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Abstract

Driver inattention is a leading cause of road accidents through its impact on reaction time
in the face of incidents. In the case of Level-3 (Ls3) vehicles, inattention adversely impacts
the quality of driver take over and therefore the safe performance of L3 vehicles. There is
a high correlation between a driver’s visual attention and eye movement. Gaze angle is an
excellent surrogate for assessing driver attention zones, in both cabin interior and on-road
scenarios. We propose appearance-based gaze estimation approaches using convolutional
neural networks (CNNs) to estimate gaze angle directly from eye images and also from
eye landmark coordinates. The goal is to improve learning by utilizing synthetic data
with more accurate annotations. Performance analysis shows that our proposed landmark-
based model, trained synthetically, is capable of predicting gaze angle in the real data
with a reasonable angular error. In addition, we discuss evaluation metrics are application
specific and there is a crucial requirement for a more reliable assessment metric rather than
common mean angular error to measure the driver’s gaze direction in L3 autonomy for a
control takeover request at a proper time corresponding to the driver’s attention focus to
avoid ambiguities.
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1. Introduction

Humans respond to environmental visual/audiotary/cognitive stimuli through eye move-
ment (Ghosh et al., 2021). Capturing eye movement patterns (gaze, fixation, saccade), as
primary indicators of human intent and cognitive state, is considered beneficial in a wide
range of applications such as human robot interaction, tracking driver visual attention, im-
pairment detection, virtual reality and reading process tracking (Bottos and Balasingam,
2020). Driver inattention is one of the the leading causes in fatal road accidents. Inatten-
tion has significant impact in L3 automated driving. As defined by Society of Automotive
Engineers (SAE) (International, 2018), in Ls autonomy, human drivers do not need to
monitor the driving environment continuously and may engage in secondary tasks. Dur-
ing this period the autonomous agent (AG) takes over driving responsibilities. However,
the AG may request the human driver to take over control in scenarios beyond beyond
the capabilities of the AG. This decision of a take-over request (TOR) is derived from the
automated driving system (ADS). Driver state monitoring (DSM) can explicitly assist in
quantifying a driver’s ability to engage in safe/efficient TOR and improve both safety and
user experience. One important measure of a driver’s instantaneous on/off-road attention
is the gaze vector. The direction of driver’s eye gaze can be quantified from the face/eye
images captured by cameras inside the vehicle cabin to monitor the driver’s visual atten-
tion in the driving environment. Over the last decades, with the aid of advanced computer
vision and artificial intelligence (AI) technologies, automatic gaze estimation has attracted
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research and many methodologies have been proposed. However, achieving state-of-the-art
performance for gaze prediction, in real-word scenarios, is still a challenging task due to
a broad range of noise factors including head movements, illumination variations, occlu-
sion and low resolution and information loss, and the need for a large amounts of labelled
training data. Vision based gaze tracking approaches can be classified into into two main
categories. 1) Geometric model-based methods, which are quite popular in many safety-
critical applications, such as automotive or virtual reality, use near infra-red illuminators
with known geometry (Huang et al., 2017a) to capture the corneal reflection (glint) (Park
et al., 2018b) and make a 3-dimensional subject-specific eye model and geometric calibration
to determine point of gaze (PoG) from gaze angle. Since these methods rely on a physical
model, they generalize quite easily to new subjects with little or no training data, but at
the cost of dedicated hardware requirements and higher sensitivity to input noise (partial
occlusions or lighting) (Kellnhofer et al., 2019). Moreover, these models require calibration
to recover person-specific information (Cheng et al., 2021). 2) Appearance-based methods,
which learn form annotated image datasets to map image information into gaze directions.
They do not require additional hardware (lighting) and regress gaze directly from camera
frames (Kellnhofer et al., 2019). These methods are broadly divided into two subcategories.
a) Conventional machine learning which extract gaze-related descriptive features from im-
age pixels (such as histograms of oriented gradients (Martinez et al., 2012)) and regress gaze
angle using techniques such as support vector machine (Xu et al., 2015) or random forest
(Huang et al., 2017b). b) Deep learning approaches that estimate direct mapping from
image to the gaze vector quantitatively using neural networks (Fig 1), which is more accu-
rate and robust against noise factors. However, compared to the superior improvements in
other human modeling studies, with the aid of deep neural network (DNN) representation
power, gaze estimation has not yet achieved the same level of maturity. This is primarily
due to the complex eye appearance and cognitive process in the visual system, and most
importantly, the lack of sufficient annotated training datasets (Kellnhofer et al., 2019). In
this paper we will compare the performance of appearance-based methods and assess the
effect of including intermediate features (landmarks) to improve the accuracy of gaze esti-
mation. Furthermore, in the aforementioned gaze estimation approaches, the performance
is evaluated by angular error metrics which are very often defined based on special use cases
relative to the screen. However, those metrics do not address relevant interpretations in
specific applications such as DSM to measure the human’s gaze focus and attention on the
road in control transition from autonomous agent to the driver in L3 autonomy. Therefore,
in this work we discuss the need for contextually relevant metrics to avoid ambiguities in
performance assessment, which is particularly critical in safety-related applications to re-
duce false positive/negative rates. The paper is organized as follows. In section 2, we will
review state of the art deep learning-based gaze estimation. Section 3 and 4 will describe our
dataset and appearance-based models. Section 5 evaluates the performance of the proposed
models. In Sections 6 and 7 a discussion about the error metrics and their shortcomings is
provided and the paper will be concluded.
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Figure 1: Vision-based Al framework for measuring the driver’s visual attention in auto-
motive

1.1. Related Works

A vision-based Al framework to measure the driver’s visual attention in automotive ap-
plications is shown in Fig 1. The input frames from the in-cabin camera is preprocessed
and face/eye crops are fed into the Al modules to extract hand-crafted or deep descriptive
features, quantify eye gaze information and map them to the region (zone) where the driver
is looking. A direct mapping from face/eye appearance to the gaze vector can be learnt
in deep learning-based methods without the need for extracting hand-crafted features. In
2020, Cazzato et al. (Cazzato et al., 2020) presented an overview of deep learning-based
gaze estimation. Recent solutions are based on different convolutional neural netwok (CNN)
architectures to learn image representations and map them to gaze directions (Park et al.,
2018a)-(Wang et al., 2018) in an end-to-end framework. The input to the network is either
one eye crop (Zhang et al., 2017a), face patch (Zhang et al., 2017b) or the combination of
both eyes and face (Krafka et al., 2016). LeNet (Zhang et al., 2015) was proposed by Zhang
et al., as the first deep learning-based gaze estimation, where a CNN was used to extract
deep features from the eye patches to estimate gaze direction. They incorporated head-pose
information at the feature level to improve the accuracy. Furthermore, they extended that
model to a 13-convolutional-layer network with VGG backbone as GazeNet (Simonyan and
Zisserman, 2014) to improve the accuracy of gaze estimation. Zhang et al. (Zhang et al.,
2017b) applied spatial weighting on the full-face input to encode the importance of different
regions. In MinENet (Perry and Fernandez, 2019) the accuracy of gaze estimation was
substantially improved by adopting dilated convolutions to preserve spatial resolution in
the eye regions and increase the contextual information with a larger receptive field with-
out compromising the number of parameters. In some of the recent techniques, attention
mechanism has been used to weight the features from two eyes and face when a combination
of all those inputs is utilized. Bao et al. (Bao et al., 2021) proposed attention to combine
the feature maps from two eyes and use a convolution layer to generate weights. It is not
practical to train models with a datasets that covers the whole range of appearance variants
among different people. Therefore, subject-invariant gaze estimation has become a research
hotspot in recent years. Park et al. proposed a Pictorial Gaze approach (Park et al., 2018a)
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using two consecutive models. The first model was Hourglass network to regress a unified
representation (model of eyeball and iris) form eye crop which is then fed into a DenseNet
to determine the gaze vector. Lee et al. (Lee et al., 2018) proposed CycleGAN, where
two generators were trained to map images from source to the target domain, and vice-
versa. CycleLoss and adversarial loss were used to emphasize on the intra and inter-domain
differences.

Despite significant success in the accuracy of DNN-based gaze estimation, their perfor-
mance degrades in the presence of noise factors in unconstrained real-world scenarios, such
as low resolution, blur effect, harsh lighting and head-pose changes (Oh et al., 2022). More-
over, they require a large-scale annotated dataset which is expensive and difficult to collect.
To resolve this issue, we propose training the proposed models on high-quality synthetic
eye images.

(a) (b)

Figure 2: Sample images from MPIIGaze dataset: a) original recordings, b) cropped images
in the dataset

2. Description of the Data
In this section, we describe the real and synthetic datasets utilized to training and inference,
as shown in Fig 7.

2.1. Real dataset - MPIIGaze

The MPIIGaze dataset, proposed by Max Planck research center (Zhang et al., 2017a),
contains more than 200k images that were captured in unconstrained conditions using a
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laptop for several months over natural everyday laptop use by 15 participants (about 30k
to 1500 two-eye patches per subject) (Fig 2). In this work we utilized a subset of the dataset
with an even distribution among subjects. The dataset includes 45k images of normalized 60
x 36 single eye crops (about 3000 left and right eye patches per subject) with annotations of
gaze vectors. This dataset contains variability of places, time, light and shadows, as shown
in Fig 2a.

Varia>tions in the skin tone ahd eye éhape

Variations in eyelid and gaze angle

Figure 3: Sample synthetic images from SynthesEyes dataset with appearance variations

2.2. Synthetic dataset - SynthesEyes

Utilizing synthesis data, with reasonable appearance distribution, to train deep learning
models is a promising solution to the issue of collecting and annotating a large-scale real
dataset. SynthesEyes which was proposed by University of Cambridge (Wood et al., 2015),
includes 11382 synthesis images of eye region, rendered from head-scan data using a highly
accurate physically based method. It contains a wide range of gaze and head directions,
illumination, eye shapes, bone structures and skin colors and eyelids are posed based on
gaze direction (Fig 3).The list of annotation in this dataset contains eye landmarks and
gaze vector which are shown in Fig 4.

3. Methodology

In this paper, we will conduct a comparison among the capabilities of various DNN models
in estimating gaze direction which are trained on the real and synthetic datasets. This
analysis is divided into two following strategies.

3.1. Strategy 1: Gaze regression directly from eye crop

In this strategy supervised regression method is proposed to infer gaze direction (yaw and
pitch angles) from eye crops. Eye patches are fed to the CNN models (ResNet18, GazeNet
and ResNet50) to regress gaze direction. In those models the original network structures
have been used and the last layers were replaced with a fully connected regression layer
with two output neurons (yaw and pitch) and the loss function was replaced by a mean
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Figure 4: Examples of Gaze and landmark annotations within the SynthesEyes dataset

squared error (MSE) cost function. The 3D gaze vector ( z,y, z) was encoded into 2D space
as pitch (0) and yaw (¢), as the Euler angles between the pupil and the eyeball, as follows.

0 = arcsin (y) , ¢ = arctan (g) (1)

3.2. Strategy 2: Gaze regression from eye landmarks

We propose an intermediate representation prior to the gaze regression by detecting eye
landmarks through single eye images.The goal is to provide a robust and accurate land-
mark detection to improve the gaze estimation performance. Synthetic dataset provide
more precised annotations even under heavy occlusion, compared to real data. Therefore,
by training our model on the high-quality synthetic images, the accuracy and robustness
of landmark detection will be improved which enhances the consecutive gaze estimation
accordingly. To achieve that goal, we used the annotated images from SynthesEyes dataset
to train a landmark detection model. In this study, a landmark detection model is utilized
to detect landmark heatmaps and use those features to feed a fully-connected regression
layer to estimate the gaze angle. the architecture of the proposed model is shown in Fig. 5.

Fitting | _, Dense
Circle Regression

Figure 5: Block diagram of the proposed gaze regression using eye landmarks

Hourglass is multi-scale analysis originally proposed for human pose estimation in a
downscale and upscale structure similar to auto-encoders with residuals and skip connec-
tions, and feature maps are refined multiple times at multiple scales. We utilized Hourglass
model and a 1 x 1 convolution to generate heatmaps from detected landmark features as
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shown in fig. 5. Via a soft-argmax layer (Honari et al., 2018) we will calculate the coordi-
nates of the landmarks, which are the pupil contours. Then the best circle fit to the pupil’s
contour data points will be estimated to find the centre of the circle as the eye pupil added
to the eye feature stack. In order to estimate the gaze vector, a fully connected layer was
added to regress gaze direction (yaw and pitch angles) from detected eye landmarks.

4. Results and Evaluations

In this section, we describe the experiments conducted in this study. Models were trained
for 100 epochs, M SE was utilized as the loss function and Adam was the optimizer. To
evaluate the performance of the proposed models, we used the mean gaze angle error as a
common metric for gaze estimation problems. The gaze angle error is the cosine distance
between the ground truth gaze angle and the predicted gaze angle (g and g, respectively)
as follows.

180 g-g

¢=(3) 2(7) arccos (m) (2)

To assess the performance of strategy 1, the gaze estimation directly from eye image,
we tested the models on the MPIIGaze dataset (Fig 2). The normalized Left and right
half of the images in the dataset , were used as single eye crops. We had two separate test
procedures as follows. a) In a 15 fold cross validation, every time, we excluded the images
of 1 subject in MPIIGaze as the test samples and trained the models using the images of 14
other participants. Figure 6, illustrates the comparison among three models for each test
set. The average cross validation errors for 15 separate test sets are shown in the second
column in Table 1. b) In order to evaluate the effect of utilizing synthetic data as a remedy
for the data requirement roadblock and having access to more accurate annotations, all
11382 images in SynthesEyes dataset (Fig 3) with gaze 3D vector annotation were used for
training three models in strategy 1. The gaze prediction performance was tested on the
images of every individual participants in the real dataset (MPIIGaze) as 15 separate test
sets. The average angle errors are compared in the third column in Table 1. As shown in
the table, the performance degrades drastically by training the models synthetically and the
angle errors become larger (in the second column). One reason is due to different settings
in target (real) dataset and the synthetic training samples. The models cannot capture all
variations in the test set as shown in Fig 7. We anticipate similar problems in utilizing
these gaze estimation models in automotive and in-vehicle applications. To overcome the
out-of-distribution robustness issue, the models are required to be trained on a dataset that
match the in-cabin sensor settings and environmental conditions (lighting, camera distance
and image quality /resolution). In addition, the size and variability of this synthetic data
may not be sufficient to learn descriptive features required in gaze estimation.

In an alternate evaluation, we assessed the effect of adding intermediate features, as
explained in strategy 2 in previous section, to improve the performance of the gaze estima-
tion models which are trained on synthetic data. The model proposed in strategy 2 (gaze
estimation from landmarks) was trained on all images in the SynthesEyes dataset using the
landmark annotations of 8 pupil counter points and the 3D gaze vector (Fig 4). As shown
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Figure 6: Angular errors of three models on the test subsets

Table 1: A Table With Horizontal and Vertical Lines

Model Test angle error[degree] Test angle error[degree]
(real training) (synthetic training)

GazeNet 5.95 9.95

ResNet18 4.83 7.90

ResNet50 4.60 7.02

S nthgsE es training samples

MPIIGaze test samples

Figure 7: The appearance distribution among sample images in the real and synthetic
datasets
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in Fig 8, the stacked Hourglass model has reasonable performance even under total occlu-
sion in some eye images. The trained models are then tested using images of 15 subjects
in the MPIIGaze dataset. The average mean angle error for all test images is reduced to
5.02 degrees which is comparable to ResNet18 trained on real data. This result shows the
capability of training models synthetically in estimating the gaze angle which will reduce
time and resources for real data collection and annotation process.
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Figure 8: Examples of landmark detection results

5. The Influence of Evaluations Metrics

The state of the art methods, on gaze estimation, assess performance through common eval-
uation metrics, such as angular error, (in degrees), gaze recognition accuracy (in percentage)
and location shifts between point of regards on a screen (in pixel/mm) (Kar and Corcoran,
2018). However, these metrics are very often defined based on special use cases such as
relative to laptop screen or vehicle interior cockpit, and do not translate to contextually
relevant interpretations such as in the case of a drivers gaze relative to attention on the
road. Hence contextually relevant metrics are necessary to avoid ambiguities in performance
assessment relative to specific requirements. For DSM features this is especially critical in
reducing false positives/negatives related to drivers attention for optimal performance of
Ls TOR. If we define the TOR response time, as a function of predicted gaze angle, the
scene in front of the ego vehicle and the vehicle driving parameters, thus, the gaze error
will impact the final TOR response and therefore, the safety of L3 functionalities. In this
regard, the gaze angle error needs to be qualified in the context of L3 driving. There is
also a general lack of discussion on sensitivity analysis and clear interpretation of the effects
of error ranges on display sizes and distances (Kar and Corcoran, 2018). For instance, in
driver’s attention monitoring and determining the zone of attention, assessment of the gaze
angular (degrees) error, should be conducted relative to the on-the-road region boundaries
with respect to the distance to the camera. In gaze estimation method, point of regard in
3D space is computed using the midpoint of the segment between estimated and true gaze
vectors. Therefore, small angle errors cause large deviations in the depth of the point esti-
mation. In (Liu et al., 2020), the authors demonstrated that when the distance increases,
gaze estimation achieves better performance, whereas in short distances the distance of the
scene to camera becomes influential. This phenomena is shown in Fig 9.
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Figure 9: The effect of angular error on the distance estimation of point of regard (Liu
et al., 2020).
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6. Discussion and Conclusion

Gaze estimation is a powerful tool to measure human intent and visual attention in a
wide range of applications. An intelligent interior vision system in automotive systems is
essential to track the behavior of the driver in cabin, for driver safety and Level 3 hand-over
functionalities. Driver’s attention and point of regard can be measured by utilizing the
estimated gaze angle from image data which is collected by interior camera. Appearance-
based gaze regression approaches using CNN are presented in this paper, where human’s
gaze direction is estimated to measure where the human is looking. In this paper, the
effectiveness of various appearance-based gaze estimation approaches were studied. We
evaluated the performance of DNN models by directly applying them to the eye image
and regressing the gaze angle. A comparison was conducted between the models trained
using the real data and synthetic data. Training models using synthetic data, not only
takes advantage of accurate annotations which results in accurate representations, but also
helps to deal with data need issue in deep learning. Due to the small size of the synthetic
dataset and the lack of required appearance variations to generalize well to the real data
distribution, synthetically learnt models’ performance drastically dropped. We proposed
landmark-based gaze estimation, to estimate gaze from eye features. That approach despite
the learning synthetic representations, showed comparable results versus CNN models which
were trained on real data.This model can be improved to be utilized for in-cabin gaze
estimation in DSM by increasing the number of training samples and train on synthetic
settings which match the in-cabin image settings and lighting conditions.We discussed that
error metrics should be interpretable and be adapted to the applications more specifically,
relative to the distance and scene settings, for an appropriate assessment.This phenomena
will be investigated experimentally in the future using in-vehicle images .
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