
JMLR: Workshop and Conference Proceedings 21:84–96, 2012 The 11th ICGI

Beyond Semilinearity: Distributional Learning of Parallel
Multiple Context-free Grammars

Alexander Clark alexc@cs.rhul.ac.uk
Department of Computer Science Royal Holloway, University of London

Ryo Yoshinaka ry@i.kyoto-u.ac.jp

Graduate School of Informatics, Kyoto University

Editors: Jeffrey Heinz, Colin de la Higuera and Tim Oates

Abstract

Semilinearity is widely held to be a linguistic invariant but, controversially, some linguistic
phenomena in languages like Old Georgian and Yoruba seem to violate this constraint. In
this paper we extend distributional learning to the class of parallel multiple context-free
grammars, a class which as far as is known includes all attested natural languages, even
taking an extreme view on these examples. These grammars may have a copying operation
that can recursively copy constituents, allowing them to generate non-semilinear languages.
We generalise the notion of a context to a class of functions that include copying operations.
The congruential approach is ineffective at this level of the hierarchy; accordingly we extend
this using dual approaches, defining nonterminals using sets of these generalised contexts.
As a corollary we also extend the multiple context free grammars using the lattice based
approaches.

1. Introduction and Motivation

There are two fundamental language theoretic boundaries that are closely related: the first
is the boundary between regular languages and non-regular languages, the second is be-
tween semilinear languages and non-semilinear languages. Semilinear languages are, roughly
speaking, those where the lengths of the strings in the language are linear combinations of
a finite set of fixed lengths.1 Joshi et al. (1991) say that semilinearity:

is intended to be an approximate characterization of the linguistic intuition
that sentences of a natural language are built from a finite set of clauses of
bounded structures using certain simple linear operations.

These two boundaries are clearly related because of the following theorem: a language
is semilinear iff it is letter equivalent to a regular language. Clearly the class of semilinear
languages is not directly useful as it is uncountable and thus contains undecidable languages,
but it serves to help demarcate the class(es) of mildly context-sensitive (mcs) languages.
All standardly used grammatical formalisms are semilinear – regular grammars, context-free
grammars, multiple context-free grammars, tree adjoining grammars and so on all define
subsets of the class of semilinear languages. Examples of non-semilinear languages include

1. See Michaelis and Kracht (1997) for a precise definition.

c© 2012 A. Clark & R. Yoshinaka.

Beyond Semilinearity

{ a2n | n > 0 } and { an2 | n > 0 }, which can be parsed in linear time, yet cannot be
expressed by mcs formalisms. Formalisms that can define non-semilinear languages include
range concatenation grammars and the representation we will use in this paper, parallel
multiple context-free grammars (pmcfgs), that we define in Section 2.

Recent work in grammatical inference has made significant progress in learning semilin-
ear, non-regular languages using representations such as context-free grammars (Clark and
Eyraud, 2007) and multiple context-free grammars (Yoshinaka, 2011b). Crucially, these rep-
resentations just use concatenation – substrings are combined, but never copied. The richer
operations used by mcfgs are just generalisations of concatenation to tuples of strings.

There is a broad consensus that natural language string sets are semilinear, and so
attention has focused largely on properties of formalisms that generate semilinear languages.
However there are a number of cases where linguistic data suggest that there are richer
processes involved, processes that either require or might benefit from a more powerful
formalism. These data, which we examine in detail in Section 3, are still controversial.
However, regardless of what the final determinations on these examples are, it is still useful
to have richer learning algorithms available since even if these formalisms are not strictly
speaking necessary, the additional descriptive power that they give us may allow for a more
compact and succinct grammar than we could obtain with a semilinear formalism.

In this paper we extend distributional learning to the inference of non-semilinear lan-
guages; the major technical detail is the extension of the notion of context. We give an
intuitive explanation of this in Section 4, and present the technical details of the learning
target and algorithm together with the proof of its correctness in Section 5.

2. Preliminaries

The sets of non-negative and strictly positive integers are denoted by N and N+, respectively.
A sequence over an alphabet Σ is called a word. The empty word is denoted by λ. Σ∗ denotes
the set of all words and Σ+ = Σ∗ − {λ}. Any subset of Σ∗ is called a language (over Σ).
An m-word is an m-tuple of words and we denote the set of m-words by Sm. Any m-word
is a multiword. Similarly we define S≤m =

⋃
i≤m Si and S∗ =

⋃
i∈N Si.

We fix a countably infinite set X of variables x1, x2, We use y, y′, yi etc. as meta
variables for variables in X. A pattern is a string over Σ∪X. For a pattern π, we denote by
Xπ the set of variables that occur in π. An m-pattern π is a pattern such that |Xπ| = m.
Hence a 0-pattern is a synonym of a word. A pattern is said to be n-copying if each variable
occurs at most n times in it. An m-context is an m-pattern π such that Xπ = {x1, . . . , xm}.
We denote the set of m-contexts by Cm and that of n-copying m-contexts by Cm,n. Note that
every element of Cm,n contains exactly m variables, each of which occurs at most n times.
In preceding papers on distributional learning algorithms (e.g. Clark and Eyraud (2007)),
a context is defined to be a pair (l, r) of words. Those correspond to lx1r in our notation
and particularly the empty context (λ, λ) is denoted by x1 in this paper. One can see an m-
context as a function that takes an m-word as an argument and returns a word formed from
the components of the m-word and other words attached to the m-context. For example,
from a 2-context ax1bx2x1 and a 2-word (c, d), one will get a word acbdc. We formally define
the composition of anm-context and anm-word through a substitution. A substitution θ is a
finite partial function fromX to Σ∗, which is extended to the homomorphism θ̂ from (Σ∪X)∗

85

Clark Yoshinaka

to (Σ ∪X)∗ such that θ̂(y) = θ(y) if y is in the domain of θ, and θ̂(y) = y otherwise. We
identify θ̂ and θ if no confusion arises. A substitution θ is often denoted as a suffix operator
[y1 7→ θ(y1), . . . , yk 7→ θ(yk)] where {y1, . . . , yk} is the domain of θ. Particularly when the
domain is {x1, . . . , xk}, it is denoted by [θ(x1), . . . , θ(xk)] or [θ(x1, . . . , xk)] omitting the
domain. E.g., ax1bx2x1[c, d] = acbdc. We naturally adapt those notations to tuples. For
a tuple of variables y = (y1, . . . , yk) and a multiword v = (v1, . . . , vk), θ(y) = v means
that θ(yi) = vi for each i = 1, . . . , k, which is also denoted by [y 7→ v]. Particularly
when y = (x1, . . . , xk), it is simply denoted as [v]. (The homomorphic extension of) a
substitution operation is naturally generalized for sets C ⊆ Ck and Ki ⊆ Σ∗ for i = 1, . . . , k
as C[K1, . . . ,Kk] = {w[v1, . . . , vk] | w ∈ C, vi ∈ Ki for i = 1, . . . , k }.

In what follows, we will consider a fixed language L and we denote the set of m-words
that every r-copying m-context in a set C ⊆ Cm,r accepts with respect to a language L ⊆ Σ∗

by
C† = {v ∈ Sm | π[v] ∈ L for all π ∈ C }.

By definition, C[K] ⊆ L iff K ⊆ C†. Note that if C = {x1} then C† = L. For a language
L ⊆ Σ∗, we let

Sub≤p(L) = {v ∈ Sm | π[v] ∈ L for some π ∈ Cm,1 with m ≤ p },
Con≤p,r(L) = {π ∈ Cm,r | π[v] ∈ L for some v ∈ Sm with m ≤ p }.

Note that Con≤0,r(L) = L and that replacing Cm,1 in the definition of Sub≤p(L) by Cm gives
an equivalent definition.

2.1. Parallel multiple context-free grammars

A ranked alphabet is a pair 〈N, dim〉 of an alphabet N and a function dim : N → N+. The
number dim(A) is called the dimension of A. We often simply express a ranked alphabet
〈N, dim〉 by N if no confusion arises. By Nd we denote the subset of N whose elements
have dimension d.

Seki et al. (1991) introduced parallel multiple context-free grammars (pmcfgs) as a
generalization of context-free grammars. The formalism is essentially equivalent to linear
context-free rewriting systems (Vijay-Shanker et al., 1987). A pmcfg is a tuple G =
〈Σ, Ndim, S, P 〉 where Σ is an alphabet whose letters are called terminals, Ndim is a ranked
alphabet whose elements are called nonterminals, S ∈ N is a special symbol of dimension
1, and P is a set of production rules.

Production rules in P have the following form:2

B0(π1, . . . , πd0) :−B1(y1,1, . . . , y1,d1), . . . , Bk(yk,1, . . . , yk,dk)

where B0, B1, . . . , Bk ∈ N for some k ≥ 0, di = dim(Bi) for each i ∈ {0, . . . , k}, variables
y1,1, . . . , yk,dk are distinct, and each πj for j = 1, . . . , d0 is a pattern such that⋃

1≤j≤d0

Xπj = { yi,j | 1 ≤ i ≤ k, 1 ≤ j ≤ di } .

2. The notation adopted in this paper follows Smullyan’s elementary formal systems (1961) rather than
Seki et al. (1991). We only consider non-deleting productions in this paper.

86

Beyond Semilinearity

If k = 0 then the right-hand side is empty, and the production is of the form B(v):− where
v ∈ Sdim(B). We say that a rule is r-copying if the concatenation of the patterns on its
left-hand side is r-copying, that is, no variables occur more than r times on the left-hand
side.

Example 1 A tuple G1 = 〈{a}, Ndim, S, P 〉 where Ndim = N1 = {S} and P consists of the
two rules

S(x1x1) :− S(x1); S(a) :−

is a pmcfg.
A tuple G2 = 〈{a}, Ndim, S, P 〉 where Ndim = {S,A} with N1 = {S} and N2 = {A} and

P consists of the three rules

S(x1x2a) :−A(x1, x2); A(x1x2a, x2aa) :−A(x1, x2); A(λ, λ) :−

is a pmcfg.

The derivation process of a pmcfg is given as follows. We write `G A(v) if A(v) :− is
a rule in P . If we have `G Bi(vi) for all i = 1, . . . , k and P has a rule B0(π1, . . . , πd0) :−
B1(y1), . . . , Bk(yk), then we deduce

`G B0(θ(π1, . . . , πd0))

where θ(yi) = vi for all i = 1, . . . , k. We will abbreviate this substitution θ as [v1, . . . ,vk].
The language of A is defined by

L(G,A) = {v ∈ Sdim(A) | `G A(v) } .

The language of G is L(G) = L(G,S).
For the grammar G1 in Example 1, clearly we have `G1 S(a2

n
) for all n ∈ N and in fact

L(G1) = { a2n | n ∈ N }. For the grammar G2 in Example 1, it is easy to see that we have
`G2 A(an

2
, a2n) for all n ∈ N and in fact L(G2) = { an2 | n ∈ N+ }. See Section 3 for some

more examples together with some derivation trees.
We denote by G(p, q, r) the class of pmcfgs such that the dimension of every nonterminal

is at most p and every production rule has at most q nonterminals on the right-hand side and
is r-copying. For the grammars in Example 1, we have G1 ∈ G(1, 1, 2) and G2 ∈ G(2, 1, 2).

Theorem 1 (Seki et al. (1991)) The uniform membership problem for G(p, q, r) is solv-
able in polynomial time whose degree is linear in pq.

3. Linguistic Examples

While semilinearity is generally considered to be a property that holds for all natural lan-
guages, there is an increasing amount of evidence that there are some phenomena that take
natural languages out of the class of semilinear languages. None of the arguments here
are as conclusive as Shieber’s argument that natural languages are not weakly context-free
(Shieber, 1985) but are nonetheless suggestive. In what follows we will describe fragments of
languages that are not semilinear and will provide toy pmcfgs for these fragments. Figure 1

87

Clark Yoshinaka

S(nngnggv)

N(nngn, gg)

N(nn, g)

N(n, λ)

S(abbbaba)

N(bbb, aba)

N(bb, aba)

N(b, a)

S(vnvnntnrntnrvnntnrnvf)

VP(vf)NP(vnvnntnrntnrvnntnrn)

NP(n)NP(vnntnrn)

NP(n)NP(n)

Figure 1: Derivation trees for these examples. On the left, Old Georgian; middle Chinese
numbers; on the right Yoruba.

shows an example derivation tree for each of the three examples here. Another important
area where (non-recursive) copying operations may occur is in morphology and phonology.
For reasons of space we cannot discuss these here; see Inkelas and Zoll (2005) for a wide
range of examples of reduplication in many languages. Some of these involve copying of
entire stems which can in principle be unbounded in length.

3.1. Suffixaufnahme in Old Georgian

Old Georgian is a now dead language that has a particularly extreme form of suffix stack-
ing (Suffixaufnahme); a phenomenon that is fairly widespread in European languages and
Australian languages such as Dyirbal and Kayardild. The exact status is controversial
(Michaelis and Kracht, 1997; Bhatt and Joshi, 2004); here we assume that the arguments
are valid. For reasons of space we will just describe the string set concerned, rather than
attempt to describe the linguistic data: n can be thought of as a noun, g a genitive suffix
and v a verb. We have a string set over three letters {n, g, v} where the language is:
{nv, nngv, nngnggv, nngnggngggv, . . . }. More formally, defining ui = ngi this is the lan-
guage: {nu1 . . . ukv | k ≥ 0 }. This is not semilinear, since the total number of occurrences
of g will be a quadratic function of the number of ns in the string. We can describe this
string set with the grammar:

S(x1x2v) :−N(x1, x2) ;

N(x1x2n, x2g) :−N(x1, x2) ;

N(n, λ) :− .

3.2. Yoruba

Kobele (2006) argues that Yoruba, a Nigerian language, has a certain type of recursive
copying in relative clauses. Yoruba can form relative clauses by copying entire verb phrases
— the verb phrases can have nouns which can have relative clauses; the end result of
this is a language which under intersection with a suitable regular language, and after
homomorphism gives the language { a2n | n ≥ 0 }. Yoruba has noun phrases of the form

88

Beyond Semilinearity

(Example 4.48 of Kobele (2006)) ‘rira NP ti Ade ra NP’ (the fact that Ade bought NP)
where NP is a noun phrase which must be copied; the two occurrences of NP must be
identical.3

Noun phrases can also be formed into sentences like ‘Ade ra NP’ (Ade bought NP) or
‘NP ko da’ (NP is not good).

We can represent this tiny non-semilinear fragment of Yoruba with the grammar:

S(x1x2) :−NP(x1),VP(x2) ;

NP(n) :− ;

NP(vnx1tx2rx1) :−NP(x1),NP(x2) ;

VP(vf) :− ,

where we write n for nouns like ‘adie.’ (chicken) and proper nouns like ‘Ade’, vn for nonfinite
verbs like ‘rira’ (buying), vf for finite verb phrases, and t, r for ‘ti’ and ‘ra’. We can
verify that this language is not semilinear by counting the number of occurrences of t in
grammatical sentences. Similar phenomena occur widely in West African languages, though
Yoruba has perhaps the most complex system of this type.

3.3. Chinese number names

In Mandarin Chinese, a certain subset of number names can be formed from ‘wu’ (5) and
‘zhao’ (1012). Here we will write a for ‘wu’ and b for ‘zhao’. The wellformed expressions
intersected with a suitable regular language form the language LCN = { abk1abk2 . . . abkna |
k1 > k2 · · · > kn > 0 }. This data is controversial as it is not clear whether the wellformed-
ness of number expressions should form part of the syntax of the language. Here we assume
that it does, in which case the language is not semilinear (Radzinski, 1991). A grammar
for this is:

S(ax1x2) :−N(x1, x2) ;

N(bx1, x2) :−N(x1, x2) ;

N(bx1, ax1x2) :−N(x1, x2) ;

N(λ, λ) :− .

4. Informal Explanation of the Approach

We will now give an informal introduction to the extension of distributional learning to
these formalisms; the basic idea is quite natural but may be obscured by the unavoidable
complexity of the notation.

In distributional learning we typically consider a context (l, r) which we can wrap around
a substring u to give a complete string lur. Consider this context rather as a function f
from a substring to a full sentence. u 7→ lur, which in our notation is represented by what
we call a 1-copying 1-context lx1r, an element of C1,1.

In the derivation of a string wrt a cfg, these functions correspond to the operation
that takes the yield of a nonterminal and integrates into the rest of the sentence: given a

3. There can apparently be slight differences in the NPs which we neglect here.

89

Clark Yoshinaka

S(abbabb)

W (abb)

W (b)W (ab)

W (b)W (a)

S(x1bx1b)

W (x1b)

W (b)W (x1)

Figure 2: Example of a context as a function from strings to strings.

derivation like S
∗⇒ lNr

∗⇒ lur, we can consider the derivation S
∗⇒ lNr to be applying a

function f ∈ C1,1 to the yield of N .
In a parallel cfg, we might again have a nonterminal N that derives a string u. However,

the part of the derivation that produces the whole sentence from u may include rules that
copy u.

Example 2 Consider for example the language {ww | w ∈ {a, b}+ }. This could be defined
as a parallel CFG with two nonterminals S and W , together with productions:

S(x1x1) :−W (x1); W (a) :− ; W (b) :− ; W (x1x2) :−W (x1),W (x2).

Figure 2 shows a derivation tree of abbabb; we can pick one node in the tree (marked
with a box). If we consider the “context” of the node W (ab), then this is not a simple
context, but rather the function x1 7→ x1bx1b. We can see this by replacing this node in
the tree with a variable x1, as on the right hand side of Figure 2.

Therefore with this richer class of grammars we need to consider a larger class of func-
tions that correspond to q-copying contexts, and when we consider tuples of strings in the
full pmcfg formalism, to q-copying r-contexts: the class Cr,q. Given such a set of functions
we can consider the ‘distribution’ in this extended sense of a substring in a language to be
the set of functions that when applied to that substring give an element of the language.

In this paper we use a dual approach – the nonterminals are defined by small finite sets
of patterns/functions, and incorrect rules will be eliminated by strings or tuples of strings.

In Example 2, we can see how the nonterminals that we need can be picked out. The
symbol S will correspond as usual to the single simple pattern x1 – the identity function
which corresponds to the empty context (λ, λ) in distributional learning of cfgs (e.g. Clark
and Eyraud (2007)). The symbol W corresponds to the 2-copying context x1x1. It is easy
to see that the set of strings generated by W is exactly the same as the set of strings
which can occur in the context x1x1. In the notation we defined earlier we have a singleton
set CW = {x1x1} such that L(G,W) = { v ∈ Σ∗ | CW [v] ⊆ L(G) }. Note that for any
grammar, the start symbol S will be characterised by the single context x1. We shall show
that languages that have this nice property – that the languages defined by each nonterminal
can be picked out by a small set of contexts – are learnable by a straightforward algorithm,
very similar to ones that have been used before for distributional learning of cfgs.

90

Beyond Semilinearity

5. Learning Target and Algorithm

Definition 2 We say that a pmcfg G has the (r, s)-finite context property ((r, s)-fcp) if
each nonterminal A ∈ Nd admits a nonempty set CA ⊆ Cd,r of r-copying d-contexts such
that |CA| ≤ s and

L(G,A) = {v ∈ Sd | CA[v] ⊆ L(G) } .
Such a set CA is called a characterising set of A.

By G(p, q, r, s) we denote the subclass of G(p, q, r) where grammars have the (r, s)-fcp.
The class of languages generated by grammars in G(p, q, r, s) is denoted by L(p, q, r, s).

Clearly the above definition is a generalisation of the s-fcp (Clark, 2010). All regular
languages are in L(1, 1, 1, 1) and the Dyck language is in L(1, 2, 1, 1).

Example 3 { a2n | n ≥ 0 } ∈ L(1, 1, 2, 1) since the 2-copying 1-context x1x1 characterises
the nonterminal S of G1 in Example 1. Similarly { vv | v ∈ Σ∗ } ∈ L(1, 1, 2, 1), since the
context x1x1 again characterises the relevant set of strings.

Consider the examples in Section 3: in the Old Georgian case, we can use the single
context x1x2nx2gv to pick out the multiwords generated by the nonterminal N . In the
Yoruba case, the NP class is picked out by the context x1vf and the VP class (just the symbol
vf in this trivial example) by the context nx1. Finally in the Chinese number example, the
context abx1ax1x2 defines the set of multiwords bk, abk1 . . . abkna where k > k1 > · · · > kn
with n ≥ 0, which is what is required. Proving these requires some analysis of particular
cases, which we omit for reasons of space.

5.1. Hypothesis

Hereafter we arbitrarily fix rather small natural numbers p, q, r, s ≥ 1 and a target language
L∗ ∈ L(p, q, r, s) to be learnt. The learner receives a presentation of positive data in the
identification in the limit paradigm; we assume that our learner has in addition access to
an oracle which answers membership queries (mqs), which says whether an arbitrary string
u belongs to the learning target L∗. See for example Yoshinaka (2010) for details.

Our learner is a straightforward generalisation of the one for cfgs with the s-fcp given
in Yoshinaka (2011a). The learner constructs its conjecture Ĝ = G(K,F) from finite sets
of multiwords K ⊆ Sub≤p(D) and r-copying contexts F ⊆ Con≤p,r(D) where D is a set of
positive examples. We let Ki = K ∩ Si for i = 1, . . . , p and Fj = F ∩ Cj,r for j = 0, . . . , p.
We assume that {x1} ∈ F1. For C ⊆ Ci,r, we define

C(K) = C† ∩Ki = {v ∈ Ki | C[v] ∈ L∗ } .

The nonterminal set N̂ =
⋃

1≤i≤p N̂i of Ĝ is given by

N̂i = { [[C]] | C ⊆ Fi with 1 ≤ |C| ≤ s } ,

where [[C]] simply means a symbol indexed with C. The start symbol is [[{x1}]].
Our grammar G(K,F) has rules of the form

[[C0]](π) :− [[C1]](x1), . . . , [[Ck]](xk)

if and only if the following conditions hold:

91

Clark Yoshinaka

• 0 ≤ k ≤ q,

• π is a d0-tuple of patterns whose concatenation is an r-copying d-context,

• |xi| = di for each i = 1, . . . , k and the variables from x1, . . . ,xk constitute Xπ,

• there are vi ∈ Sdi for i = 1, . . . , k and π0 ∈ Cd0,1 such that π0[π[v1, . . . ,vk]] ∈ F0,

• C0[π[C
(K)
1 , . . . , C

(K)
k]] ⊆ L∗,

where di are such that [[Ci]] ∈ Ndi for i = 0, . . . , k and d =
∑

1≤i≤k di.

Lemma 3 One can compute G(K,F) in polynomial time in ‖D‖.

Proof By F ⊆ Con≤p,r(D) and K ⊆ Sub≤p(D), ‖F‖ and ‖K‖ are bounded by a polynomial
in ‖D‖ with a degree linear in pr and p, respectively. For each [[C]] ∈ N̂ , the fact |C| ≤ s
implies |N̂ | ≤ |F |s.

We estimate the number of rules of the form

[[C0]](π) :− [[C1]](x1), . . . , [[Ck]](xk) . (1)

By k ≤ q, at most |N̂ |q+1 combinations of nonterminals are possible. There exist u ∈ F0 ⊆
D, vi ∈ Sub≤p(u) for i = 1, . . . , k and π0 ∈ Con≤p,1(u) such that u = π0[π[v1, . . . ,vk]].
Determining π can be seen as determining the left and right positions in u to which each
occurrence of a variable corresponds. Note that π0 and π contain at most p and pqr
occurrences of variables, respectively. Thus we extract at most |u|2(p+pqr) variants of π
from a string u ∈ F0. Therefore, we have at most |N̂ |q+1|F0|`2(p+pqr) production rules in
G(K,F) where ` is the length of a longest word in F0.

Among those rules, the algorithm rejects some incorrect rules. To compute C
(K)
i , we

call the membership oracle on at most |Ci||K| words. To see whether

C0[π[C
(K)
1 , . . . , C

(K)
k]] ⊆ L∗

concerning a rule of the form (1), it is enough to check the membership on at most

|C0|
∏

1≤i≤k |C
(K)
k | ≤ s|K|q words.

For checking whether D ⊆ L(Ĝ), it takes polynomially many steps by Theorem 1.
All in all, one can compute G(K,F) in polynomial time in ‖D‖, where the degree of the

polynomial linearly depends on pqrs.

Just like the algorithms based on syntactic concept lattices (e.g. Clark (2010)), we
establish the following monotonicity lemma: Expansion of F expands the hypothesised
language while expansion of K shrinks the hypothesised language.

Lemma 4 (Monotonicity) Let Ĝ = G(K,F) and Ĝ′ = G(K ′, F ′).

1. If K ⊆ K ′ and F = F ′, then L(Ĝ) ⊇ L(Ĝ′).

2. If K = K ′ and F ⊆ F ′, then L(Ĝ) ⊆ L(Ĝ′).

92

Beyond Semilinearity

Proof (1) Every rule of Ĝ′ is also a rule of Ĝ. (2) Every rule of Ĝ is also a rule of Ĝ′.

We say that a rule of the form [[C0]](π) :− [[C1]](x1), . . . , [[Ck]](xk) is correct if it holds

that C0[π[C†1, . . . , C
†
k]] ⊆ L∗, that is, for any v1, . . . ,vk ∈ S∗,

Ci[vi] ⊆ L∗ for all i ∈ {1, . . . , k} =⇒ C0[π[v1, . . . ,vk]] ⊆ L∗ .

If a rule is not correct, it is incorrect.

Lemma 5 Every context set F admits a multiword set K of a polynomial cardinality in
‖F‖ such that Ĝ = G(K,F) has no incorrect rules.

Proof Suppose that a rule [[C0]](π) :− [[C1]](x1), . . . , [[Ck]](xk) is incorrect. There exist

multiwords vi ∈ C†i for i = 1, . . . , k such that C0[π[v1, . . . ,vk]] * L∗. If v1, . . . ,vk ∈ K,
such a rule is suppressed. This proves the lemma together with the facts that k ≤ q and that
the number of production rules is polynomially bounded by |F |` with ` = max{ |u| | u ∈ F0 }
by the proof of Lemma 3.

We say that K is fiducial on F if G(K,F) has no incorrect rules.

Lemma 6 If Ĝ = G(K,F) has no incorrect rules, then L(Ĝ) ⊆ L∗.

Proof We show by induction that `Ĝ [[C]](v) implies C[v] ⊆ L∗. This implies particularly

for `Ĝ [[{x1}]](v), where [[{x1}]] is the start symbol of Ĝ, we have v ∈ L∗.
Suppose that we have `Ĝ [[C0]]([π[v1, . . . ,vk]]) by the rule [[C0]](π):−[[C1]](x1), . . . , [[Ck]](xk)

and `Ĝ [[Ci]](vi) for i = 1, . . . , k. By the induction hypothesis we have Ci[vi] ⊆ L∗
for i = 1, . . . , k. (When k = 0, it is the base case.) Since the rule is correct, we have
C0[π[v1, . . . ,vk]] ⊆ L∗.

Lemma 7 Let G∗ = 〈Σ, N∗, P∗, S∗〉 ∈ G generate L∗. Suppose that F includes a charac-
terising set CA for every nonterminal A ∈ N∗ and that F0 contains a string vρ ∈ L(G∗)
derived by using ρ for every rule ρ ∈ P∗. Then L∗ ⊆ L(G(K,F)) for any K.

Proof Let Ĝ = G(K,F). For a rule A0(π) :− A1(x1), . . . , Ak(xk) of G∗, let Ci ⊆ Fdim(Ai)

be a characterising set of Ai for i = 0, . . . , k. By the assumption, there are vi ∈ L(G∗, Ai)
for i = 1, . . . , k and a dim(A0)-pattern π0 such that π0[π[v1, . . . ,vk]] ∈ L(G) ∩ F0. We
show that Ĝ has the corresponding rule [[C0]](π) :− [[C1]](x1), . . . , [[Ck]](xk) whatever K is.

For any ui ∈ C(K)
i = L(G∗, Ai) ∩ K, we have π[u1, . . . ,uk] ∈ L(G∗, A0) = C†0. That is,

C0[π[u1, . . . ,uk]] ⊆ L∗. Hence the rule is present in Ĝ.

Lemmas 3, 5–7 mean that one can construct a right grammar from a small amount of data
efficiently.

5.2. Learning algorithm

Our learner for L(p, q, r, s) is shown as Algorithm 1.

93

Clark Yoshinaka

Algorithm 1 A(p, q, r, s)

Data: A sequence of strings w1, w2, · · · ∈ L∗; membership oracle O
Result: A sequence of pmcfgs G1, G2, · · · ∈ G(p, q, r)
let D := K := F := ∅; Ĝ := G(K,F);
for n = 1, 2, . . . do

let D := D ∪ {wn}; K := Sub≤p(D);
if D * L(Ĝ) then

let F := Con≤p,r(D);
end if
output Ĝ = G(K,F) as Gn;

end for

Lemma 8 If the current conjecture Ĝ is such that L∗ * L(Ĝ), then the learner will discard

Ĝ at some point.

Proof At some point, some element u ∈ L∗ − L(Ĝ) is given to the learner. The rule
[[{x1}]](u) :− is correct but not present in Ĝ. Once the learner gets u, we obtain this rule
by u ∈ F0.

Lemma 9 If L(Ĝ) * L∗, then the learner will discard Ĝ at some point.

Proof The fact L(Ĝ) * L∗ implies that K is not fiducial on F by Lemma 6. That is, Ĝ has

an incorrect rule [[C0]](π) :− [[C1]](x1), . . . , [[Ck]](xk) such that C0[π[C†1, . . . , C
†
k]] * L∗. At

some point the learner will have D ⊆ L∗ such that Ci[vi] ∈ D and C0[π[v1, . . . ,vk]] * L∗ for

some vi ∈ Sub≤p(D) for all i = 1, . . . , k. The incorrect rule must be removed by vi ∈ C(K)
i

for K = Sub≤p(D).

Theorem 10 The learner A(p, q, r, s) identifies G(p, q, r, s) in the limit.

Proof Let L∗ ∈ L(p, q, r, s) be the learning target. By Lemmas 8 and 9, the learner never
converges to a wrong hypothesis. It is impossible that the set F is changed infinitely many
times because F is monotonically expanded and sometime F will include a characterising
set CA for every nonterminal A ∈ N∗ of a target grammar G∗ generating L∗ and F0 will
include a word derived using every rule, in which case the learner never updates F any more
by Lemma 7. Then sometime K will be fiducial on F by Lemmas 9 and 5, where Ĝ has no
incorrect rules. Thereafter no rules will be added to or removed from Ĝ any more.

6. Hardness of Primal Approach

Among two different types of approaches in distributional learning, this paper takes the
so-called dual approach for learning pmcfgs. One might expect that the other, called
primal approach, would work as well. A primal counterpart to the s-fcp could be defined
as follows:

94

Beyond Semilinearity

Let us say that a grammar G has the s-fkp if every nonterminal A admits
a finite string set KA of cardinality at most s such that π[KA] ⊆ L(G) iff
π[L(G,A)] ⊆ L(G) for any context π.

However, the simplest non-linear grammar with the rule set {S(x1x1) :− S(x1), S(a):−}
does not have the 1-fkp, which contrasts with the fact that every grammar with a single
nonterminal has the 1-fcp. This grammar still has the 2-fkp, but the authors did not yet
find a non-semilinear language generated by a grammar with the 1-fkp.

An even more serious problem is in the hardness of avoiding overgeneralisation while
still only using polynomial-time computation (cf. Lemma 6). To get a primal learner for
pmcfgs with the s-fkp, it seems a natural idea to combine the techniques proposed in this
paper and by Yoshinaka (2011a). Nonterminal symbols should be indexed by string sets K
of cardinality at most s. A rule of the form

[[K0]](π) :− [[K1]](x1), . . . , [[Kk]](xk)

would be said to be correct if π0[π[K1, . . . ,Kk]] ⊆ L∗ for every π0 such that π0[K0] ⊆ L∗
where L∗ is our learning target. However, to avoid exponential growth of computation time,
we have to consider only r-copying contexts as π0 for some fixed number r. Suppose, for
example, r = 2 and L∗ = {a4, b4, ad, bd, cd}. Since π[{a, b}] ⊆ L∗ iff π[{c}] ⊆ L∗ for every
2-copying context π, though x41[{a, b}] ⊆ L∗ and x41[{c}] * L∗, our learner will construct a
rule [[{a, b}]](x1) :− [[{c}]](x1). Together with other rules [[{a4, b4}]](x1x1) :− [[{aa, bb}]](x1),
[[{aa, bb}]](x1x1) :− [[{a, b}]](x1) and [[{c}]](c):−, we can derive c4 /∈ L∗. Thus, we can even
find a finite language that this primal approach fails to learn. In the dual approach we
have taken to learn pmcfgs, strings are used to exclude incorrect rules, and gathering all
substrings from positive data can be done in polynomial time. On the other hand, in the
primal approach, extracting all contexts from positive data is computationally intractable
and thus we have to consider only r-copying contexts, though actually strings may be
recursively copied any number of times during a derivation process. This limits our ability
to control overgeneralisation in the primal approach.

7. Conclusion

In this paper, we have extended distributional learning to the inference of non-semilinear
languages. This result also includes as a corollary a significant extension of the learnable
classes of mcfgss where the nonterminals are based on contexts: a dual model in the sense
of Yoshinaka (2011a).

The combination of these two extensions gives, for the first time, an efficiently learnable
class of languages that plausibly includes all natural languages, even under the worst case
that all of the questionable examples in Section 3 are valid; more precisely, a class where
there are no arguments that suggest that there is a natural language which is not in the class.
This leaves open two interesting issues: finding an appropriate learnable feature calculus
to represent the large set of nonterminals required, and the more fundamental question of
whether these grammars are also strongly adequate: adequate not just in terms of the sets
of strings that they generate but in terms of the sets of structural descriptions.

95

Clark Yoshinaka

References

Rajesh Bhatt and Aravind K. Joshi. Semilinearity is a syntactic invariant: A reply to
Michaelis and Kracht 1997. Linguistic inquiry, 35(4):683–692, 2004.

Alexander Clark. Learning context free grammars with the syntactic concept lattice. In
Sempere and Garćıa (2010), pages 38–51.

Alexander Clark and Rémi Eyraud. Polynomial identification in the limit of substitutable
context-free languages. Journal of Machine Learning Research, 8:1725–1745, 2007.

Sharon Inkelas and Cheryl Zoll. Reduplication: doubling in morphology. Cambridge Uni-
versity Press, 2005.

Aravind K. Joshi, K. Vijay-Shanker, and David J. Weir. The convergence of mildly context-
sensitive grammar formalisms. In Peter Sells, Stuart Shieber, and Thomas Wasow, edi-
tors, Foundational Issues in Natural Language Processing, pages 31–81. MIT Press, 1991.

Gregory M. Kobele. Generating Copies: An investigation into structural identity in language
and grammar. PhD thesis, University of California Los Angeles, 2006.

Jens Michaelis and Marcus Kracht. Semilinearity as a syntactic invariant. In Logical aspects
of computational linguistics, pages 329–345. Springer, 1997.

Daniel Radzinski. Chinese number-names, tree adjoining languages, and mild context-
sensitivity. Computational Linguistics, 17(3):277–299, 1991.

Hiroyuki Seki, Takashi Matsumura, Mamoru Fujii, and Tadao Kasami. On multiple context-
free grammars. Theoretical Computer Science, 88(2):191–229, 1991.

José M. Sempere and Pedro Garćıa, editors. Grammatical Inference: Theoretical Results
and Applications, 10th International Colloquium, ICGI 2010, 2010. Springer.

Stuart M. Shieber. Evidence against the context-freeness of natural language. Linguistics
and Philosophy, 8:333–343, 1985.

Raymond M. Smullyan. Theory of Formal Systems. Princeton University Press, 1961.

K. Vijay-Shanker, David J. Weir and Aravind K. Joshi. Characterizing Structural De-
scriptions produced by Various Grammatical Formalisms. In 25th Annual Meeting of the
Association for Computational Linguistics, pages 104–111. ACL, 1987.

Ryo Yoshinaka. Towards dual approaches for learning context-free grammars based on
syntactic concept lattices. In Developments in Language Theory, pages 429–440. Springer,
2011a.

Ryo Yoshinaka. Polynomial-time identification of multiple context-free languages from pos-
itive data and membership queries. In Sempere and Garćıa (2010), pages 230–244.

Ryo Yoshinaka. Efficient learning of multiple context-free languages with multidimensional
substitutability from positive data. Theoretical Computer Science, 412(19):1821–1831,
2011b.

96

	Introduction and Motivation
	Preliminaries
	Parallel multiple context-free grammars

	Linguistic Examples
	Suffixaufnahme in Old Georgian
	Yoruba
	Chinese number names

	Informal Explanation of the Approach
	Learning Target and Algorithm
	Hypothesis
	Learning algorithm

	Hardness of Primal Approach
	Conclusion

