(CDC), Cheng et al. (2021) noted that the age dis-
tribution among cases shifted continually throughout
the pandemic, and that these continual shifts con-
founded estimates of improvements in mortality rate.
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We propose an evaluation framework to charac-
terize model performance over time by simulating
training procedures that practitioners could have ex-
ecuted up to each time point, and subsequently de-
ployed in future time points. We argue that stan-
dard time-agnostic evaluation is insufficient for se-
lecting deployment-ready models, showing across sev-
eral datasets that it over-estimates deployment per-
formance. Instead, we advocate for EMDOT as a
worthwhile pre-deployment step to help practitioners
gain confidence in the robustness of their models to
shifts in the data distribution that have occurred in
the past and may to some extent repeat in the future.

There is a large body of work that addresses
adaptation under various structured forms of distri-
bution shift, including covariate shift (Shimodaira,
2000; Zadrozny, 2004; Huang et al., 2006; Sugiyama
et al., 2007; Gretton et al., 2009), label shift (Saerens
et al., 2002; Storkey, 2009; Zhang et al., 2013; Lip-
ton et al., 2018; Garg et al., 2020), missingness shift
(Zhou et al., 2022a), and concept drift (Tsymbal,
2004; Gama et al., 2014). However, in the real-world
medical datasets we analyze, none of these structural
assumptions can be guaranteed, and distributional
changes in covariates, labels, missingness, etc. could
even occur simultaneously. This motivates our em-
pirical work, as it is unclear across a variety of model
classes and medical datasets, how existing models
might degrade due to naturally occurring changes
over time, and whether different training practices
might impact on robustness over time.

However intuitive it might seem, evaluation of
models over time remains uncommon in standard ma-
chine learning for healthcare (ML4H) research. In the
proceedings of the Conference on Health, Inference,
and Learning (CHIL) 2022, for example, none of the
23 papers performed evaluations which took time into
account (see Appendix A for similar statistics from
CHIL 2021 and the Radiology medical journal). One
possible reason for this is lack of access—as noted by
Nestor et al. (2019), it is common practice to remove
timestamps when de-identifying medical datasets for
public use. In this work, we identify six sources of
medical data containing varying granularities of tem-
poral information per-record, five of which are pub-
licly available. We profile the performance of vari-
ous training strategies and model classes across time,
and identify possible sources of distribution shifts
within each dataset. Finally, we release the Eval-
uation on Medical Datasets Over Time (EMDOT)
Python package (details in Appendix B) to allow re-

searchers to apply EMDOT to their own datasets and
test techniques for handling shifts over time.

2. Related work

The promise of ML for improving healthcare has been
explored in several domains, including cancer sur-
vival prediction (Hegselmann et al., 2018), diabetic
retinopathy detection (Gulshan et al., 2016), antimi-
crobial stewardship (Kanjilal et al., 2020; Boomi-
nathan et al., 2020), recognizing diagnoses from elec-
tronic health record data (Lipton et al., 2016), and
mortality prediction in liver transplant candidates
(Bertsimas et al., 2019; Byrd et al., 2021). Typically,
these ML models are evaluated on randomly held out
patients, and sometimes externally validated on other
hospitals or newly collected data. Even with cross-
site validations, we cannot be sure how models will
perform in the future.

For decades, the medical community has had a his-
tory of utilizing (mostly) fixed, simple risk scores to
inform patient care (Hermansson and Kahan, 2018;
Kamath et al., 2001; Wilson et al., 1998; Wells et al.,
1995). Risk scores often prioritize ease-of-use, are
computed from few variables, verified by domain ex-
perts for clear causal connections to outcomes of in-
terest, and validated through use over time and across
hospitals. Together, these factors give clinicians con-
fidence that the model will perform reliably for years
to come. With increasingly complex models, how-
ever, trust and adoption may be hindered by a lack
of confidence in robustness to changing environments.

As noted by D’Amour et al. (2022), ML models
often exhibit unexpectedly poor behavior when de-
ployed in real-world domains. A key reason for these
failures, they argue, is under-specification, where
ML pipelines yield many predictors with equivalently
strong held-out performance in the training domain,
but such predictors can behave very differently in de-
ployment. By testing performance across a variety of
distribution shifts that have previously occurred over
time, EMDOT could serve as a stress test to help
combat under-specification.

Although evaluation over time is far from stan-
dard in ML4H literature, changes in performance
over time have been noted in prior work. To pre-
dict wound-healing, Jung and Shah (2015) found that
when data were split by cutoff time instead of pa-
tients, benefits of model averaging and stacking dis-
appeared. Pianykh et al. (2020) found degradation
in performance of a model for wait times dependent
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on how much historical data was trained on. To pre-
dict severe COVID-19, Zhou et al. (2022b) found that
learned clinical concept features performed more ro-
bustly over time than raw features. Closest to our
work is Nestor et al. (2019), which evaluated AU-
ROC in MIMIC-III critical care data from 2003–2012,
comparing training on just 2001–2002; the prior year;
and the full history. Using the full history and cu-
rated clinical concepts, they bridged a big drop in
performance due to changing EHR systems. Whereas
Nestor et al. (2019) considers three models per test
year, EMDOT simulates model deployment every
year and evaluates across all future years.
While we do not consider time series models in this

work (instead considering those which treat data as
i.i.d.), there are similarities between how training sets
are defined in EMDOT and in techniques for eval-
uating time-series forecasts (Bergmeir and Beńıtez,
2012; Cerqueira et al., 2020). These techniques often
roll forward in time, taking either a window of recent
data or all historical data as training sets, and evalu-
ate test performance on the next time point. Perfor-
mance from each time point is then averaged to sum-
marize performance. This type of back-testing tech-
nique is common in rapidly evolving, non-stationary
applications like finance (Chauhan et al., 2020; Al-
berg and Lipton, 2017), where time series models are
constantly updated. In the healthcare domain, how-
ever, models may not be so easily updated, with risk
scores developed several years ago still being used to
this day (Six et al., 2008; Kamath et al., 2001; Wilson
et al., 1998; Wells et al., 1995). Thus, we track perfor-
mance not only the immediate year after the training
set, but all subsequent years in the dataset. Addition-
ally, instead of collapsing performance from models
trained at different time points into summary statis-
tics, which could conceal distribution shifts over time,
our framework tracks these granular fluctuations over
time, and creates tools to help provide insight into the
nature and potential causes of such changes.

3. Data

We sought medical datasets that had: (1) a times-
tamp for each record, (2) interesting prediction
task(s), and (3) enough distinct time points to eval-
uate over. Six data sources satisfied these criteria:
SEER cancer data, national CDC COVID-19 data,
COVID-19 data from a healthcare provider in South-
western Pennsylvania (SWPA), MIMIC-IV critical
care data, OPTN data from liver transplant can-

didates, and MIMIC-CXR chest radiographs. All
datasets are tabular except for MIMIC-CXR (medical
imaging data). All but SWPA are publicly accessible.

Table 1 summarizes the dataset outcomes, time
ranges, and number of samples. Figure 1 visualizes
data quantity over time. Appendices C–H include
cohort selection diagrams, cohort characteristics, fea-
tures, heat maps of missingness, preprocessing steps,
and additional details. Categorical variables are con-
verged to dummies, and numerical variables are nor-
malized and centered at 0. Missing values in categor-
ical variables are treated as another category, and in
numerical variables they are imputed with the mean.
In all datasets except MIMIC-CXR (where each sam-
ple is a distinct radiograph), each sample corresponds
to a distinct patient.

3.1. SEER Cancer Data

The Surveillance, Epidemiology, and End Results
(SEER) Program collects cancer incidence data from
registries throughout the U.S. Each case includes de-
mographics, primary tumor site, tumor morphology,
stage, diagnosis, first course of treatment, and sur-
vival outcomes (collected with follow-up) (National
Cancer Institute, 2020). We use the SEER∗Stat soft-
ware (Program, 2015) to define three cohorts of inter-
est: (1) breast cancer, (2) colon cancer, and (3) lung
cancer. The outcome is 5-year survival, i.e. whether
the patient was confirmed alive five years after the
year of diagnosis. The amount of data has mostly in-
creased each year (Figure 1). Performance over time
is evaluated yearly. See Appendix C for more details.

3.2. National CDC COVID-19 Data

The COVID-19 Case Surveillance Detailed Data
(Centers for Disease Control and Prevention, 2020)
is a national dataset provided by the CDC. It has the
largest number of samples among the datasets con-
sidered, and contains 33 elements, with patient-level
data including symptoms, demographics, and state
of residence. The cohort consists of all lab-confirmed
positive COVID-19 cases that were hospitalized, so
the quantity of samples over time has a seasonality re-
flecting surges in COVID-19 (Figure 1). The outcome
of interest is mortality, defined by death_yn = Yes

in the dataset. Performance over time is evaluated on
a monthly basis. See Appendix D for more details.

2. In MIMIC-CXR, all labels except “No Finding” are con-
sidered positive for the purposes of Figure 1 and Table 1.
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Table 1: Summary of datasets used for analysis. For more details, see Appendices C–G.

Dataset name Outcome Time Range (time point unit) # samples # positives

SEER (Breast) 5-year Survival 1975–2013 (year) 462,023 378,758
SEER (Colon) 5-year Survival 1975–2013 (year) 254,112 135,065
SEER (Lung) 5-year Survival 1975–2013 (year) 457,695 49,997
CDC COVID-19 Mortality Mar 2020–May 2022 (month) 941,140 190,786
SWPA COVID-19 90-day Mortality Mar 2020–Feb 2022 (month) 35,293 1,516
MIMIC-IV In-ICU Mortality 2009–2020 (year) 53,050 3,334
OPTN (Liver) 180-day Mortality 2005–2017 (year) 143,709 4,635
MIMIC-CXR 14 diagnostic labels 2010–2018 (year) 376,204 209,088
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Figure 1: Number of samples and positive2outcomes
per time point.

3.3. SWPA COVID-19 Data

The Southwestern Pennsylvania (SWPA) COVID-19
dataset consists of EHR data from patients tested for
COVID-19. It is the smallest dataset considered in
this paper, and was collected by a major healthcare
provider in SWPA. Features include patient demo-
graphics, labs, problem histories, medications, inpa-
tient vs. outpatient status, and other information
collected in the patient encounter. The cohort con-
sists of COVID-19 patients testing positive for the
first time, and not already in the ICU or mechanically
ventilated. Similar to the CDC COVID-19 dataset,
there is a seasonality to the monthly number of sam-
ples that reflects surges in COVID-19 (Figure 1). The
outcome of interest is 90-day mortality, derived by
comparing the death date and test date. The perfor-

mance over time is evaluated on a monthly basis. See
Appendix E for more details.

3.4. MIMIC-IV Critical Care Data

The Medical Information Mart for Intensive Care
(MIMIC)-IV (Johnson et al., 2021) database con-
tains EHR data from patients admitted to critical
care units from 2008–2019. MIMIC-IV is an update
to MIMIC-III, adding time annotations placing each
sample into a three-year time range, and removing
elements from the old CareVue EHR system (before
2008). We approximate the year of each sample by
taking the midpoint of its time range, but note that
this causes certain years (2009, 2012, 2015, 2018) to
have substantially more samples than others (Figure
1). The cohort is selected by taking the first en-
counter of all patients in the icustays table, and
the outcome of interest is in-ICU mortality. Perfor-
mance over time is evaluated on a yearly basis. See
Appendix F for more details.

3.5. OPTN Liver Transplant Data

The Organ Procurement and Transplantation Net-
work (OPTN) database tracks organ donation and
transplant events in the U.S. The selected cohort con-
sists of liver transplant candidates on the waiting list.
The same pipeline as Byrd et al. (2021) is used to ex-
tract the data, except that the first record is selected
for each patient. The outcome of interest is 180-day
mortality from when the patient was added to the
list. The performance over time is evaluated on a
yearly basis. More details are in Appendix G.

3.6. MIMIC-CXR

The MIMIC Chest X-ray (MIMIC-CXR) JPG
dataset (Johnson et al., 2019b) contains chest radio-
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graphs in JPG format. Similar to MIMIC-IV, we
approximate the year by taking the midpoint of its
three-year time range. The selected cohort consists
of all radiographs from 2010 to 2018. The outcomes
of interest are 14 diagnostic labels: Atelectasis, Car-
diomegaly, Consolidation, Edema, Enlarged Cardio-
mediastinum, Fracture, Lung Lesion, Lung Opacity,
Pleural Effusion, Pneumonia, Pneumothorax, Pleu-
ral Other, Support Devices, and No Finding. Perfor-
mance over time is evaluated on a yearly basis. More
details are in Appendix H.

4. Methods

We tackle the following guiding questions:

1. On each dataset, what would the reported per-
formance of a model be if it were trained using
standard time-agnostic splits (all-period)?

2. Simulating how a practitioner might have
trained and deployed models in the past, how
would performance have varied over time?

3. When might it be better to train on a recent
window of data versus all historical data?

4. What is the comparative performance of differ-
ent classes of models over time?

5. To what extent might we be able to diagnose pos-
sible reasons for changes in model performance?

4.1. All-period Training

We mimic common practice in evaluation by using
time-agnostic data splits which randomly place pa-
tients from the entire study time range into train,
validation, and test sets (details in Appendix L), and
reporting the test set performance. We refer to train-
ing with this type of split as all-period training.

4.2. EMDOT Evaluation

For more realistic simulation of how practitioners
train models and subsequently deploy them on future
data, we define the Evaluation on Medical Datasets
Over Time (EMDOT) framework. At each time
point t (termed simulated deployment date), an in-
period subset of data from times ≤ t is available for
model development. After training a model on this
in-period data, one might be interested in both recent
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Figure 2: EMDOT training regimes, with a simu-
lated deployment date of t = 6.

in-period performance (at time t) and future out-of-
period performance (at times > t).
In-period data is split into train, validation, and

test sets (split ratios in Appendix L). For MIMIC-
CXR, where one patient could have multiple radio-
graphs, the data is split such that there are no over-
lapping patients between splits. Recent in-period
performance is evaluated on held-out test data from
the most recent time point. Out-of-period perfor-
mance is evaluated on all data from each future time
point. For example, a model trained up to time
6 is tested on data from 6, 7, 8, etc. (Figure 2).
At time 8, the model is considered two time points
stale. Although this procedure can take O(T ) times
more computation than all-period training for T time
points, we argue that this procedure yields a more re-
alistic view of the type of performance that one might
expect models to have over time.

Additionally, practitioners face a tradeoff between
using recent data perhaps most reflective of the
present and using all available historical data for a
larger sample size. Intuitively, the former may be ap-
pealing in modern applications with massive datasets,
whereas the latter may be necessary in data-scarce
applications. We explore these two training regimes,
with different definitions of in-period data (Figure 2):

1. Sliding window: The last W time points are
considered in-period. In this paper, we use win-
dow size W = 4 for sufficient positive examples.

2. All-historical: Any data prior to the current
time point is considered in-period.

To decouple the effect of sample size from that
of shifts in the data distribution, comparisons are
also performed with all-historical data that is sub-
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sampled to be the same size as the corresponding
training set under the sliding window training regime.

To summarize more formally, let Dt refer to the
set of all data points occurring at time t ∈ {1, ..., T},
where T is the number of time points that the dataset
spans. Each Dt can be partitioned by splitting pa-
tients at random into disjoint train, validation, and
test sets: Dt = Dtrain

t ∪ Dval
t ∪ Dtest

t . For simulated
deployment dates t∗ ∈ {W,W + 1, ..., T}, training,
validation, and test sets are defined for the sliding
window training regime as follows:

• training:
⋃t∗

k=t∗−W+1 D
train
k

• validation:
⋃t∗

k=t∗−W+1 D
val
k

• in-period test: Dtest
t∗

• out-of-period test: Dk for k = t∗ + 1, ..., T

Training, validation, and test sets are defined for
the all-historical training regime as follows:

• training:
⋃t∗

k=1 D
train
k

• validation:
⋃t∗

k=1 D
val
k

• in-period test: Dtest
t∗

• out-of-period test: Dk for k = t∗ + 1, ..., T

At each simulated deployment date t∗, models are
trained using the training set, validated using the val-
idation set, and tested on the in-period test set as well
as all out-of-period test sets. If a model with simu-
lated deployment date t∗ is being evaluated on an
out of period test set Dt∗+j , then the model is j time
points stale.

4.3. Evaluation Metrics

All binary classification tasks are evaluated by AU-
ROC. For multi-label prediction in MIMIC-CXR,
each of the 14 diagnostic labels is treated as a sep-
arate binary classification task, and a weighted sum
of AUROCs is computed, where the weight for a par-
ticular label is given by the proportional prevalence
of that label among all positive labels. That is, for
some class a, its weight is pa/

∑
x px, where px is the

number of positives with label x. Samples are treated
in an i.i.d. manner for training.

4.4. Models

Logistic regression (LR), gradient boosted deci-
sion trees (GBDT) and feedforward neural net-
works (MLP) are trained on the tabular datasets.
DenseNet-121 is trained on the MIMIC-CXR imag-
ing dataset. Hyperparameters are selected based on
in-period validation performance, and the hyperpa-
rameter grids are in Appendix M.

4.5. Detecting Sources of Change

To better understand possible reasons for chang-
ing performance, we create diagnostic plots to track
model performance alongside changes in the data dis-
tribution over time.

In tabular datasets, we plot feature importances
and average values of the most important features
over time. Generating these plots for logistic re-
gression, we define feature importance by the mag-
nitudes of the coefficients, but note that other fea-
ture importance techniques could be used for more
complex model classes. To avoid overcrowding the
plots, we take the union of the top k most impor-
tant features from each time point is taken, where k
is tuned depending on the dataset. We additionally
highlight (using a thicker line) categorical features
with consistently high prevalence or which experience
a large change in prevalence across one time point,
and numerical features with high average rank (see
Appendix J for thresholds for each dataset).

For the imaging dataset, where feature importance
is less straightforward, we plot the distribution of
pixel intensities over time, along with proportions of
each of the 14 diagnostic labels.

By highlighting sudden changes in model perfor-
mance and the corresponding time periods in all other
plots, diagnostic plots can help bring attention to
shifts in the distribution of data that coincide with
changing model performance.

4.6. EMDOT Python Package

We release the EMDOT python package3 to help
practitioners move from standard model evaluation to
EMDOT evaluation. See Appendix B for a schematic
of the EMDOT workflow, and see the GitHub repos-
itory for a step-by-step tutorial.

3. https://github.com/acmi-lab/EvaluationOverTime
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Table 2: Test AUROC from all-period training and time-agnostic evaluation.

Model SEER
(Breast)

SEER
(Colon)

SEER
(Lung)

CDC
COVID-19

SWPA
COVID-19

MIMIC-
IV

OPTN
(Liver)

MIMIC-
CXR

LR 0.888 0.863 0.894 0.837 0.928 0.935 0.846 -
GBDT 0.891 0.868 0.894 0.851 0.930 0.931 0.854 -
MLP 0.891 0.869 0.898 0.852 0.928 0.898 0.847 -
DensetNet - - - - - - - 0.860

1990 2010

0.70

0.80

0.90

1.00 SEER (Breast)

1990 2010

SEER (Colon)

1990 2010

SEER (Lung)

0 10 20

CDC COVID-19

0 10 20

0.70

0.80

0.90

1.00 SWPA COVID-19

2012 2018

MIMIC-IV

2008 2014

OPTN (Liver)

2013 2017

MIMIC-CXR

Earliest Latest

Simulated deployment date

Standard all-period training (infeasible)
Simulated deployment date
Model trained until 

Figure 3: Average test AUROC of logistic regression vs. time. Each solid line gives the performance of
a model trained up to a simulated deployment time (marked by a dot), evaluated across future
time points. Error bars are ± standard deviation computed over 5 random splits. Red dotted line
gives per-timepoint test performance of a model from all-period training (infeasible in reality, as
it would involve training on data after the simulated deployment date).

5. Results

5.1. All-period Training

In standard time-agnostic evaluation, GBDT and
MLP achieve the highest average test AUROC on
all tabular datasets except MIMIC-IV (Table 2).
Note however that LR often has comparable or only
slightly lower AUROC than the more complex mod-
els. The top 10 coefficients of each LR with all-period
training are in Appendices C–G, and the per-label
AUROC of MIMIC-CXR is in Appendix Table 11. To
form a baseline for comparison across time, we also
evaluate the all-period models on subsets of the all-
period test data that belong to each year (red dotted
line in Figure 3), but note that this type of training
(on future data) is not feasible in deployment.

5.2. EMDOT Evaluation

Figure 3 plots the AUROC of LR for all tabular
datasets (and DenseNet-121 for MIMIC-CXR) over
time when using the all-historical training regime.
Plots for GBDT and MLP are in Appendix K, along
with plots for AUPRC. We mainly discuss AUROC,
but note that AUPRC observes similar trends as in
AUROC. One difference however is that the baseline
AUPRC performance is given by the label prevalence
(rather than a constant 0.5, as in AUROC), and so
observed trends in label prevalence over time appear
to influence trends in AUPRC (Appendix Figure 44).

For both AUROC and AUPRC, the reported test
performance of a model from standard all-period
training (red dotted line) mostly sits above the per-
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formance of any model that could have realistically
been deployed by that date. Thus, all-period train-
ing tends to provide an over-optimistic estimate of
performance upon deployment.

Across the datasets, a variety of trajectories of
model performance are observed over time. In the
SEER datasets, the AUROC of freshly trained mod-
els increases dramatically near 1988, but several of
these models experience a large drop in AUROC
around 2003 (Figure 3). Additionally, in-period test
AUROCs tend to increase over time. By contrast,
in CDC data, in-sample test AUROCs fluctuate up
and down, and model performance over time varies
more smoothly, appearing to loosely follow the in-
sample performance. Models trained after Decem-
ber 2020 have a slight boost in AUROC, coinciding
with a surge in cases (and hence sample size, Figure
1), however by January 2022 the in-sample AUROC
decreases. In SWPA COVID-19, there is more vari-
ation and uncertainty in AUROC early in the pan-
demic, where sample sizes are small. In December
2020, sample sizes increase, and models seem to be-
come more robust to changes over time. Finally, in
the MIMIC-IV, MIMIC-CXR, and OPTN datasets,
AUROC appears relatively stable across time.

5.3. Training Regime Comparison

As the staleness of training data increases (i.e. as the
test date gets further from the simulated deployment
date), different training regimes can fare differently
depending on the dataset (Figure 4, left).

In SEER (Breast) and SEER (Lung), sliding win-
dow is initially comparable to all-historical on fresh
(low-staleness) data, but significantly underperforms
both all-historical and all-historical (subsampled)
when data are 8 to 22 years stale. At larger stale-
nesses, all training regimes start to become compa-
rable. In CDC COVID-19, sliding window outper-
forms all-historical regardless of how stale the data
is. By contrast, in SWPA COVID-19, which has the
least amount of data (Table 1), both sliding win-
dow and all-historical (subsampled) underperform
all-historical. In SEER (Colon), performance is rela-
tively stable regardless of training regime. In MIMIC-
IV, OPTN (Liver), and MIMIC-CXR, sliding window
is on average comparable or slightly outperforms all-
historical when staleness is 0, but at nonzero stale-
nesses all-historical outperforms both sliding window
and all-historical subsampled.

0 10 20 30
0.05

0.00

SE
E

R
(B

re
as

t)

LR with various 
training regimes

0 10 20 30

All-historical with various 
   model classes

0 10 20 30
0.05

0.00

SE
E

R
(C

ol
on

)

0 10 20 30

0 10 20 30
0.05

0.00

SE
E

R
(L

un
g)

0 10 20 30

0 10 20
0.02

0.00

0.02

C
D

C
C

O
VI

D
-1

9

0 10 20

0 5 10 15 20
0.1

0.0

0.1

SW
PA

C
O

VI
D

-1
9

0 5 10 15 20

0 2 4 6 8
0.05

0.00
M

IM
IC

-
IV

0 2 4 6 8

0 2 4 6 8
0.01

0.00

0.01

O
PT

N
(L

iv
er

)

0 2 4 6 8

0 5
0.01

0.00

M
IM

IC
-

C
XR

LR* (All-historical subsampled)
LR* (Sliding window)
LR* (All-historical)

MLP (All-historical)
GBDT (All-historical)
Unreliable

Figure 4: AUROC−AUROCLR* all-historical vs. stal-
eness. i.e., AUROC difference relative to
a LR* all-historical baseline across vary-
ing stalenesses of data,5for different train-
ing regimes (left) and model classes (right).
Error bars are ± std. dev. (*in MIMIC-
CXR, DenseNet-121 is used instead of LR)

5. Note: at the largest stalenesses, there are fewer simulated
deployment dates being averaged over, and they must be
early in the dataset. Here, the sliding window and all-
historical can be expected to perform similarly (especially
when the sliding window is not much larger than or even
matches the history). Since this is an artifact of finite time
ranges, we gray out stalenesses where at least half of the
all-historical data is the first sliding window of data.
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5.4. Model Comparison

In SEER (Breast) and OPTN, GBDT outperforms
both LR and MLP across the entire time range (Fig-
ure 4, right). In SEER (Colon), SEER (Lung), and
CDC COVID-19, both GBDT and MLP initially out-
perform LR when staleness of the training data is
less than 4 years, 4 years, and 7 months, respectively,
however both eventually underperform LR as stale-
ness increases further. While there is an uptick in
GBDT performance on CDC COVID-19 towards 21-
month staleness, we note this data point is derived
from less data than other points on the line because
the data time range is finite. In the SWPA COVID-
19 dataset, LR, MLP, and GBDT appear to perform
comparably over time. In the MIMIC-IV dataset, LR
performed best to begin with and remained the best.

5.5. Detecting Possible Sources of Change

Diagnostic plots for all datasets are in Appendix J.
Here, we discuss SEER (Lung) (Figure 5) in detail
as it has several interesting changes in model perfor-
mance over time. In 1983, as EOD 4 features from the
extent of disease coding schema are introduced (Fig-
ure 5, bottom right), a sudden jump in AUROC oc-
curs (Figure 5, top and middle left). However, mod-
els trained at this time later experience a large AU-
ROC drop (Figure 5, bottom left). By 1988, EOD 4 is
phased out, and EOD 10 features are introduced. This
coincides with another jump in AUROC, sustained
until 2003 when the EOD 10 features are removed. In
this dataset, the all-historical training regime seems
more robust to changes over time, as all-historical
models trained after 1988 avoid the drop that sliding
window models undergo once their window excludes
pre-1988 data (Figure 5, bottom left).

6. Discussion

Reported model performance from standard all-
period training tends to be over-optimistic (Figure
3) as models are evaluated on time points already
seen in their training set (unrealistic in deployment
settings). Thus, AUROCs reported from all-period
training do not capture degradation that would have
occurred in deployment.

Comparing model classes, in all datasets except
MIMIC-IV, GBDT and MLP slightly outperform LR
under standard time-agnostic evaluation (Appendix
Table 2). However, evaluated across time, LR is
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Figure 5: SEER (Lung) diagnostic plots. AUROC
vs. time for sliding window (top-left)
and all-historical subsampled (mid-left),
max. drop in AUROC for each simulated
deployment time (low-left), absolute fea-
ture coefficients for LR models from sliding
window (top-right) and all-historical sub-
sampled (mid-right) and prevalences of im-
portant features over time (low-right).

often comparable and even outperforms more com-
plex models once enough time passes after the simu-
lated deployment date. For example, MLP achieves
the best AUROCs in SEER Breast, Colon, and
Lung in standard time-agnostic evaluation (Table
2). However, in evaluation over time, LR had su-
perior performance once some amount of time (30,
5, 4 years respectively) had passed (Figure 4, right).
In most datasets GBDT appears more robust over
time than MLP, however as the training data be-
comes more stale it tends to become comparable to
LR (in all datasets except OPTN Liver and SEER
Breast, GBDT dipped below the performance of LR
for several stalenesses). Thus, although complex
model classes may appear to outperform simpler lin-
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ear model classes in standard time-agnostic evalu-
ation, one should consider performance over time
when selecting a model class for deployment. As
demonstrated by the different relative performances
of model classes when evaluated over time versus in a
time-agnostic manner, EMDOT can serve as a helpful
stress-test to combat under-specification.

Regarding training regimes, we find that with in-
creasing stalenesses, all-historical appears more re-
liable than sliding window across all datasets ex-
cept for CDC COVID-19 (Figure 4, left). In SWPA
COVID-19, MIMIC-IV, OPTN (Liver), and MIMIC-
CXR, the benefit of all-historical data likely comes
from the increased sample size, as subsampling all-
historical data to be the same size as the correspond-
ing sliding window resulted in comparable perfor-
mance to sliding window. In the SEER datasets,
the effect of sample size is less pronounced, as sliding
window and subsampled all-historical are frequently
comparable to all-historical. There are certain stal-
enesses for which sliding window underperforms all-
historical, which may be due to the addition and re-
moval of features. If the sliding window model learns
to rely on recently added features which are later
removed, this could result in drops in performance
whereas an all-historical model which had learned to
predict without the presence of such features would
be more robust to such changes. On the other hand,
in CDC COVID-19 (the setting with the most data
and fewest features), subsampled all-historical per-
forms comparably to all-historical, and sliding win-
dow outperforms both across all stalenesses (Figure
4, left). This suggests that the performance of LR
may have been saturated even when a sub-sample of
all-historical data was used, and the benefit of using
more recent data outweighs the larger sample size
afforded by all-historical. More broadly, in rapidly
evolving environments with simple models, few fea-
tures, and large quantities of data, the sliding window
training regime could be advantageous.

The SEER datasets had dramatic changes in data
distribution in both 1988 and 2003, when impor-
tant features were added and/or removed (Figure 5).
One possible reason for the robustness of all-historical
models in this dataset is that after 2003, when fea-
tures like EOD 10 were removed, the model could still
rely on features that were introduced prior to the use
of EOD 10 in 1988. More broadly, we hypothesize
that if a model was trained on a mixture of distribu-
tions that occurred throughout the past, it may be

better equipped to handle shifts to settings similar to
those distributions in the future.

While the SEER datasets and COVID-19 datasets
displayed several changes in model performance over
time, the OPTN and MIMIC datasets had relatively
stable behavior. One possible reason for this is that
the outcomes or diseases of interest were relatively
stable in nature, we did not observe any substantial
changes in the distribution of data. Another is that
in the MIMIC datasets, a three-year range was given
for each sample rather than a specific date. This
uncertainty around the date, along with the limited
number of date ranges, could result in a smoothing
effect on the resulting estimates of performance.

In conclusion, EMDOT not only yields insights into
the suitability of different model classes or training
regimes for deployment, but also helps one detect
distribution shifts that occurred in the past. Under-
standing such shifts may help practitioners be pre-
pared for shifts of a similar nature in the future. Al-
though the EMDOT framework does require addi-
tional computational time than the standard time-
agnostic evaluation setup, we argue that the insights
that could be gained from this procedure are worth-
while, especially before deployment in high-stakes
settings.

Limitations and Future Work One possible
reservation that users might have about using EM-
DOT is that it could involve training up to T times as
many models as would normally be required (where
T is number of timepoints). To help alleviate this
concern, in future work we plan to implement paral-
lelization in EMDOT. For noisier estimates of model
performance in less time, one could also subsample
the dataset. Another interesting extension is explor-
ing performance over time in other data modalities
(e.g. time series, natural language, etc.). Depending
on the complexity of models used in these modalities,
this may require additional computational resources.
More broadly, we hope that others may also build
upon EMDOT to shine new light on how models and
methodologies fare when evaluated with an eye to-
wards deployment.
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Appendix A. Snapshot into the State of ML4H Model Evaluation

To get a snapshot of the current standards for model evaluation in machine learning for healthcare research,
we manually reviewed all of the papers from the CHIL 2022 proceedings, the first 20 papers in the CHIL
2021 proceedings, and the first 20 papers that came up in the Radiology medical journal when search-
ing for the keyword “machine learning” and filtering for papers from 2022 to 2023 (see README.md in
https://github.com/acmi-lab/EvaluationOverTime). Out of 23 papers in the CHIL 2022 proceedings, 21 did
not take time into account in their data split, and two were unclear about how they split data, but it is
unlikely that they split by time. Out of the 20 papers reviewed at CHIL 2021, only one paper split by time.
Out of the 20 papers reviewed from Radiology, 6 did not train or evaluate any machine learning models, but
out of the remaining 14 papers, 13 did not take time into account in their data split, and one did not specify
how data was split.

Appendix B. EMDOT Python Package

Figure 6 illustrates the workflow of the EMDOT Python package.

EotDataset 

EotEvaluator

EotModel

Experiment Configs 
(e.g. sliding window, etc.)

EotExperiment

pass as argument

pass as 
argument

request data 
for simulated 
deployment 

time

return 
requested splits 

of data

 Model Test time AUROC AUPRC . . .

Table of Experiment Results

Pre-processed 
Dataset

Visualizations

outputs

visualization 
scripts

Figure 6: EMDOT Python package workflow diagram. The primary touchpoint of the EMDOT package
is the EotExperiment object. Users provide a dataframe for their (mostly) preprocessed dataset
(EMDOT takes care of normalization based on the relevant training set), their desired experiment
configuration (e.g. sliding window), and model class (which should subclass the simple EotModel

abstract class) in order to create an EotExperiment object. Running the run_experiment() func-
tion of the EotExperiment returns a dataframe of experiment results that can then be visualized.
The diagram also provides insight into some of the internals of the EotExperiment object – there
is an EotDataset object that handles data splits, and an EotEvaluator object that executes the
main evaluation loop.
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Appendix C. Additional SEER Data Details

The Surveillance, Epidemiology, and End Results (SEER) Program collects cancer incidence data from
registries throughout the U.S. This data has been used to study survival in several forms of cancer (Choi
et al., 2008; Fuller et al., 2007; Taioli et al., 2015; Hegselmann et al., 2018). Each case includes demographics,
primary tumor site, tumor morphology, stage and diagnosis, first course of treatment, and survival outcomes
(collected with follow-up) (National Cancer Institute, 2020). The performance over time is evaluated on
a yearly basis. We use the November 2020 version of the SEER database with nine registries (SEER 9),
which covers about 9.4% of the U.S. population. While there are SEER databases that aggregate over more
registries and hence cover a greater proportion of the U.S. population, we choose SEER 9 due to the large
time range it covers (1975–2018).

• Data access: After filling out a Data Use Agreement and Best Practices Agreement, individuals can
easily request access to the SEER dataset.

• Cohort selection: Using the SEER∗Stat software (Program, 2015), we define three cohorts of interest: (1)
breast cancer, (2) colon cancer, and (3) lung cancer. We primarily follow the cohort selection procedure
from Hegselmann et al. (2018), but we use SEER 9 instead of SEER 18, and use data from all available
years instead of limiting to 2004–2009. Cohort selection diagrams are given in Figures 7, 8, and 9.
If there are multiple samples per patient, we filter to the first entry per patient, which corresponds to
when a patient first enters the dataset. This corresponds to a particular interpretation of the prediction:
when a patient is first added to a cancer registry, given what we know about that patient, what is their
estimated 5-year survival probability?

• Cohort characteristics: Summaries of the SEER (Breast), SEER (Colon), and SEER (Lung) cohort
characteristics are in Tables 3, 4, and 5.

• Outcome definition: 5-year survival is defined by a confirmation that the patient is alive five years after
the year of diagnosis.

• Features: We list the features used in the SEER breast, colon, and lung cancer datasets in Section C.2.
For all datasets, we convert all categorical variables into dummy features, and apply standard scaling
to numerical variables (subtract mean and divide by standard deviation).

• Missingness heat maps: are given in Figures 10, 11, 12, 13, 14, and 15.
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C.1. Cohort Selection and Cohort Characteristics

All entries in SEER where 
site = Breast 
 (n=754,651)

Included (n=702,723)

Exclude (n=51,928) entries to select the first entry 
for each patient ID (earliest diagnosis yr.)

Included (n=467,700)

Exclude (n=235,023) entries with unclear mortality reasons 
(survival month = -1, death classi cation = N/A not seq 0-59, 

death classi cation = dead with missing/unknown COD)

SEER (Breast) Cohort  
(n=462,023)

Exclude (n=5,677) entries with diagnosis year > 2013

Figure 7: Cohort selection diagram - SEER (Breast)

All entries in SEER where 
site = Colon excluding Rectum 

(n=393,633)

Included (n=376,999)

Exclude (n=16,634) entries to select the first entry 
for each patient ID (earliest diagnosis yr.)

Included (n=263,741)

Exclude (n=113,258) entries with unclear mortality reasons 
(survival month = -1, death classi cation = N/A not seq 0-59, 

death classi cation = dead with missing/unknown COD)

SEER (Colon) Cohort  
(n=254,112)

Exclude (n=9,629) entries with diagnosis year > 2013

Figure 8: Cohort selection diagram - SEER (Colon)
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All entries in SEER where 
site = Lung and Bronchus

 (n=664,069)

Included (n=645,682)

Exclude (n=18,387) entries to select the first entry 
for each patient ID (earliest diagnosis yr.)

Included (n=499,064)

Exclude (n=146,618) entries with unclear mortality reasons 
(survival month = -1, death classi cation = N/A not seq 0-59, 

death classi cation = dead with missing/unknown COD)

SEER (Lung) Cohort 
(n=457,695)

Exclude (n=41,369) entries with diagnosis year > 2013

Figure 9: Cohort selection diagram - SEER (Lung)
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Table 3: SEER (Breast) cohort characteristics, with count (%) or median (Q1 – Q3).

Characteristic Missingness Type

Sex
Female 459,184 (99.4%) – categorical
Male 2,839 (0.6%) – categorical

Age recode with single ages and 85+ 60 (50-71) 0.0% continuous
Race/ethnicity

White 387,247 (83.8%) – categorical
Black 40,217 (8.7%) – categorical
Other 34,559 (7.5%) – categorical

Laterality
Right - origin of primary 224,777 (48.7%) – categorical
Left - origin of primary 233,549 (50.5%) – categorical
Other 3,697 (0.8%) – categorical

Regional nodes positive (1988+) 0 (0-3) 21.0% continuous
T value - based on AJCC 3rd (1988-2003) 10 (10-20) 56.2% categorical
Derived AJCC T, 7th ed (2010-2015) 13 (13-20) 85.3% categorical
CS site-specific factor 3 (2004-2017 varying by schema) 0 (0-2) 64.8% categorical
Regional nodes examined (1988+) 8 (2-15) 21.0% continuous
Coding system-EOD (1973-2003)

Four-digit EOD (1983-1987) 44,066 (9.5%) – categorical
Ten-digit EOD (1988-2003) 202,450 (43.8%) – categorical
Thirteen-digit (expanded) site specific EOD (1973-1982) 52,742 (11.4%) – categorical
Blank(s) 162,765 (35.2%) – categorical

CS version input original (2004-2015) 10,401 (10,300-20,302) 64.8% categorical
CS version input current (2004-2015) 20,520 (20,510-20,540) 64.8% categorical
EOD 10 - extent (1988-2003) 10 (10-13) 56.2% categorical
Grade (thru 2017)

Unknown 130,713 (28.3%) – categorical
Moderately differentiated; Grade II 135,970 (29.4%) – categorical
Poorly differentiated; Grade III 119,900 (26.0%) – categorical
Undifferentiated; anaplastic; Grade IV 8,081 (1.7%) – categorical
Well differentiated; Grade I 67,359 (14.6%) – categorical

SEER historic stage A (1973-2015)
Regional 136,207 (29.5%) – categorical
Localized 286,927 (62.1%) – categorical
Unstaged 9,242 (2.0%) – categorical
Distant 29,647 (6.4%) – categorical

IHS Link
Record sent for linkage, no IHS match 409,058 (88.5%) – categorical
Record sent for linkage, IHS match 1,505 (0.3%) – categorical
Blank(s) 51,460 (11.1%) – categorical

Histologic Type ICD-O-3 8,500 (8,500-8,500) 0.0% categorical
EOD 10 - size (1988-2003) 18 (10-30) 56.2% categorical
Type of Reporting Source

Hospital inpatient/outpatient or clinic 450,801 (97.6%) – categorical
Other 11,222 (2.4%) – categorical

SEER cause-specific death classification
Alive or dead of other cause 378,758 (82.0%) – categorical
Dead (attributable to this cancer dx) 83,265 (18.0%) – categorical

Survival months 135 (74-220) 0.0% categorical
5-year survival

1 378,758 (82.0%) – categorical
0 83,265 (18.0%) – categorical
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Table 4: SEER (Colon) cohort characteristics, with count (%) or median (Q1–Q3).

Characteristic Missingness Type

Sex
Female 133,661 (52.6%) – categorical
Male 120,451 (47.4%) – categorical

Age recode with single ages and 85+ 70 (61-79) 0.0% continuous
Race recode (White, Black, Other)

White 212,265 (83.5%) – categorical
Black 24,041 (9.5%) – categorical
Other 17,806 (7.0%) – categorical

CS version input current (2004-2015) 20,510 (20,510-20,540) 72.8% categorical
Derived AJCC T, 6th ed (2004-2015) 30 (20-40) 73.3% categorical
Histology ICD-O-2 8,140 (8,140-8,210) 0.0% categorical
IHS Link

Record sent for linkage, no IHS match 208,802 (82.2%) – categorical
Record sent for linkage, IHS match 744 (0.3%) – categorical
Blank(s) 44,566 (17.5%) – categorical

Histology recode - broad groupings
8140-8389: adenomas and adenocarcinomas 213,193 (83.9%) – categorical
8440-8499: cystic, mucinous and serous neoplasms 28,257 (11.1%) – categorical
8010-8049: epithelial neoplasms, NOS 8,797 (3.5%) – categorical
Other 3,865 (1.5%) – categorical

Regional nodes positive (1988+) 1 (0-10) 29.8% continuous
CS mets at dx (2004-2015) 0 (0-22) 72.8% continuous
Reason no cancer-directed surgery

Surgery performed 223,929 (88.1%) – categorical
Not recommended 13,003 (5.1%) – categorical
Other 17,180 (6.8%) – categorical

Derived AJCC T, 6th ed (2004-2015) 30 (20-40) 73.3% categorical
CS version input original (2004-2015) 10,401 (10,300-20,302) 72.8% categorical
Primary Site 184 (182-187) 0.0% categorical
Diagnostic Confirmation

Positive histology 244,616 (96.3%) – categorical
Radiography without microscopic confirm 4,822 (1.9%) – categorical
Other 4,674 (1.8%) – categorical

EOD 10 - extent (1988-2003) 45 (40-85) 57.0% categorical
Histologic Type ICD-O-3 8,140 (8,140-8,210) 0.0% categorical
EOD 10 - size (1988-2003) 55 (35-999) 57.0% categorical
CS lymph nodes (2004-2015) 0 (0-210) 72.8% categorical
SEER cause-specific death classification

Dead (attributable to this cancer dx) 119,047 (46.8%) – categorical
Alive or dead of other cause 135,065 (53.2%) – categorical

Survival months 68 (12-151) 0.0% categorical
5-year survival

1 135,065 (53.2%) – categorical
0 119,047 (46.8%) – categorical
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Table 5: SEER (Lung) cohort characteristics, with count (%) or median (Q1 – Q3).

Characteristic Missingness Type

Sex
Female 187,967 (41.1%) – categorical
Male 269,728 (58.9%) – categorical

Age recode with single ages and 85+ 68 (60-76) 0.0% continuous
Race recode (White, Black, Other)

White 384,184 (83.9%) – categorical
Black 47,237 (10.3%) – categorical
Other 26,274 (5.7%) – categorical

Histologic Type ICD-O-3 8,070 (8,041-8,140) 0.0% categorical
Laterality

Left - origin of primary 178,661 (39.0%) – categorical
Right - origin of primary 245,321 (53.6%) – categorical
Paired site, but no information concerning laterality 23,196 (5.1%) – categorical
Other 10,517 (2.3%) – categorical

EOD 10 - nodes (1988-2003) 2 (1-9) 56.3% categorical
EOD 4 - nodes (1983-1987) 3 (0-9) 88.4% categorical
Type of Reporting Source

Hospital inpatient/outpatient or clinic 445,606 (97.4%) – categorical
Other 12,089 (2.6%) – categorical

SEER historic stage A (1973-2015)
Regional 79,409 (17.3%) – categorical
Distant 182,467 (39.9%) – categorical
Blank(s) 123,161 (26.9%) – categorical
Localized 50,375 (11.0%) – categorical
Unstaged 22,283 (4.9%) – categorical

CS version input current (2004-2015) 20,520 (20,510-20,540) 70.6% categorical
CS mets at dx (2004-2015) 23 (0-40) 70.6% continuous
CS version input original (2004-2015) 10,401 (10,300-20,302) 70.6% categorical
CS tumor size (2004-2015) 50 (29-999) 70.6% categorical
EOD 10 - size (1988-2003) 80 (35-999) 56.3% categorical
CS lymph nodes (2004-2015) 200 (0-200) 70.6% categorical
Histology recode - broad groupings

8140-8389: adenomas and adenocarcinomas 147,127 (32.1%) – categorical
8010-8049: epithelial neoplasms, NOS 179,848 (39.3%) – categorical
8440-8499: cystic, mucinous and serous neoplasms 6,266 (1.4%) – categorical
Other 124,454 (27.2%) – categorical

EOD 10 - extent (1988-2003) 78 (40-85) 56.3% categorical
SEER cause-specific death classification

Alive or dead of other cause 49,997 (10.9%) – categorical
Dead (attributable to this cancer dx) 407,698 (89.1%) – categorical

Survival months 7 (2-19) 0.0% categorical
5-year survival

1 49,997 (10.9%) – categorical
0 407,698 (89.1%) – categorical
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C.2. Features

SEER (Breast):

AJCC stage 3rd edition (1988-2003)

AYA site recode/WHO 2008

Age recode with single ages and 85+

Behavior code ICD-O-2

Behavior code ICD-O-3

Behavior recode for analysis

Breast - Adjusted AJCC 6th M (1988-2015)

Breast - Adjusted AJCC 6th N (1988-2015)

Breast - Adjusted AJCC 6th Stage (1988-2015)

Breast - Adjusted AJCC 6th T (1988-2015)

Breast Subtype (2010+)

CS Schema - AJCC 6th Edition

CS extension (2004-2015)

CS lymph nodes (2004-2015)

CS mets at dx (2004-2015)

CS site-specific factor 1 (2004-2017 varying by schema)

CS site-specific factor 15 (2004-2017 varying by schema)

CS site-specific factor 2 (2004-2017 varying by schema)

CS site-specific factor 25 (2004-2017 varying by schema)

CS site-specific factor 3 (2004-2017 varying by schema)

CS site-specific factor 4 (2004-2017 varying by schema)

CS site-specific factor 5 (2004-2017 varying by schema)

CS site-specific factor 6 (2004-2017 varying by schema)

CS site-specific factor 7 (2004-2017 varying by schema)

CS tumor size (2004-2015)

CS version derived (2004-2015)

CS version input current (2004-2015)

CS version input original (2004-2015)

Coding system-EOD (1973-2003)

Derived AJCC M, 6th ed (2004-2015)

Derived AJCC M, 7th ed (2010-2015)

Derived AJCC N, 6th ed (2004-2015)

Derived AJCC N, 7th ed (2010-2015)

Derived AJCC Stage Group, 6th ed (2004-2015)

Derived AJCC Stage Group, 7th ed (2010-2015)

Derived AJCC T, 6th ed (2004-2015)

Derived AJCC T, 7th ed (2010-2015)

Derived HER2 Recode (2010+)

EOD 10 - extent (1988-2003)

EOD 10 - nodes (1988-2003)

EOD 10 - size (1988-2003)

ER Status Recode Breast Cancer (1990+)

First malignant primary indicator

Grade (thru 2017)

Histologic Type ICD-O-3

Histology recode - Brain groupings

Histology recode - broad groupings

ICCC site rec extended ICD-O-3/WHO 2008

IHS Link

Laterality

Lymphoma subtype recode/WHO 2008 (thru 2017)

M value - based on AJCC 3rd (1988-2003)

N value - based on AJCC 3rd (1988-2003)

Origin recode NHIA (Hispanic, Non-Hisp)

PR Status Recode Breast Cancer (1990+)

Primary Site

Primary by international rules

Race recode (W, B, AI, API)

Race recode (White, Black, Other)

Race/ethnicity

Regional nodes examined (1988+)

Regional nodes positive (1988+)

SEER historic stage A (1973-2015)

SEER modified AJCC stage 3rd (1988-2003)

Sex

Site recode ICD-O-3/WHO 2008

T value - based on AJCC 3rd (1988-2003)

Tumor marker 1 (1990-2003)

Tumor marker 2 (1990-2003)

Tumor marker 3 (1998-2003)

Type of Reporting Source

SEER (Colon):

Age recode with <1 year olds

Age recode with single ages and 85+

Behavior code ICD-O-2

Behavior code ICD-O-3

CS extension (2004-2015)

CS lymph nodes (2004-2015)

CS mets at dx (2004-2015)

CS site-specific factor 1 (2004-2017 varying by schema)

CS tumor size (2004-2015)

CS version input current (2004-2015)

CS version input original (2004-2015)

Derived AJCC M, 6th ed (2004-2015)

Derived AJCC M, 7th ed (2010-2015)

Derived AJCC N, 6th ed (2004-2015)

Derived AJCC N, 7th ed (2010-2015)

Derived AJCC Stage Group, 6th ed (2004-2015)

Derived AJCC Stage Group, 7th ed (2010-2015)

Derived AJCC T, 6th ed (2004-2015)

Derived AJCC T, 7th ed (2010-2015)

Diagnostic Confirmation

EOD 10 - extent (1988-2003)

EOD 10 - nodes (1988-2003)

EOD 10 - size (1988-2003)

Histologic Type ICD-O-3

Histology ICD-O-2

Histology recode - broad groupings

IHS Link

Origin recode NHIA (Hispanic, Non-Hisp)

Primary Site

Primary by international rules

RX Summ--Surg Prim Site (1998+)

Race recode (White, Black, Other)

Reason no cancer-directed surgery

Regional nodes positive (1988+)

SEER modified AJCC stage 3rd (1988-2003)

Sex

SEER (Lung):

AYA site recode/WHO 2008

Age recode with <1 year olds

Age recode with single ages and 85+

Behavior code ICD-O-2

Behavior code ICD-O-3

CS extension (2004-2015)

CS lymph nodes (2004-2015)

CS mets at dx (2004-2015)

CS site-specific factor 1 (2004-2017 varying by schema)

CS tumor size (2004-2015)

CS version input current (2004-2015)

CS version input original (2004-2015)

Derived AJCC M, 6th ed (2004-2015)

Derived AJCC M, 7th ed (2010-2015)

Derived AJCC N, 6th ed (2004-2015)

Derived AJCC N, 7th ed (2010-2015)

Derived AJCC Stage Group, 6th ed (2004-2015)

Derived AJCC T, 6th ed (2004-2015)

Derived AJCC T, 7th ed (2010-2015)

EOD 10 - extent (1988-2003)

EOD 10 - nodes (1988-2003)

EOD 10 - size (1988-2003)

EOD 4 - nodes (1983-1987)

First malignant primary indicator

Grade (thru 2017)

Histologic Type ICD-O-3

Histology recode - broad groupings

ICCC site recode 3rd edition/IARC 2017

ICCC site recode extended 3rd edition/IARC 2017

IHS Link

Laterality

Origin recode NHIA (Hispanic, Non-Hisp)

Primary by international rules

Race recode (White, Black, Other)

SEER historic stage A (1973-2015)

Sex

Type of Reporting Source
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C.3. Missingness heatmaps

This section plots missingness heatmaps of categorical and numerical features in each SEER dataset over
time. Darker color means larger proportion of missing data.
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Figure 10: Missingness of categorical features in SEER (Breast).
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Figure 11: Missingness of numerical features in SEER (Breast).
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Figure 12: Missingness of categorical features in SEER (Colon).
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Figure 13: Missingness of numerical features in SEER (Colon).
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Figure 14: Missingness of categorical features in SEER (Lung).
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Figure 15: Missingness of numerical features in SEER (Lung).
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Appendix D. Additional CDC COVID-19 Data Details

The COVID-19 Case Surveillance Detailed Data (Centers for Disease Control and Prevention, 2020) is a
national, publicly available dataset provided by the CDC. It contains 33 elements, with patient-level data
including symptoms, demographics, and state of residence. The performance over time is evaluated on a
monthly basis. We use the version the released on June 6th, 2022. Disclaimer: “The CDC does not take
responsibility for the scientific validity or accuracy of methodology, results, statistical analyses, or conclusions
presented.”

• Data access: To access the data, users must complete a registration information and data use restrictions
agreement (RIDURA).

• Cohort selection: The cohort consists of all patients who were lab-confirmed positive for COVID-19, had
a non-null positive specimen date, and were hospitalized (hosp_yn = Yes). Cohort selection diagrams
are given in Figures 16

• Cohort characteristics: Cohort characteristics are given in Table 6.

• Outcome definition: mortality, defined by death_yn = Yes

• Features: We list the features used in the CDC COVID-19 datasets in Section D.2. We convert all
categorical variables into dummy features, and apply standard scaling to numerical variables (subtract
mean and divide by standard deviation).

• Missingness heat map: is given in Figure 17.

• Additionally, we provide stacked area plots showing how the distribution of ages (Figure 18(a) and
states 18(b) shifts over time.
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D.1. Cohort Selection and Cohort Characteristics

Entries in CDC COVID-19 
Case Surveillance Dataset 

(n=74,849,225)

Included (n=29,692,289)

Exclude (n=45,156,936) entries that did not test positive

Included (n=24,655,999)

Exclude (n=5,036,290) entries that are not lab-confirmed

CDC COVID-19 Cohort 
(n=941,140)

Exclude (n=23,713,704) entries that are not hospitalized

Included (n=942,295)

Exclude (n=1,155) entries with earliest test date < March 2020 

Figure 16: Cohort selection diagram - CDC COVID-19
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Table 6: CDC COVID-19 cohort characteristics, with count (%) or median (Q1–Q3).

Characteristic Missingness Type

Sex
Female 455,376 (48.4%) – categorical
Male 475,223 (50.5%) – categorical
Unknown/Missing 10,541 (1.1%) – categorical

Age Group
0 - 9 16,373 (1.7%) – categorical
10 - 19 17,252 (1.8%) – categorical
20 - 29 48,505 (5.2%) – categorical
30 - 39 71,776 (7.6%) – categorical
40 - 49 88,531 (9.4%) – categorical
50 - 59 141,805 (15.1%) – categorical
60 - 69 189,354 (20.1%) – categorical
70 - 79 189,018 (20.1%) – categorical
80+ 177,765 (18.9%) – categorical
Missing 761 (0.1%) – categorical

Race
White 544,199 (57.8%) – categorical
Black 173,847 (18.5%) – categorical
Other 205,547 (21.8%) – categorical

State of Residence
NY 189,684 (20.2%) – categorical
OH 70,097 (7.4%) – categorical
FL 35,679 (3.8%) – categorical
WA 58,854 (6.3%) – categorical
MA 31,441 (3.3%) – categorical
Other 555,353 (59.0%) – categorical

Mechanical Ventilation
Yes 38,009 (4.0%) – categorical
No 138,331 (14.7%) – categorical
Unknown/Missing 764,800 (81.2%) – categorical

Mortality
1 190,786 (20.3%) – categorical
0 750,354 (79.7%) – categorical
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D.2. Features

abdom_yn, abxchest_yn, acuterespdistress_yn, age_group, chills_yn, cough_yn, diarrhea_yn,

ethnicity, fever_yn, hc_work_yn, headache_yn, hosp_yn, icu_yn, mechvent_yn, medcond_yn, month,

myalgia_yn, nauseavomit_yn, pna_yn, race, relative_month, res_county, res_state, runnose_yn,

sex, sfever_yn, sob_yn, sthroat_yn,

D.3. Missingness heatmaps
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Figure 17: Missingness over time for features in CDC COVID-19 dataset after cohort selection. The darker
the color, the larger the proportion of missing data.
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Figure 18: Proportion of deaths over time for each age group and state of residence.
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Appendix E. Additional SWPA COVID-19 Data Details

The Southwestern Pennsylvania (SWPA) COVID-19 dataset consists of EHR data from patients tested for
COVID-19. It was collected by a major healthcare provider in SWPA, and includes patient demographics,
labs, problem histories, medications, inpatient vs. outpatient status, and other information collected in the
patient encounter. The performance over time is evaluated on a monthly basis.

• Data access: This is a private dataset.

• Cohort selection: The cohort consists of COVID-19 patients who tested positive for COVID-19 and
were not already in the ICU or mechanically ventilated. We filter for the first positive test, and define
features and outcomes relative to that time. Cohort selection diagrams are given in Figures 19. If there
are multiple samples per patient, we filter to the first entry per patient, which corresponds to when a
patient first enters the dataset. This corresponds to a particular interpretation of the prediction: when
a patient is first tests positive, given what we know about that patient, what is their estimated risk of
90-day mortality?

• Cohort characteristics: Cohort characteristics are given in Table 7.

• Outcome definition: 90-day mortality by comparing the death date and test date

• Features: We list the features used in the SWPA COVID-19 datasets in Section E.2. We convert all
categorical variables into dummy features, and apply standard scaling to numerical variables (subtract
mean and divide by standard deviation). To create a fixed length feature vector, where applicable we
take the most recent value of each feature (e.g. most recent lab values).

• Missingness heat maps: are given in Figures 20, 21, 22, and 23,
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E.1. Cohort Selection and Cohort Characteristics

Total patients in 
SWPA tested for COVID-19 

(n=193,583)

Included (n=45,882) 
rst positive tests

Exclude (n=147,701) patients that did not test positive

Included (n=35,376)

Exclude (n=10,506) patients already in severe condition at time 
of rst positive test (mech. vent. or ICU stay in prior 30 days)

SWPA COVID-19 Cohort 
(n=35,293)

Exclude (n=83) cases after March 2022

Figure 19: Cohort selection diagram - SWPA COVID-19

Table 7: SWPA COVID-19 cohort characteristics, with count (%) or median (Q1–Q3).

Characteristic Missingness Type

Gender
Female 20,283 (57.5%) – categorical
Male 15,003 (42.5%) – categorical
Unknown 7 (0.0%) – categorical

Age
Under 20 3,210 (9.1%) – categorical
20 – 30 4,349 (12.3%) – categorical
30 – 40 4,667 (13.2%) – categorical
40 – 50 4,653 (13.2%) – categorical
50 – 60 6,111 (17.3%) – categorical
60 – 70 5,700 (16.2%) – categorical
70+ 6,603 (18.7%) – categorical

Location of test
Inpatient 14,911 (42.2%) – categorical
Outpatient 17,661 (50.0%) – categorical
Unknown 2,721 (7.7%) – categorical

90-day mortality
True 1,516 (4.3%) – categorical
False 33,777 (95.7%) – categorical
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E.2. Features

Asthma

CAD

CHF

CKD

COPD

CRP

CVtest_ICD_Acute pharyngitis, unspecified

CVtest_ICD_Acute upper respiratory infection, unspecified

CVtest_ICD_Anosmia

CVtest_ICD_Contact with and (suspected) exposure to other viral

communicable diseases

CVtest_ICD_Encounter for general adult medical

examination without

abnormal findings

CVtest_ICD_Encounter for screening for other viral diseases

CVtest_ICD_Encounter for screening for respiratory disorder NEC

CVtest_ICD_Nasal congestion

CVtest_ICD_Other general symptoms and signs

CVtest_ICD_Other specified symptoms and signs involving the

circulatory and respiratory systems

CVtest_ICD_Pain, unspecified

CVtest_ICD_Parageusia

CVtest_ICD_R05.9

CVtest_ICD_R51.9

CVtest_ICD_U07.1

CVtest_ICD_Viral infection, unspecified

CVtest_ICD_Z20.822

ESLD

Hypertension

IP_ICD_z20.828

Immunocompromised

Interstitial Lung disease

OP_ICD_Abdominal Pain

OP_ICD_Chest Pain

OP_ICD_Chills

OP_ICD_Coronavirus Concerns

OP_ICD_Covid Infection

OP_ICD_Exposure To Covid-19

OP_ICD_Generalized Body Aches

OP_ICD_Headache

OP_ICD_Labs Only

OP_ICD_Medication Refill

OP_ICD_Nasal Congestion

OP_ICD_Nausea

OP_ICD_Other

OP_ICD_Results

OP_ICD_Shortness of Breath

OP_ICD_Sore Throat

OP_ICD_URI

age_bin_(20, 30]

age_bin_(30, 40]

age_bin_(40, 50]

age_bin_(50, 60]

age_bin_(60, 70]

age_bin_(70, 200]

bmi

cancer

cough

covid_vaccination_given

diabetes

fatigue

fever

gender

hyperglycemia

lab_ANION GAP

lab_ATRIAL RATE

lab_BASOPHILS ABSOLUTE COUNT

lab_BASOPHILS RELATIVE PERCENT

lab_BLOOD UREA NITROGEN

lab_CALCIUM

lab_CALCUALTED T AXIS

lab_CALCULATED R AXIS

lab_CHLORIDE

lab_CO2

lab_CREATININE

lab_EOSINOPHILS ABSOLUTE COUNT

lab_EOSINOPHILS RELATIVE PERCENT

lab_GFR MDRD AF AMER

lab_GFR MDRD NON AF AMER

lab_GLUCOSE

lab_IMMATURE GRANULOCYTES RELATIVE PERCENT

lab_LYMPHOCYTES ABSOLUTE COUNT

lab_LYMPHOCYTES RELATIVE PERCENT

lab_MEAN CORPUSCULAR HEMOGLOBIN

lab_MEAN CORPUSCULAR HEMOGLOBIN CONC

lab_MEAN PLATELET VOLUME

lab_MONOCYTES ABSOLUTE COUNT

lab_MONOCYTES RELATIVE PERCENT

lab_NEUTROPHILS RELATIVE PERCENT

lab_NUCLEATED RED BLOOD CELLS

lab_POTASSIUM

lab_PROTEIN TOTAL

lab_Q-T INTERVAL

lab_QRS DURATION

lab_QTC CALCULATION

lab_RED CELL DISTRIBUTION WIDTH

lab_SODIUM

lab_VENTRICULAR RATE

lab_merged_CRP

lab_merged_albumin

lab_merged_alkalinePhosphatase

lab_merged_alt

lab_merged_ast

lab_merged_bnp

lab_merged_ddimer

lab_merged_directBilirubin

lab_merged_ggt

lab_merged_hct

lab_merged_hgb

lab_merged_indirectBilirubin

lab_merged_lactate

lab_merged_ldh

lab_merged_mcv

lab_merged_neutrophil

lab_merged_platelets

lab_merged_pt

lab_merged_rbc

lab_merged_sao2

lab_merged_totalBilirubin

lab_merged_totalProtein

lab_merged_troponin

lab_merged_wbc

labs_ICD_Acute pharyngitis, unspecified

labs_ICD_Acute upper respiratory infection, unspecified

labs_ICD_Chest pain, unspecified

labs_ICD_Contact with and (suspected) exposure to other

viral communicable diseases

labs_ICD_Dyspnea, unspecified

labs_ICD_Encounter for other preprocedural examination

labs_ICD_Essential (primary) hypertension

labs_ICD_Fever, unspecified

labs_ICD_Heart failure, unspecified

labs_ICD_Other general symptoms and signs

labs_ICD_Other pulmonary embolism without acute cor pulmonale

labs_ICD_Other specified abnormalities of plasma proteins

labs_ICD_R05.9

labs_ICD_Shortness of breath

labs_ICD_Syncope and collapse

labs_ICD_U07.1

labs_ICD_Unspecified atrial fibrillation

labs_ICD_Viral infection, unspecified

labs_ICD_Z20.822

liver disease

location_covidtest_ordered_Inpatient

location_covidtest_ordered_Outpatient

lung disease

med_dx_Acquired hypothyroidism

med_dx_Anxiety

med_dx_COVID-19

med_dx_Encounter for antineoplastic chemotherapy

med_dx_Encounter for antineoplastic chemotherapy and immunotherapy

med_dx_Encounter for antineoplastic immunotherapy

med_dx_Encounter for immunization

med_dx_Gastroesophageal reflux disease without esophagitis

med_dx_Gastroesophageal reflux disease, esophagitis presence

not specified

med_dx_Generalized anxiety disorder

med_dx_Hyperlipidemia, unspecified hyperlipidemia type

med_dx_Hypomagnesemia

med_dx_Hypothyroidism, unspecified type

med_dx_Iron deficiency anemia, unspecified iron deficiency anemia type

med_dx_Mixed hyperlipidemia

med_dx_Primary osteoarthritis of right knee

medication_ACETAMINOPHEN 325 MG TABLET

medication_ALBUTEROL SULFATE 2.5 MG/3 ML (0.083 %

FOR NEBULIZATION

medication_ALBUTEROL SULFATE HFA 90 MCG/ACTUATION AEROSOL INHALER

medication_ASPIRIN 81 MG TABLET,DELAYED RELEASE

medication_DEXAMETHASONE SODIUM PHOSPHATE 4 MG/ML INJECTION SOLUTION

medication_DIPHENHYDRAMINE 50 MG/ML INJECTION (WRAPPER)

medication_EPINEPHRINE 0.3 MG/0.3 ML INJECTION, AUTO-INJECTOR

medication_FENTANYL (PF) 50 MCG/ML INJECTION SOLUTION

medication_HYDROCODONE 5 MG-ACETAMINOPHEN 325 MG TABLET

medication_HYDROCORTISONE SOD SUCCINATE (PF) 100 MG/2 ML SOLUTION

FOR INJECTION

medication_IOPAMIDOL 76 %

medication_LACTATED RINGERS INTRAVENOUS SOLUTION

medication_MIDAZOLAM 1 MG/ML INJECTION SOLUTION

medication_NALOXONE 0.4 MG/ML INJECTION SOLUTION

medication_ONDANSETRON HCL (PF) 4 MG/2 ML INJECTION SOLUTION

medication_OXYCODONE 5 MG TABLET

medication_PANTOPRAZOLE 40 MG TABLET,DELAYED RELEASE

medication_PROPOFOL 10 MG/ML INTRAVENOUS BOLUS (20 ML)

medication_SODIUM CHLORIDE 0.9 %

medication_SODIUM CHLORIDE 0.9 %

myalgia

obesity

past7Dprobhx_ICD_Acute kidney failure, unspecified

past7Dprobhx_ICD_Anemia, unspecified

past7Dprobhx_ICD_Anxiety disorder, unspecified

past7Dprobhx_ICD_Chest pain, unspecified

past7Dprobhx_ICD_Dizziness and giddiness

past7Dprobhx_ICD_Encounter for general adult medical examination

without abnormal findings

past7Dprobhx_ICD_Encounter for immunization

past7Dprobhx_ICD_Encounter for screening for malignant

neoplasm of colon

past7Dprobhx_ICD_F32.A

past7Dprobhx_ICD_Gastro-esophageal reflux disease

without esophagitis
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past7Dprobhx_ICD_Hyperlipidemia, unspecified

past7Dprobhx_ICD_Hypokalemia

past7Dprobhx_ICD_Hypothyroidism, unspecified

past7Dprobhx_ICD_Mixed hyperlipidemia

past7Dprobhx_ICD_Obstructive sleep apnea (adult) (pediatric)

past7Dprobhx_ICD_Syncope and collapse

past7Dprobhx_ICD_Type 2 diabetes mellitus without complications

past7Dprobhx_ICD_Unspecified atrial fibrillation

probhx_ICD_Acute kidney failure, unspecified

probhx_ICD_Anemia, unspecified

probhx_ICD_Anxiety disorder, unspecified

probhx_ICD_Chest pain, unspecified

probhx_ICD_Dizziness and giddiness

probhx_ICD_Encounter for general adult medical examination without

abnormal findings

probhx_ICD_Encounter for immunization

probhx_ICD_Encounter for screening for malignant neoplasm of colon

probhx_ICD_F32.A

probhx_ICD_Gastro-esophageal reflux disease without esophagitis

probhx_ICD_Hyperlipidemia, unspecified

probhx_ICD_Hypokalemia

probhx_ICD_Hypothyroidism, unspecified

probhx_ICD_Mixed hyperlipidemia

probhx_ICD_Obstructive sleep apnea (adult) (pediatric)

probhx_ICD_Syncope and collapse

probhx_ICD_Type 2 diabetes mellitus without complications

probhx_ICD_Unspecified atrial fibrillation

transplant

troponin

vaccine_COVID-19 RS-AD26 (PF) Vaccine (Janssen)

vaccine_COVID-19 Vaccine, Unspecified

vaccine_COVID-19 mRNA (PF) Vaccine (Moderna)

vaccine_COVID-19 mRNA (PF) Vaccine (Pfizer)

vaccine_Flu Whole

vaccine_INFLUENZA, CCIV4

vaccine_Influenza

vaccine_Influenza High PF

vaccine_Influenza ID PF

vaccine_Influenza PF

vaccine_Influenza Vaccine, Quadrivalent, Adjuvanted

vaccine_Influenza, High-dose, Quadrivalent

vaccine_Influenza, Quadrivalent

vaccine_Influenza, Recombinant (RIV4)

vaccine_Influenza, Recombinant (Riv3)

vaccine_Influenza, Trivalent, Adjuvanted

vaccine_LAIV3

vaccine_Pneumococcal

vaccine_Pneumococcal Conjugate 13-valent

vaccine_Pneumococcal Polysaccharide

vaccine_TIVA
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E.3. Missingness heatmaps

This section plots missingness heatmaps of categorical and numerical features over time. Darker color means
larger proportion of missing data.

Jun-2020 Dec-2020 Jun-2021 Dec-2021
Time (year)

gender
age_bin_(20, 30]
age_bin_(30, 40]
age_bin_(40, 50]
age_bin_(50, 60]
age_bin_(60, 70]

age_bin_(70, 200]
CVtest_ICD_Acute pharyngitis, unspecified

CVtest_ICD_Acute upper respiratory infection, unspecified
CVtest_ICD_Anosmia

CVtest_ICD_Contact with and (suspected) exposure to other viral communicable diseases
CVtest_ICD_Encounter for general adult medical examination without abnormal findings

CVtest_ICD_Encounter for screening for other viral diseases
CVtest_ICD_Encounter for screening for respiratory disorder NEC

CVtest_ICD_Nasal congestion
CVtest_ICD_Other general symptoms and signs

CVtest_ICD_Other specified symptoms and signs involving the circulatory and respiratory systems
CVtest_ICD_Pain, unspecified

CVtest_ICD_Parageusia
CVtest_ICD_R05.9
CVtest_ICD_R51.9
CVtest_ICD_U07.1

CVtest_ICD_Viral infection, unspecified
CVtest_ICD_Z20.822

location_covidtest_ordered_Inpatient
location_covidtest_ordered_Outpatient

OP_ICD_Abdominal Pain
OP_ICD_Chest Pain

OP_ICD_Chills
OP_ICD_Coronavirus Concerns

OP_ICD_Covid Infection
OP_ICD_Exposure To Covid-19

OP_ICD_Generalized Body Aches
OP_ICD_Headache
OP_ICD_Labs Only

OP_ICD_Medication Refill
OP_ICD_Nasal Congestion

OP_ICD_Nausea
OP_ICD_Other

OP_ICD_Results
OP_ICD_Shortness of Breath

OP_ICD_Sore Throat
OP_ICD_URI

IP_ICD_z20.828
probhx_ICD_Acute kidney failure, unspecified

probhx_ICD_Anemia, unspecified
probhx_ICD_Anxiety disorder, unspecified

probhx_ICD_Chest pain, unspecified
probhx_ICD_Dizziness and giddiness

probhx_ICD_Encounter for general adult medical examination without abnormal findings
probhx_ICD_Encounter for immunization

probhx_ICD_Encounter for screening for malignant neoplasm of colon
probhx_ICD_F32.A

probhx_ICD_Gastro-esophageal reflux disease without esophagitis
probhx_ICD_Hyperlipidemia, unspecified

probhx_ICD_Hypokalemia
probhx_ICD_Hypothyroidism, unspecified

probhx_ICD_Mixed hyperlipidemia
probhx_ICD_Obstructive sleep apnea (adult) (pediatric)

probhx_ICD_Syncope and collapse

Fe
at

ur
es

0.0

0.2

0.4

0.6

0.8

1.0

Figure 20: Missingness of categorical features in SWPA COVID-19 dataset (part 1).
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Jun-2020 Dec-2020 Jun-2021 Dec-2021
Time (year)

gender
age_bin_(20, 30]
age_bin_(30, 40]
age_bin_(40, 50]
age_bin_(50, 60]
age_bin_(60, 70]

age_bin_(70, 200]
CVtest_ICD_Acute pharyngitis, unspecified

CVtest_ICD_Acute upper respiratory infection, unspecified
CVtest_ICD_Anosmia

CVtest_ICD_Contact with and (suspected) exposure to other viral communicable diseases
CVtest_ICD_Encounter for general adult medical examination without abnormal findings

CVtest_ICD_Encounter for screening for other viral diseases
CVtest_ICD_Encounter for screening for respiratory disorder NEC

CVtest_ICD_Nasal congestion
CVtest_ICD_Other general symptoms and signs

CVtest_ICD_Other specified symptoms and signs involving the circulatory and respiratory systems
CVtest_ICD_Pain, unspecified

CVtest_ICD_Parageusia
CVtest_ICD_R05.9
CVtest_ICD_R51.9
CVtest_ICD_U07.1

CVtest_ICD_Viral infection, unspecified
CVtest_ICD_Z20.822

location_covidtest_ordered_Inpatient
location_covidtest_ordered_Outpatient

OP_ICD_Abdominal Pain
OP_ICD_Chest Pain

OP_ICD_Chills
OP_ICD_Coronavirus Concerns

OP_ICD_Covid Infection
OP_ICD_Exposure To Covid-19

OP_ICD_Generalized Body Aches
OP_ICD_Headache
OP_ICD_Labs Only

OP_ICD_Medication Refill
OP_ICD_Nasal Congestion

OP_ICD_Nausea
OP_ICD_Other

OP_ICD_Results
OP_ICD_Shortness of Breath

OP_ICD_Sore Throat
OP_ICD_URI

IP_ICD_z20.828
probhx_ICD_Acute kidney failure, unspecified

probhx_ICD_Anemia, unspecified
probhx_ICD_Anxiety disorder, unspecified

probhx_ICD_Chest pain, unspecified
probhx_ICD_Dizziness and giddiness

probhx_ICD_Encounter for general adult medical examination without abnormal findings
probhx_ICD_Encounter for immunization

probhx_ICD_Encounter for screening for malignant neoplasm of colon
probhx_ICD_F32.A

probhx_ICD_Gastro-esophageal reflux disease without esophagitis
probhx_ICD_Hyperlipidemia, unspecified

probhx_ICD_Hypokalemia
probhx_ICD_Hypothyroidism, unspecified

probhx_ICD_Mixed hyperlipidemia
probhx_ICD_Obstructive sleep apnea (adult) (pediatric)

probhx_ICD_Syncope and collapse
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Figure 21: Missingness of categorical features in SWPA COVID-19 dataset (part 2).
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Jun-2020 Dec-2020 Jun-2021 Dec-2021
Time (year)

gender
age_bin_(20, 30]
age_bin_(30, 40]
age_bin_(40, 50]
age_bin_(50, 60]
age_bin_(60, 70]

age_bin_(70, 200]
CVtest_ICD_Acute pharyngitis, unspecified

CVtest_ICD_Acute upper respiratory infection, unspecified
CVtest_ICD_Anosmia

CVtest_ICD_Contact with and (suspected) exposure to other viral communicable diseases
CVtest_ICD_Encounter for general adult medical examination without abnormal findings

CVtest_ICD_Encounter for screening for other viral diseases
CVtest_ICD_Encounter for screening for respiratory disorder NEC

CVtest_ICD_Nasal congestion
CVtest_ICD_Other general symptoms and signs

CVtest_ICD_Other specified symptoms and signs involving the circulatory and respiratory systems
CVtest_ICD_Pain, unspecified

CVtest_ICD_Parageusia
CVtest_ICD_R05.9
CVtest_ICD_R51.9
CVtest_ICD_U07.1

CVtest_ICD_Viral infection, unspecified
CVtest_ICD_Z20.822

location_covidtest_ordered_Inpatient
location_covidtest_ordered_Outpatient

OP_ICD_Abdominal Pain
OP_ICD_Chest Pain

OP_ICD_Chills
OP_ICD_Coronavirus Concerns

OP_ICD_Covid Infection
OP_ICD_Exposure To Covid-19

OP_ICD_Generalized Body Aches
OP_ICD_Headache
OP_ICD_Labs Only

OP_ICD_Medication Refill
OP_ICD_Nasal Congestion

OP_ICD_Nausea
OP_ICD_Other

OP_ICD_Results
OP_ICD_Shortness of Breath

OP_ICD_Sore Throat
OP_ICD_URI

IP_ICD_z20.828
probhx_ICD_Acute kidney failure, unspecified

probhx_ICD_Anemia, unspecified
probhx_ICD_Anxiety disorder, unspecified

probhx_ICD_Chest pain, unspecified
probhx_ICD_Dizziness and giddiness
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Figure 22: Missingness of categorical features in SWPA COVID-19 dataset (part 3).
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Jun-2020 Dec-2020 Jun-2021 Dec-2021
Time (month)
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lab_GLUCOSE
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lab_MEAN CORPUSCULAR HEMOGLOBIN CONC
lab_MEAN PLATELET VOLUME

lab_MONOCYTES ABSOLUTE COUNT
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lab_merged_CRP
lab_merged_lactate
lab_merged_ddimer

lab_merged_troponin
lab_merged_alt
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Figure 23: Missingness of numerical features in SWPA COVID-19.
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Appendix F. Additional MIMIC-IV Data Details

The Medical Information Mart for Intensive Care (MIMIC)-IV (Johnson et al., 2021) database contains EHR
data from patients admitted to critical care units from 2008–2019. MIMIC-IV is an update to MIMIC-III,
adding time annotations placing each sample into a three-year time range, and removing elements from
the old CareVue EHR system (before 2008). Each patient has an anchor_year_group, anchor_year and
intime. For each patient, we first calculated an offset as the difference between intime and anchor_year.
Then, we approximated the admit time as the midpoint of anchor_year_group after applying the computed
offset.
The performance over time is evaluated on a yearly basis. Our study uses MIMIC-IV-1.0.

• Data access: Users must create a Physionet account, become credentialed, and sign a data use agreement
(DUA).

• Cohort selection: We select all patients in the icustays table, filtering for their first encounter (minimum
intime), and defining a feature vector only using information available by the first 24 hrs of their first
encounter. (Selection diagram in Figure 24). If there are multiple samples per patient, we filter to the
first entry per patient, which corresponds to when a patient first enters the dataset. This corresponds
to a particular interpretation of the prediction: when a patient first visits the ICU, given what we know
about that patient, what is their estimated risk of in-ICU mortality?

• Outcome definition: The outcome of interest is in-ICU mortality, defined by comparing the outtime of
the patient’s ICU visit with the patient’s dod (date of death, in the patients table). As noted in the
documentation, out-of-hospital mortality is not recorded.

• Cohort characteristics: Cohort characteristics are given in Table 8.

• Features: We list the features used in the MIMIC-IV datasets in Section F.2. We convert all categorical
variables into dummy features, and apply standard scaling to numerical variables (subtract mean and
divide by standard deviation). To create a fixed length feature vector, we take the most recent value of
any patient history data available (e.g. most recent lab values).

• Missingness heat maps: are given in Figures 25, 26, 27, 28.
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F.1. Cohort Selection and Cohort Characteristics

Total entries in 
MIMIC-IV icustays table 

(n=76,540)

Exclude (n=18,387) entries to select the first entry 
for each subject_id (earliest intime)

Included (n=53,150)

MIMIC-IV Cohort
(n=53,050)

Exclude (n=100) entries 
admitted or transferred to the ICU after 2020

Figure 24: Cohort selection diagram - MIMIC-IV
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Table 8: MIMIC-IV cohort characteristics, with count (%) or median (Q1–Q3).

Characteristic Missingness Type

Gender
Female 23,313 (43.9%) – categorical
Male 29,737 (56.1%) – categorical

Age at Admission 66 (54-78) 0.0% continuous
O2 Delivery Device(s)

Use device 33,359 (62.9%) – categorical
None 18,549 (35.0%) – categorical
Missing 1,142 (2.2%) – categorical

Pupil Response R
Brisk 39,708 (74.9%) – categorical
Sluggish 4,603 (8.7%) – categorical
Non-reactive 1,812 (3.4%) – categorical
Missing 6,927 (13.1%) – categorical

first careunit
Medical Intensive Care Unit (MICU) 10,213 (19.3%) – categorical
Surgical Intensive Care Unit (SICU) 8,241 (15.5%) – categorical
Medical/Surgical Intensive Care Unit (MICU/S... 8,808 (16.6%) – categorical
Cardiac Vascular Intensive Care Unit (CVICU) 9,437 (17.8%) – categorical
Coronary Care Unit (CCU) 6,098 (11.5%) – categorical
Trauma SICU (TSICU) 6,947 (13.1%) – categorical
Other 3,306 (6.2%) – categorical

Anion Gap 13 (11-16) 0.5% continuous
Heart Rhythm

SR (Sinus Rhythm) 34,004 (64.1%) – categorical
Abnormal heart rhythm 18,657 (35.2%) – categorical
Missing 389 (0.7%) – categorical

Glucose FS (range 70 -100) 131 (110-164) 32.7% continuous
Eye Opening

Spontaneously 39,216 (73.9%) – categorical
To Speech 7,387 (13.9%) – categorical
None 4,538 (8.6%) – categorical
To Pain 1,702 (3.2%) – categorical
Missing 207 (0.4%) – categorical

Lactate 2 (1-2) 22.0% continuous
Motor Response

Obeys Commands 44,409 (83.7%) – categorical
Localizes Pain 3,419 (6.4%) – categorical
Flex-withdraws 1,673 (3.2%) – categorical
No response 2,930 (5.5%) – categorical
Abnormal extension 157 (0.3%) – categorical
Abnormal Flexion 238 (0.4%) – categorical
Missing 224 (0.4%) – categorical

Respiratory Pattern
Regular 29,373 (55.4%) – categorical
Not regular 1,739 (3.3%) – categorical
Missing 21,938 (41.4%) – categorical

Richmond-RAS Scale 0 (-1-0) 15.4% categorical
in-icu mortality

0 49,716 (93.7%) – categorical
1 3,334 (6.3%) – categorical
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F.2. Features

18 Gauge Dressing Occlusive

18 Gauge placed in outside facility

20 Gauge Dressing Occlusive

20 Gauge placed in outside facility

20 Gauge placed in the field

Abdominal Assessment

Activity

Activity Tolerance

Admission Weight (Kg)

Admission Weight (lbs.)

Alanine Aminotransferase (ALT)

Alarms On

Albumin

Alkaline Phosphatase

All Medications Tolerated

Ambulatory aid

Anion Gap

Anion gap

Anti Embolic Device

Anti Embolic Device Status

Asparate Aminotransferase (AST)

Assistance

BUN

Balance

Base Excess

Basophils

Bath

Bicarbonate

Bilirubin, Total

Bowel Sounds

Braden Activity

Braden Friction/Shear

Braden Mobility

Braden Moisture

Braden Nutrition

Braden Sensory Perception

CAM-ICU MS Change

Calcium non-ionized

Calcium, Total

Calculated Total CO2

Capillary Refill L

Capillary Refill R

Chloride

Chloride (serum)

Commands

Commands Response

Cough Effort

Cough Type

Creatinine

Creatinine (serum)

Currently experiencing pain

Daily Wake Up

Delirium assessment

Dialysis patient

Diet Type

Difficulty swallowing

Dorsal PedPulse L

Dorsal PedPulse R

ETOH

Ectopy Type 1

Edema Amount

Edema Location

Education Barrier

Education Existing Knowledge

Education Learner

Education Method

Education Readiness/Motivation

Education Response

Education Topic

Eosinophils

Epithelial Cells

Eye Opening

Family Communication

Flatus

GU Catheter Size

Gait/Transferring

Glucose (serum)

Glucose FS (range 70 -100)

Goal Richmond-RAS Scale

HCO3 (serum)

HOB

HR

HR Alarm - High

HR Alarm - Low

Heart Rhythm

Height

Height (cm)

Hematocrit

Hematocrit (serum)

Hemoglobin

History of falling (within 3 mnths)*

History of slips / falls

Home TF

INR

INR(PT)

IV/Saline lock

Insulin pump

Intravenous / IV access prior to admission

Judgement

LLE Color

LLE Temp

LLL Lung Sounds

LUE Color

LUE Temp

LUL Lung Sounds

Lactate

Lactic Acid

Living situation

Lymphocytes
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MCH

MCHC

MCV

Magnesium

Mental status

Monocytes

Motor Response

NBP Alarm - High

NBP Alarm - Low

NBP Alarm Source

NBPd

NBPm

NBPs

Nares L

Nares R

Neutrophils

O2 Delivery Device(s)

Oral Care

Oral Cavity

Orientation

PT

PTT

Pain Assessment Method

Pain Cause

Pain Level

Pain Level Acceptable

Pain Level Response

Pain Location

Pain Management

Pain Present

Pain Type

Parameters Checked

Phosphate

Phosphorous

Platelet Count

Position

PostTib Pulses L

PostTib Pulses R

Potassium

Potassium (serum)

Potassium, Whole Blood

Pressure Reducing Device

Pressure Ulcer Present

Pupil Response L

Pupil Response R

Pupil Size Left

Pupil Size Right

RBC

RDW

RLE Color

RLE Temp

RLL Lung Sounds

RR

RUE Color

RUE Temp

RUL Lung Sounds

Radial Pulse L

Radial Pulse R

Red Blood Cells

Resp Alarm - High

Resp Alarm - Low

Respiratory Effort

Respiratory Pattern

Richmond-RAS Scale

ST Segment Monitoring On

Safety Measures

Secondary diagnosis

Self ADL

Side Rails

Skin Color

Skin Condition

Skin Integrity

Skin Temp

Sodium

Sodium (serum)

SpO2

SpO2 Alarm - High

SpO2 Alarm - Low

SpO2 Desat Limit

Specific Gravity

Specimen Type

Speech

Strength L Arm

Strength L Leg

Strength R Arm

Strength R Leg

Support Systems

Temp Site

Temperature F

Therapeutic Bed

Tobacco Use History

Turn

Untoward Effect

Urea Nitrogen

Urine Source

Verbal Response

Visual / hearing deficit

WBC

White Blood Cells

Yeast

admit_age

gender

pCO2

pH

pO2
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F.3. Missingness heatmaps
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Alkaline Phosphatase

Anion Gap
Asparate Aminotransferase (AST)

Base Excess
Basophils

Bicarbonate
Bilirubin, Total
Calcium, Total

Calculated Total CO2
Chloride

Creatinine
Eosinophils

Epithelial Cells
Hematocrit

INR(PT)
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Potassium, Whole Blood
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Figure 25: Missingness over time for labevents features in MIMIC-IV dataset after cohort selection. The
darker the color, the larger the proportion of missing data.
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2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
Time (year)

Admission Weight (lbs.)
Height

Height (cm)
O2 Delivery Device(s)

Anion gap
Pupil Response R

NBP Alarm Source
Pupil Response L

History of falling (within 3 mnths)*
Secondary diagnosis

Ambulatory aid
IV/Saline lock

Gait/Transferring
Mental status

18 Gauge Dressing Occlusive
20 Gauge Dressing Occlusive

Potassium (serum)
HCO3 (serum)

Albumin
Platelet Count

PT
PTT
INR

Tobacco Use History
Side Rails

All Medications Tolerated
Safety Measures

Richmond-RAS Scale
20 Gauge placed in the field

Insulin pump
Daily Wake Up

Goal Richmond-RAS Scale
ST Segment Monitoring On

Delirium assessment
Bath

Commands Response
Commands

Strength L Arm
Strength L Leg
Strength R Leg
Strength R Arm

Speech
Home TF

Pressure Ulcer Present
Assistance

Education Readiness/Motivation
Education Existing Knowledge

CAM-ICU MS Change
Orientation

Pain Assessment Method
Therapeutic Bed

Respiratory Pattern
Respiratory Effort

Activity
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Figure 26: Missingness over time for chartevents features in MIMIC-IV dataset after cohort selection. The
darker the color, the larger the proportion of missing data. (part 1)
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2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
Time (year)

Family Communication
Skin Integrity

Skin Temp
Skin Color

Edema Location
Braden Sensory Perception

Braden Moisture
Braden Activity

Braden Mobility
Braden Nutrition

Braden Friction/Shear
Education Learner

Education Topic
Education Barrier
Education Method

Education Response
HOB
Turn

Activity Tolerance
Pressure Reducing Device

Anti Embolic Device
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Resp Alarm - High
Resp Alarm - Low

Parameters Checked
Capillary Refill L

Pain Level Response
Alarms On
Temp Site

Ectopy Type 1
Pupil Size Left

RUE Temp
LUE Temp
RLE Temp
LLE Temp

Skin Condition
Edema Amount

Nares L
Anti Embolic Device Status

Living situation
Visual / hearing deficit

Self ADL
History of slips / falls

Balance
Judgement

Intravenous  / IV access prior to admission
ETOH

Currently experiencing pain
Difficulty swallowing

Dialysis patient
BUN

Calcium non-ionized
Glucose FS (range 70 -100)
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Figure 27: Missingness over time for chartevents features in MIMIC-IV dataset after cohort selection. The
darker the color, the larger the proportion of missing data. (part 2)
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Secondary diagnosis
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PTT
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Insulin pump
Daily Wake Up

Goal Richmond-RAS Scale
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Bath
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Strength R Leg
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Figure 28: Missingness over time for chartevents features in MIMIC-IV dataset after cohort selection. The
darker the color, the larger the proportion of missing data. (part 3)
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Appendix G. Additional OPTN (Liver) Data Details

The Organ Procurement and Transplantation Network (OPTN) database Organ Procurement and Trans-
plantation Network (2020) tracks organ donation and transplant events in the U.S. Our study uses data from
candidates on the liver transplant wait list. The performance over time is evaluated on a yearly basis.

• First, we provide the disclaimer: “The data reported here have been supplied by the United Network
for Organ Sharing as the contractor for the Organ Procurement and transplantation Network. The
interpretation and reporting of these data are the responsibility of the author(s) and in no way should
be seen as an official policy of or interpretation by the OPTN or the U.S. Government”.

• Data access: After signing the Data Use Agreement - I from Organ Procedurement And Transplantation
network, users can access the OPTN (Liver) dataset.

• Cohort selection: The cohort consists of liver transplant candidates on the waiting list (2005-2017). We
follow the same pipeline as Byrd et al. (2021) to extract the data, except that we select the first record
for each patient. Cohort selection diagrams are given in Figures 29. This corresponds to a particular
interpretation of the prediction: when a patient is first added to the transplant list, given what we know
about that patient, what is their estimated risk of 180-day mortality?

• Outcome definition: 180-day mortality from when the patient was first added to the list

• Cohort characteristics: Cohort characteristics are given in Table 9.

• Features: We list the features used in the OPTN liver dataset in Section G.2. We convert all categorical
variables into dummy features, and apply standard scaling to numerical variables (subtract mean and
divide by standard deviation).

• Missingness heat maps: are given in Figures 30 and 31.
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G.1. Cohort Selection and Cohort Characteristics

Total entries in 
initial OPTN liver dataset

(n=1,993,706)

Exclude (n=1,841,194) entries to select the first entry 
for each WL_ID_CODE (earliest visit for each patient)

Included (n=152,512)

OPTN (Liver) Cohort 
(n=143,709)

Exclude (n=8,803) entries 
with visits outside of 2005 – 2017

Figure 29: Cohort selection diagram - OPTN (Liver)

Table 9: OPTN (Liver) cohort characteristics, with count (%) or median (Q1 – Q3).

Feature name (value) Empty (ratio) Type

Gender
Male 92,560 (64.4%) – categorical
Female 51,149 (35.6%) – categorical

INIT AGE 56 (49-62) 0.0% continuous
FUNC STAT TCR 2,070 (2,050-2,080) 0.0% categorical
INIT OPO CTR CODE 11,036 (3,782-19,282) 0.0% categorical
ALBUMIN 3 (3-4) 0.0% continuous
HCC DIAGNOSIS TCR

No 31,390 (21.8%) – categorical
Yes 11,312 (7.9%) – categorical
Missing 101,007 (70.3%) – categorical

PERM STATE
CA 19,645 (13.7%) – categorical
TX 14,692 (10.2%) – categorical
NY 9,976 (6.9%) – categorical
GA 4,052 (2.8%) – categorical
MD 4,050 (2.8%) – categorical
FL 7,602 (5.3%) – categorical
PA 8,013 (5.6%) – categorical
MI 3,989 (2.8%) – categorical
Other 71,007 (49.4%) – categorical

EDUCATION 4 (3-5) 0.0% categorical
ASCITES 2 (1-2) 0.0% categorical
MORTALITY 180D

1 4,635 (3.2%) – categorical
0 139,074 (96.8%) – categorical
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G.2. Features

ABO

BACT_PERIT_TCR
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G.3. Missingness heatmaps
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Figure 30: Missingness over time for categorical features in OPTN (Liver) dataset after cohort selection.
The darker the color, the larger the proportion of missing data.
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Figure 31: Missingness over time for numerical features in OPTN (Liver) dataset after cohort selection. The
darker the color, the larger the proportion of missing data. (Near-zero missingness here.)
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Appendix H. Additional MIMIC-CXR Data Details

The MIMIC Chest X-ray (MIMIC-CXR-JPG) (Johnson et al., 2019b) is a publicly available dataset con-
taining chest radiographs in JPG format from 2009–2018. Similar to MIMIC-IV, MIMIC-CXR add time
annotations placing each sample into a three-year time range. We approximate the year of each sample by tak-
ing the midpoint of its time range. Each patient has an anchor_year_group, anchor_year and StudyDate.
For each patient, we first calculated an offset as the difference between StudyDate and anchor_year. Then,
we approximated the admit time as the midpoint of anchor_year_group after applying the computed off-
set. The performance over time is evaluated on a yearly basis. Our study uses MIMIC-IV-JPG-2.0. A
similar training setup to that in Seyyed-Kalantari et al. (2020) was used (learning rate, architecture, data
augmentation, stopping criteria, etc.).

• Data access: Users must create a Physionet account, become credentialed, and sign a data use agreement
(DUA).

• Cohort selection: We removed the records from 2009 due to the tiny sample size. (Selection diagram in
Figure 32). We keep all records for each patients and split the data based on patient subject id.

• Outcome definition: The outcome is the probabilities of all labels given the input images. The la-
bels includes 13 abnormal outcomes and 1 normal outcome. (Atelectasis, Cardiomegaly, Consolidation,
Edema, Enlarged Cardiomediastinum, Fracture, Lung Lesion, Lung Opacity, Pleural Effusion, Pneumo-
nia, Pneumothorax, Pleural Other, Support Devices, No Finding)

• Cohort characteristics: Cohort characteristics are given in Table 10.

H.1. Cohort Selection and Cohort Characteristics

Total entries in 
initial MIMIC-CXR dataset

(n=376,206)

MIMIC-CXR Cohort 
(n=376,204)

Exclude (n=2) entries 
with visits outside of 2010 – 2018

Figure 32: Cohort selection diagram - MIMIC-CXR
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Table 10: MIMIC-CXR cohort characteristics, with count (%) or median (Q1–Q3).

Feature name (value) Summary statistic Empty (ratio) Status

Gender
F 179,765 (47.8%) – categorical
M 196,439 (52.2%) – categorical

Age 64 (51-76) 0.0% continuous
Diseases

Atelectasis 65,390 (17.4%) – categorical
Cardiomegaly 56,404 (15.0%) – categorical
Consolidation 14,394 (3.8%) – categorical
Edema 36,026 (9.6%) – categorical
Enlarged Cardiomediastinum 9,821 (2.6%) – categorical
Fracture 6,314 (1.7%) – categorical
Lung Lesion 10,574 (2.8%) – categorical
Lung Opacity 76,074 (20.2%) – categorical
Pleural Effusion 75,526 (20.1%) – categorical
Pleural Other 3,432 (0.9%) – categorical
Pneumonia 25,065 (6.7%) – categorical
Pneumothorax 12,828 (3.4%) – categorical
Support Devices 69,148 (18.4%) – categorical
No Finding 167,116 (44.4%) – categorical
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H.2. Label level AUROC over time for MIMIC-CXR
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Figure 33: Absolute AUROC over time of each label in MIMIC-CXR
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Figure 34: Weighted test AUROC vs. year for the DenseNet architecture on MIMIC-CXR.

Table 11: MIMIC-CXR label-level AUROC from time-agnostic evaluation of all-period training. The format
is mean (±std. dev. across splits)

Label AUROC Label AUROC

Atelectasis 0.826 (±0.003) Cardiomegaly 0.837 (±0.002)
Consolidation 0.841 (±0.003) Edema 0.904 (±0.002)

Enlarged Cardiomediastinum 0.759 (±0.005) Fracture 0.745 (±0.006)
Lung Lesion 0.784 (±0.003) Lung Opacity 0.770 (±0.002)

Pleural Effusion 0.929 (±0.001) Pleural Other 0.844 (±0.009)
Pneumonia 0.755 (±0.004) Pneumothorax 0.918 (±0.006)

Support Devices 0.928 (±0.001) No Finding 0.876 (±0.002)
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Appendix I. Logistic Regression Coefficients from Splitting by Patient

To help with intuition in important features for the predictive task on each dataset, here we have the
coefficients of logistic regression models trained from splitting by patient.

Table 12: SEER (Breast) top 10 important features for LR models, all-period training.

Feature Coefficient

SEER historic stage A (1973-2015) Distant -2.113944
SEER historic stage A (1973-2015) Localized 1.676493
Regional nodes examined (1988+) 95.0 -1.167844
CS lymph nodes (2004-2015) 750 1.100824
CS lymph nodes (2004-2015) 755 1.023753
Histologic Type ICD-O-3 8530 -0.913494
Histologic Type ICD-O-3 8543 0.902798
Breast - Adjusted AJCC 6th T (1988-2015) T4d 0.899491
Histologic Type ICD-O-3 8211 0.877848
EOD 10 - extent (1988-2003) 85 -0.791136

Table 13: SEER (Colon) top 10 important features for LR models, all-period training.

Feature Coefficient

Reason no cancer-directed surgery Surgery performed 2.360161
Regional nodes positive (1988+) 00 1.897706
Regional nodes positive (1988+) 01 1.872008
modified AJCC stage 3rd (1988-2003) 40 -1.787481
EOD 10 - extent (1988-2003) 13 1.766066
Reason no cancer-directed surgery Not recommended, -1.752474
contraindicated due to other cond; autopsy only (1973-2002)
EOD 10 - extent (1988-2003) 85 -1.732619
EOD 10 - extent (1988-2003) 70 -1.704333
CS mets at dx (2004-2015) 99 1.619905
CS mets at dx (2004-2015) 00 1.609454
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Table 14: SEER (Lung) top 10 important features for LR models, all-period training.

Feature Coefficient

Histologic Type ICD-O-3 8240 2.514539
EOD 4 - nodes (1983-1987) 0 2.074730
EOD 4 - nodes (1983-1987) 7 -1.777530
EOD 10 - size (1988-2003) 140 -1.587893
Histologic Type ICD-O-3 8141 -1.546566
CS tumor size (2004-2015) 998.0 -1.515856
EOD 4 - nodes (1983-1987) 6 -1.497022
Type of Reporting Source Nursing/convalescent home/hospice -1.338998
CS mets at dx (2004-2015) 51 -1.326595
EOD 10 - size (1988-2003) 150 -1.326196

Table 15: CDC COVID-19 top 10 important features for LR models, all-period training.

Feature Coefficient

res state DE 2.202055
age group 0 - 9 Years -2.114818
age group 80+ Years 1.965279
age group 10 - 19 Years -1.681099
res state GA 1.391469
age group 70 - 79 Years 1.379589
res county WICHITA 1.290644
age group 20 - 29 Years -1.189734
res county SUMNER -1.135073
mechvent yn Yes 1.117372

Table 16: SWPA COVID-19 top 10 important features for LR models according to experiments splitting by
patient.

Feature Coefficient

age bin (70, 200] 0 -0.781337
age bin (70, 200] 1 0.780673
medication FENTANYL (PF) 50 MCG/ML INJECTION SOLUTION 0.0 0.651419
medication EPINEPHRINE 0.3 MG/0.3 ML INJECTION, AUTO-INJECTOR nan -0.627565
medication HYDROCORTISONE SOD SUCCINATE (PF) 100 MG/2 ML SOLUTION FOR INJECTION 0.0 0.544222
medication HYDROCODONE 5 MG-ACETAMINOPHEN 325 MG TABLET nan -0.520368
medication DEXAMETHASONE SODIUM PHOSPHATE 4 MG/ML INJECTION SOLUTION 0.0 0.502954
medication ASPIRIN 81 MG TABLET,DELAYED RELEASE nan -0.479100
bmi nan -0.427569
age bin (60, 70] 0 -0.380688
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Table 17: MIMIC-IV top 10 important features for LR models, all-period training.

Feature Coefficient

O2 Delivery Device(s) None -0.307334
Eye Opening None 0.301737
admit age 0.299712
O2 Delivery Device(s) Nasal cannula -0.248463
Motor Response Obeys Commands -0.230931
Pupil Response L Non-reactive 0.223776
Richmond-RAS Scale 0 Alert and calm -0.205476
Temp Site Blood -0.204514
HR 0.0 0.197299
Diet Type NPO 0.195156

Table 18: OPTN (Liver) top 10 important features for LR models, all-period training.

Feature Coefficient

SERUM CREAT DELTA 0.660589
FUNC STAT TCR 2020.0 0.241507
FUNC STAT TCR 2080.0 -0.236288
DGNC 4110.0 -0.234680
REGION 5.0 0.223940
EDUCATION 998.0 0.218549
ASCITES 3.0 0.218329
ASCITES 1.0 -0.214076
INIT OPO CTR CODE 1054 -0.209265
INIT OPO CTR CODE 4743 -0.207778
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Appendix J. Diagnostic plots

We took the union of the top k most important features from each time point to be included in the diagnostic
plots, where k was tuned depending on the dataset so that the resulting plots would not be overcrowded.
For categorical features, we additionally highlighted (using a thicker line) features that had consistently high
prevalence (≥ p) or experienced a large change in prevalence across one time point (≥ ∆). The specific
parameters of each dataset are defined in each subsection. For numerical features, we highlighted features
whose average ranking across all time points was ≤ 3 (also chosen to avoid overcrowding).

J.1. SEER (Breast)

For SEER (Breast) diagnostic plots, important features were selected using k = 5, p = 0.4,∆ = 0.2.
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Figure 35: Diagnostic plot of SEER (Breast) dataset. The important features are selected as the union of the
top 5 features that have the highest absolute value model coefficients. The left column includes
AUROC versus time for both sliding window and all-historical subsampled, and the maximum
AUROC drop for each trained model. The right column provides the absolute coefficients of each
trained model from both regimes, and positive proportion of the significant features over time.
As shown in the gray highlighted region, there are jumps in performance around 1988 and 2003,
which coincides with the introducing and removal of several features (e.g. T value - based on
AJCC 3rd (1988-2003) T1). The latency of jumps in coefficients are caused by length of sliding
window.
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J.2. SEER (Colon)

For SEER (Colon) diagnostic plots, important features were selected using k = 3, p = 0.4,∆ = 0.2.
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Figure 36: Diagnostic plot of SEER (Colon) dataset. The important features are selected as the union of
the top 3 features that have the highest absolute model coefficients. The left column includes
AUROC versus time for both sliding window and all-historical subsampled, and the maximum
AUROC drop for each trained model. The right column provides the absolute coefficients of each
trained model from both regimes, and positive proportion of the significant features over time.
As shown in the gray highlighted region, there are jumps in performance around 1988 and 2003,
which coincides with the introducing and removal of several features (e.g. SEER modified AJCC
stage 3rd (1988-2003) 40). The latency of jumps in coefficients are caused by length of sliding
window.
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J.3. SEER (Lung)

For SEER (Lung) diagnostic plots, important features were selected using k = 5, p = 0.2,∆ = 0.2.

0.7

0.8

0.9

1.0

AU
R

O
C

0

1

2

3

4

|c
oe

ff
ic

ie
nt

|

0.7

0.8

0.9

1.0

AU
R

O
C

0

1

2

3

4

|c
oe

ff
ic

ie
nt

|

1980 1990 2000 2010
Time (year)

0.15

0.10

0.05

0.00

0.05

M
ax

 A
U

R
O

C
 d

ro
p

All-historical subsampled
Sliding window

1980 1990 2000 2010
Time (year)

0.0

0.2

0.4

0.6

0.8

1.0

Po
si

tiv
e 

pr
op

.

1978 2012

Sl
id

in
g 

w
in

do
w

A
ll-

hi
st

or
ic

al
 s

ub
sa

m
pl

ed

Sim. deploy. date

Histologic Type ICD-O-3_8140
Histology recode - broad groupings_8010-8049: epithelial neoplasms, NOS
Histology recode - broad groupings_8140-8389: adenomas and adenocarcinomas
EOD 4 - nodes (1983-1987)_0
EOD 10 - nodes (1988-2003)_0
EOD 10 - extent (1988-2003)_85

SEER historic stage A (1973-2015)_Distant
CS tumor size (2004-2015)_999.0
CS version input current (2004-2015)_020550
CS lymph nodes (2004-2015)_000
CS mets at dx (2004-2015)_00
Jump in model performance

Figure 37: Diagnostic plot of SEER (Lung) dataset. The important features are selected as the union of
the top 5 features that have the highest absolute model coefficients. The left column includes
AUROC versus time for both sliding window and all-historical subsampled, and the maximum
AUROC drop for each trained model. The right column provides the absolute coefficients of each
trained model from both regimes, and positive proportion of the significant features over time.
As shown in the gray highlighted region, there are jumps in performance around 1988 and 2003,
which coincides with the introducing and removal of several features (e.g. EOD 10 - nodes (1988-
2013) 0 & EOD 10 - extent (1988-2003) 85). The latency of jumps in coefficients are caused by
length of sliding window.
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J.4. CDC COVID-19

For CDC COVID-19 diagnostic plots, important features were selected using k = 5, p = 0.15,∆ = 0.15.
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Figure 38: Diagnostic plot of CDC COVID-19. The important features are selected as the union of the top
5 features that have the highest absolute model coefficients. The left column includes AUROC
versus time for both sliding window and all-historical subsampled, and the maximum AUROC
drop for each trained model. The right column provides the absolute coefficients of each trained
model from both regimes, and positive proportion of the significant features over time. As shown
in the gray highlighted region, the models trained around June 2021 suffer the largest maximum
AUROC drop, coinciding with a shift in distribution of ages (Figure 18(a)) and states (Figure
18(b)). The latency of jumps in coefficients are caused by length of sliding window.
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J.5. SWPA COVID-19

For SWPA COVID-19 diagnostic plots, important features were selected using k = 3, p = 0.4,∆ = 0.2.
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Figure 39: Diagnostic plot of SWPA COVID-19. The important features are selected as the union of the top
3 features that have the highest absolute model coefficients. The left column includes AUROC
versus time for both sliding window and all-historical subsampled, and the maximum AUROC
drop for each trained model. The right column provides the absolute coefficients of each trained
model from both regimes, and positive proportion of the significant features over time. One of
the hypotheses for relatively large uncertainty is smaller sample size.
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J.6. MIMIC-IV

For MIMIC-IV diagnostic plots, important features were selected using k = 3, p = 0.4,∆ = 0.2.
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Figure 40: Diagnostic plot of MIMIC-IV. The important features are selected as the union of the top 3
features that have the highest absolute model coefficients. The left column includes AUROC
versus time for both sliding window and all-historical subsampled, and the maximum AUROC
drop for each trained model. The right column provides the absolute coefficients of each trained
model from both regimes, and positive proportion of the significant features over time. The model
performance is relatively stable, coinciding with relatively stable distributions of a majority of
important features.
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J.7. OPTN (Liver)

For OPTN (Liver) diagnostic plots, important features were selected using k = 3, p = 0.4,∆ = 0.2.
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Figure 41: Diagnostic plot of OPTN (Liver). The important features are selected as the union of the top
3 features that have the highest absolute model coefficients. The left column includes AUROC
versus time for both sliding window and all-historical subsampled, and the maximum AUROC
drop for each trained model. The right column provides the absolute coefficients of each trained
model from both regimes, and positive proportion of the significant features over time. Although
the HCC DIAGNOSIS TCR binary features change in positive proportion over time, these features
were not always important, and the other important features (faded) maintain relatively stable
proportions across time. Overall, model performance is quite stable over time.
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J.8. MIMIC-CXR
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Figure 42: Diagnostic plot of MIMIC-CXR. The top and mid left includes AUROC versus time for both
sliding window and all-historical subsampled. The top right is the maximum AUROC drop for
each trained model. The mid-right provides the label proportions over time. The bottom shows
pixel intensities for images in each year. The histogram of pixel intensity is stable over time,
which is consistent with the small variation in model performance over time
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Appendix K. Model performance over time from three models

K.1. AUROC

All plots in this section are for the all-historical training regime.
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Figure 43: AUROC versus test timepoints from three model classes on all datasets.
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K.2. AUPRC

All plots in this section are for the all-historical training regime.
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Figure 44: AUPRC versus test timepoints from three model classes on all datasets. Label prevalance refers
to the ratio of accumulated positive labels over time.
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Appendix L. Data Split Details

Table 19: Split ratio for each dataset for training, validation and testing (both for time-agnostic splits and
in-period splits).

Dataset Split ratio

SEER (Breast) 0.8-0.1-0.1
SEER (Colon) 0.8-0.1-0.1
SEER (Lung) 0.8-0.1-0.1
CDC COVID-19 0.8-0.1-0.1
SWPA COVID-19 0.5-0.25-0.25
MIMIC-IV 0.5-0.25-0.25
OPTN (Liver) 0.5-0.25-0.25
MIMIC-CXR 0.5-0.25-0.25

Appendix M. Hyperparameter Grids

Table 20: Hyperparameter grids for model training.

Parameter Values Considered

LR
C 0.01, 0.1, 1, 10, 102, 103, 104, 105

GBDT
n estimators 50, 100
max depth 3, 5
learning rate 0.01, 0.1

MLP
hidden layer sizes 3, 5
learning rate init 10−4, 10−3, 0.01
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Appendix N. AUROC from full-period training

Table 21: AUROC report from full-period training, the results are in format mean (±std. dev. across splits)

Dataset Model Full-period AUROC

LR 0.888 (±0.002)
SEER (Breast) GBDT 0.891 (±0.002)

MLP 0.891 (±0.002)

LR 0.863 (±0.003)
SEER (Colon) GBDT 0.868 (±0.002)

MLP 0.869 (±0.003)

LR 0.894 (±0.002)
SEER (Lung) GBDT 0.894 (±0.002)

MLP 0.898 (±0.002)

LR 0.837 (±0.001)
CDC COVID-19 GBDT 0.851 (±0.001)

MLP 0.852 (±0.002)

LR 0.928 (±0.005)
SWPA COVID-19 GBDT 0.930 (±0.004)

MLP 0.928 (±0.006)

LR 0.935 (±0.003)
MIMIC-IV GBDT 0.931 (±0.002)

MLP 0.898 (±0.008)

LR 0.846 (±0.005)
OPTN (Liver) GBDT 0.854 (±0.005)

MLP 0.847 (±0.006)

MIMIC-CXR DenseNet 0.860 (±0.001)

564


	Introduction
	Related work
	Data
	SEER Cancer Data
	National CDC COVID-19 Data
	SWPA COVID-19 Data
	MIMIC-IV Critical Care Data
	OPTN Liver Transplant Data
	MIMIC-CXR

	Methods
	All-period Training
	EMDOT Evaluation
	Evaluation Metrics
	Models
	Detecting Sources of Change
	EMDOT Python Package

	Results
	All-period Training
	EMDOT Evaluation
	Training Regime Comparison
	Model Comparison
	Detecting Possible Sources of Change

	Discussion
	Snapshot into the State of ML4H Model Evaluation
	EMDOT Python Package
	Additional SEER Data Details
	Cohort Selection and Cohort Characteristics
	Features
	Missingness heatmaps

	Additional CDC COVID-19 Data Details
	Cohort Selection and Cohort Characteristics
	Features
	Missingness heatmaps
	Additional Figures

	Additional SWPA COVID-19 Data Details
	Cohort Selection and Cohort Characteristics
	Features
	Missingness heatmaps

	Additional MIMIC-IV Data Details
	Cohort Selection and Cohort Characteristics
	Features
	Missingness heatmaps

	Additional OPTN (Liver) Data Details
	Cohort Selection and Cohort Characteristics
	Features
	Missingness heatmaps

	Additional MIMIC-CXR Data Details
	Cohort Selection and Cohort Characteristics
	Label level AUROC over time for MIMIC-CXR

	Logistic Regression Coefficients from Splitting by Patient
	Diagnostic plots
	SEER (Breast)
	SEER (Colon)
	SEER (Lung)
	CDC COVID-19
	SWPA COVID-19
	MIMIC-IV
	OPTN (Liver)
	MIMIC-CXR

	Model performance over time from three models
	AUROC
	AUPRC

	Data Split Details
	Hyperparameter Grids
	AUROC from full-period training

