
Proceedings of Machine Learning Research 1:1–20, 2023 NeurIPS 2022 Gaze Meets ML Workshop

Learning to count visual objects by combining “what” and
“where” in recurrent memory

Jessica A.F. Thompson jessica.thompson@psy.ox.ac.uk

Hannah Sheahan sheahan.hannah@gmail.com

Christopher Summerfield christopher.summerfield@psy.ox.ac.uk

Human Information Processing Lab, Department of Experimental Psychology, University of Oxford

Abstract

Counting the number of objects in a visual scene is easy for humans but challenging for
modern deep neural networks. Here we explore what makes this problem hard and study the
neural computations that allow transfer of counting ability to new objects and contexts.
Previous work has implicated posterior parietal cortex (PPC) in numerosity perception
and in visual scene understanding more broadly. It has been proposed that action-related
saccadic signals computed in PPC provide object-invariant information about the number
and arrangement of scene elements, and may contribute to relational reasoning in visual
displays. Here, we built a glimpsing recurrent neural network that combines gaze contents
(“what”) and gaze location (“where”) to count the number of items in a visual array. The
network successfully learns to count and generalizes to several out-of-distribution test sets,
including images with novel items. Through ablations and comparison to control models, we
establish the contribution of brain-inspired computational principles to this generalization
ability. This work provides a proof-of-principle demonstration that a neural network that
combines “what” and “where” can learn a generalizable concept of numerosity and points
to a promising approach for other visual reasoning tasks.
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1. Introduction

Despite significant recent advances in training deep neural networks to map between text
and images, current machine learning models show significant failures in aspects of scene
perception that rely on visual reasoning, such as counting how many objects are present
in a natural scene (Zhang and Wu, 2020). Even when they are equipped with inductive
biases for image segmentation or salience detection, current deep supervised networks often
fail to correctly enumerate objects (Lempitsky and Zisserman, 2010; Zhang et al., 2017).
Relatedly, state-of-the-art generative models such as DALLE-2 (OpenAI, 2022) struggle to
craft images in response to prompts that mandate a specific numbers of objects (Fig. 1). By
contrast, most children learn to count objects in the first two years of life, and it remains
one of the most robust and ubiquitous human abilities (Schleifer and Landerl, 2011).

In the current paper, we make two contributions. Firstly, we use a stylised dataset
to systematically define the conditions under which deep convolutional neural networks
succeed and fail at generalizing their ability to count, addressing an issue that remains
controversial (Wu et al., 2019). Secondly, we describe a new model whose architecture is
inspired by the parallel pathways of the primate visual system, in which visual information
flows both ventrally (the “what” stream, to temporal lobe areas that represent objects
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in a position-invariant fashion) and dorsally (the “where” or “how” stream, to parietal
lobe areas that code for the spatial position, salience and motor affordances induced by
objects in a scene) (Goodale and Milner, 1992; de Haan et al., 2018; Bisley and Goldberg,
2010). Like the primate brain, our model apprehends the scene through a series of discrete
glimpses, and counting is achieved by combining both the gaze contents (“what”) and gaze
location (“where”) in recurrent memory. We use an approach first proposed by Larochelle
and Hinton (2010) in which saccadic output (the movement “afforded” by the objects in
the scene) is provided as an additional input to recurrent memory. The network is able to
successfully count the number of items in an array and to generalise this ability to a hold-
out set containing wholly novel objects. Using a symbolic model, we taxonomize counting
problems according to their need for integration of “what” and “where”, and show that the
advantage of our dual-stream model is greatest when more integration is needed.

Figure 1: Images generated by DALL-E 2 in
response to the prompt “A painting of . . . ” fol-
lowed by the text to the left if each row.

Our work builds on the hypothesis that
dorsal and ventral streams evolved to factorize
representations of the content and structure of
sensory experience: the ventral stream encodes
object identity while the dorsal stream encodes
the abstract structure of space, events, and
tasks (Summerfield et al., 2020; O’Reilly et al.,
2021; Bottini and Doeller, 2020). We propose
that this factorization should enable system-
atic generalization (e.g., the ability to process
new contents via learned structures). Conver-
gent evidence from machine learning similarly
points to the value of partitioned representa-
tions of content and structure for relational
tasks (Kerg et al., 2022; van Steenkiste et al.,
2019). Our model thus integrates both ventral
and dorsal stream information and we probed
its ability to generalize a learned structure (nu-
merosity) to new contents (objects and con-
texts).

2. Related Work and Background

Visual counting in ANNs Counting and the neural code for number have been stud-
ied in neural networks using three broad approaches. Firstly, some authors have trained
standard feedforward convolutional neural networks (CNNs) on annotated datasets to di-
rectly report the number of objects in a whole image, equivalent to the human ability to
”subitize” or instantly grasp the number of items in an array. This works reasonably well
for very small numbers but typically falters as the number of items grows (Segui et al., 2015;
Zhang et al., 2017; Chattopadhyay et al., 2017; Fang et al., 2018). Secondly, others have
built models that count via explicit object detection and segmentation or density estimation
(Lempitsky and Zisserman, 2010; Trott et al., 2018; Zhang et al., 2018). These reports of-
ten use attention-based mechanisms to sequentially segment objects using a bounding box.
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One challenge is to disambiguate a lone object from two in close proximity (Zhang et al.,
2018). Finally, drawing on techniques and assumptions from neuroscience, some authors
have sought to identify number-selective units in deep networks that were not trained on
number-related objectives (Stoianov and Zorzi, 2012; Nasr et al., 2019). However, these
results have often been hard to interpret, especially given that untrained networks seem-
ingly exhibit number neurons (Zhang and Wu, 2020; Kim et al., 2021), casting doubt on
the relevance of number selectivity to visual numerosity behaviour. This, in this body of
work, there is limited evidence for a general concept of numerosity.

ANN models of the dorsal stream In the wake of the well-documented correspon-
dence between patterns of neural activity in CNNs and the primate ventral stream (Lindsay
and Serre, 2021), several researchers have begun looking for a similar correspondence to the
dorsal stream. Bakhtiari et al. (2021) and Mineault et al. (2021) both investigate the objec-
tive functions that yield dorsal stream-like neural activity. This line of research is related to
ours by studying the purpose of the parallel pathways of the primate visual system. How-
ever, our goal is primarily to explain a cognitive ability rather than to account for neural
activity. Adeli et al. (2022) tackle visual reasoning with a dual-stream, recurrent architec-
ture which takes sequential glimpses based on an object attention mechanism. This model
does not process the gaze locations, as in our work. Their model generalizes better to out-
of-distribution (OOD) test examples than ResNet18, but still performs much worse on these
examples than on in-distribution test images. Fabi et al. (2022) explore another dual-stream
recurrent architecture for the compositional problem of learning to write characters.

Glimpsing computer vision models Larochelle and Hinton (2010) describe an
architecture that takes a sequence of foveated glimpses based on a learned saccadic policy.
This model learns to combine ‘what’ (gaze contents) and ‘where’ (gaze location) to solve sev-
eral object recognition tasks. The Recurrent Attention model similarly processes a sequence
of glimpses to obtain an efficient solution to several image classification tasks (Mnih et al.,
2014). Inspired by human-like iterative and attentive counting processes, Ren and Zemel
(2017) propose a recurrent architecture with visual attention for object instance segmenta-
tion. They jointly solve the counting and instance segmentation problems, segmenting one
instance at a time.

Visual numerosity in the primate brain In the primate brain, mounting evidence
implicates the posterior parietal cortex (PPC) in visual numerosity and in number sense
more generally (Nieder and Dehaene, 2009). Monkey electrophysiology has found accumula-
tor neurons as well as neurons tuned to specific numerosities in intraparietal regions (Nieder
and Miller, 2004; Roitman et al., 2007). Human neuroimaging tells a similar story, reporting
regions tuned to visual numerosity (Piazza et al., 2004) that are arranged topographically
in PPC (Harvey et al., 2013, 2015; Harvey and Dumoulin, 2017; Cai et al., 2021). These
neural correlates are also consistent with lesion studies in which patients with damage to
parietal cortex show deficits in numerical cognition, including visual tasks like dot counting
(Ashkenazi et al., 2008; Takayama et al., 1994).
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Figure 2: Task and model description. (a) All images contain 2-6 items. Models are trained
on a subset of item shapes and luminances and tested on held out image parameters. (b) Each
image is glimpsed, producing two sequences of observations: the glimpse pixels (gaze contents)
and the glimpse coordinates (gaze location). (c) The Recurrent Glimpse Net processes the two
glimpse streams to produce a spatial map of the items in the image from which a numerosity label
is computed.

3. A Neuro-Inspired Recurrent Glimpse Network

3.1. The Counting Task

We synthesize grayscale images (27 x 21 pixels) each containing 2-6 items (alphanumeric
characters). Items are of constant size and occupy a maximum area of 5 x 3 pixels, and are
placed on a uniform background of contrasting luminance. We divide each image into a 3
x 3 grid in which each grid square is a possible item location. We pose the counting task
as a supervised classification problem, minimizing a cross-entropy loss between the actual
and predicted number of items. During training, foreground and background luminances
are sampled randomly from the set {0, 0.5, 1} and item shapes are randomly chosen to
be one of the digits 0–4. Model performance is evaluated on a validation set consisting of
new images from within the training distribution and three OOD test sets consisting of new
shapes (the digits 5–9), new luminances (intermediate grays {0.1, 0.3, 0.7, 0.9}) and both
new shapes and new luminances. In our main experiments, all items within an image are
the same (homogenous sets) but see Appendix for comparable results with heterogenous
sets.
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3.2. Modeling saccadic trajectories

We call our model the Recurrent Glimpse Net (RGN). Rather than process the entire image
in parallel, the RGN receives a sequence of partial glimpses (6 x 6 pixels each) from the
image. We used a fixed policy for sampling glimpse locations that obeys the following
constraints: (i) there are always six glimpses (the maximum possible number of items); (ii)
each glimpse location is drawn from a truncated Gaussian distribution peaking centrally
within a grid square containing an item (s.d. ≈ 2 pixels, truncation at ≈ 4 pixels); and
(iii) all items are glimpsed at least once. Whilst this policy is stylised, it approximates
that which is obtained by sampling from a visual ”salience map”, and it replicates many
aspects of saccadic behaviour. For example, the Gaussian is sufficiently broad that glimpses
frequently span multiple items (or the edges of multiple items), as in Fig. 2b.

3.3. Dual Stream Processing

Just as the primate visual system processes “what” and “where”, the saccadic glimpsing
produces two streams of observations. One contains the sequence of extracted pixels (the
6 x 6 contents of each glimpse) and the other contains the sequence of gaze locations (the
[x,y] Cartesian coordinates of the centre of each glimpse). In our task, as in natural vision,
neither stream permits accurate counting on its own. Since all items within an image are
identical, numerosity information in the gaze contents stream is highly ambiguous. From
one glimpse to the next, it is not obvious whether an item (or item fragment) is one that
has been previously glimpsed (in which case the count should not be incremented) or is new
(in which case it should). Similarly, numerosity is ambiguous from the the gaze location
stream alone. For two nearby gaze locations, it is unclear whether the eye is directed towards
the same item twice or two different items. Our work tests the contention that these two
sources of ambiguity can be resolved by combining information from both streams, and that
numerosity judgements will require an integration of “what” and “where”.

3.4. Network Architecture

The input layer of the network consists of 36 units for the flattened glimpse contents plus two
additional units for the gaze locations. These feed into a joint embedding layer preceding
a recurrent module. The penultimate layer of processing before the numerosity readout is
trained to represent a spatial map of the items in the image via an auxiliary loss. This
layer consists of nine units corresponding to the nine possible item locations. The map loss
term is a binary cross entropy loss whose target is whether the image contains an item in
each of the nine ‘slots’. The full architecture is depicted in Fig. 2 and detailed network and
training parameters can be found in the Appendix. All models and experiments are coded
in Python 3.7.5 using PyTorch 1.11.0.

4. Experiments

All models were trained with stochastic gradient descent on 100,000 training images for 500
epochs. Each of the four test sets consisted of 5,000 images. All results are averaged over
10 random initializations. Detailed training parameters can be found in the Appendix.
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RGN

CNN

Figure 3: (top) Our Recurrent Glimpse Net generalizes to new shapes and new luminances. (bot-
tom) A parameter matched CNN shows significant deficits on all of the OOD test sets. Accuracy
and loss curves show mean and SEM over 10 random initializations.

4.1. Recurrent Glimpse Net generalizes to new shapes and new luminances

We compare our RGN to a parameter-matched convolutional neural network that receives
the entire image as input rather than a sequence of glimpses. The learning curves in Fig. 3
show the performance on the training set and the four test sets. We find that our RGN (top
row) is able to generalize to new shapes and new luminances, achieving > 96% accuracy on
all test sets. The CNN (bottom row) is able to learn the task but suffers considerably on
all the OOD test sets 1.

The remaining analyses are designed to probe how the RGN is able to generalize. Here
we are assigning credit to the various computational ingredients and verifying whether the
neuroscience- and cognitively-inspired aspects of the model are bearing their expected fruits.

4.2. Recurrent Glimpse Net performance depends on the integration of both
input streams

The architecture of the RGN is inspired by the premise that numerosity judgements require
the integration of “what” and “where”. However, this will be more true for some glimpsed
images than others, and depends on the precise configuration of items and sampled gaze
locations. For some images, the gaze location stream alone could be sufficient to determine

1. We note that doubling the size of the CNN did not qualitatively change its behaviour on the OOD test
sets.
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the numerosity2. We therefore wanted to assess how performance depends on the need for
integration.

To this end, we developed a manual algorithm that derives numerosity from a symbolic
representation of the glimpses. This symbolic model first tries to determine the numerosity
from the gaze locations alone, and if successful, assigns the glimpsed image an integration
score of 1, indicating that no integration is required. Otherwise, the counter iteratively
queries a symbolic form of the glimpse contents to resolve the ambiguity about where items
are located. The more times the counter needs to query the glimpse contents, the higher the
integration score. The symbolic counter successfully determines the numerosity of 97.24%
of the test images. The remaining 2.76% correspond to a small number of edge cases the
symbolic model cannot handle and are omitted from the presented analysis. Full details of
the symbolic model can be found in the Appendix.

In Fig. 4, we plot performance of three versions of the RGN on the test set consisting
of both new shapes and new luminances, split by integration score. Version 1 (left) receives
only the gaze locations as input, version 2 (middle) receives only the glimpse contents
as input, and version 3 (right) receives both input streams. Neither of the single stream
models manages to master the task during training. As-expected, test performance of the
locations-only model scales with integration score, achieving 100% accuracy on only those
images with an integration score of 1. Only the model with both input streams performs
well on all integration scores by the end of training. It masters the ‘easier’ images faster,
requiring more training for the higher integration score images. This confirms that RGN’s
generalization performance relies on an integration of both input streams, and supports
our theory that enactive inputs (gaze locations) can help solve visual reasoning tasks by
providing information about the relational geometry among items.

4.3. Generalization to new luminances depends on the glimpse coordinate
input

Could it be that recurrence alone is sufficent for visual counting in our task? To address this,
we use a matched recurrent architecture that, instead of a sequence of glimpses, receives
the whole image as input repeatedly. Thus, it lacks the ambiguity in the pixel stream
introduced by the partial glimpses, but is also missing the gaze location input present in
RGN. This recurrent control fares better than the CNN on the new shapes test set, but still
fails to generalize to new luminances (Fig. 5). This suggests that the gaze location input is
crucial for learning a representation of numerosity that is invariant to luminance.

4.4. A representation of space aids robust generalization in RGN

In a subsequent analysis, we sought to understand the contribution of the spatial map
in the penultimate layer. The symbolic model relies heavily on building an approximate
spatial map of item locations, i.e. to “fill in” whether an item is present at each candidate
location. Notably, biological brains compute spatial maps in the dorsal stream, although
their exact computational role is not clear. We thus asked whether this map representation

2. Although not present in the datasets analyzed here, there could also be cases where the pixel stream
alone is sufficient to determine the numerosity, for example, if all items in an image were distinct and
the number of items was equal to the maximum numerosity in the dataset.
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Contents and locationsOnly gaze locationsOnly gaze contents

Integration Score
Low ambiguity High ambiguity

Figure 4: (top) Generalization performance on the new shapes and new luminances test set for
the RGN which receives only the gaze contents (top left), only the gaze locations (top middle),
or both input streams (top right) as a function of integration score. Including both input stream
closes the gap between integration scores observed with locations alone. Training performance is
included for reference (cyan dashed line). (bottom) Illustration of the symbolic model. Each panel
shows an example image with glimpses (blue boxes, coloured to denote ambiguity about item-
location assignments) overlaid on items. Panels are arranged from left to right in increasing order of
integration score (1-5). The orange ✓, X, and ? symbols indicate spatial locations where the counter
respectively determined that there is, is not, or could be an item from the gaze locations alone. For
an integration score of 1 (far left), there are no interrogatives because there is no ambiguity about
where the items lie.

Figure 5: Performance of a non-glimpsing recurrent control model of identical architecture as RGN.
Without the glimpse coordinate input, this model fails to generalize to new luminances.
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Figure 6: (top) Removing the map objective slows learning and impairs generalization in RGN.
(bottom) Adding the map loss term to the CNN did not improve generalization.

is necessary and/or sufficient for generalizable numerosity judgements by training a version
of RGN without the map objective and a version of the CNN baseline with the auxiliary
map objective.

Firstly, we observe that adding the map objective to the CNN baseline was insufficient
to render its predictions generalizable. This implies that the map loss is not sufficient
for OOD counting. However, removing the map loss term from the RGN objective impairs
generalization ability, especially for new luminances. This version of the model learns slower
and is more sensitive to random initialization. This implies that the map loss is necessary
for accurate counting under the conditions studied here. In the model, the spatial map may
help the network organise relational information about the scene (what goes where), which
in turn facilitates inferences, such as how many items are present. More generally, these
two computational ingredients, the dual stream glimpsing architecture and the spatial map,
work together in RGN to learn a generalizable concept of numerosity.

4.5. Summary

Fig. 7 summarizes generalization performance on the hardest test set (new shapes and new
luminances) for all tested models as a function of the input the model received and whether
the map loss term was included in the optimized objective function. The models that gen-
eralize best are those that receive the gaze locations as input, but the gaze locations on
their own are not sufficient for perfect generalization. When gaze locations are combined
with the gaze contents, models can generalize well, but only those models trained with the
auxiliary map objective generalize well consistently. Without the map objective, general-
ization performance varies from run to run. Models trained on gaze contents alone perform
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only slightly better than chance. Including the auxiliary map objective was not sufficient
to enable generalization in models that received the entire image as input.

5. Discussion

Figure 7: Accuracy on the hardest test set as
a function of input and whether the auxiliary
map objective was optimized. Each point is one
model run.

We designed RGN to embody computational
principles hypothesized to contribute to vi-
sual scene understanding in the primate
brain. We then applied RGN in an ide-
alized and controlled task setting which al-
lowed for careful inspection of generalization
behaviour. Our goal was not to train a
network to count under naturalistic condi-
tions but to use careful, controlled experi-
ments to study the factors that make count-
ing hard and the computational mechanisms
it may require. We compared RGN to several
parameter-matched convolutional and recur-
rent architectures to explore the factors con-
tributing to the RGN’s generalization ability,
and consequently to provide support for a the-
ory of visual scene understanding.

The critical feature of the RGN is that
it combines gaze locations (“where”) with
gaze contents (“what”). The gaze locations
stand in for what could in biology be an overt
attention-driven movement, as in a saccade,
or a covert attentional signal in the absence
of an explicit movement. In the setting we study, this signal alone is very useful for comput-
ing numerosity, but fully accurate performance on new, held-out displays is only possible by
integrating information from both streams. We note the caveat that here, we only study a
single stylised task under a fixed (if broadly plausible) saccadic policy. More work is required
to establish how sensitive our findings are to the specific conditions (e.g., the presence of
clutter) and saccadic policy.

Our saccadic policy was designed to yield glimpse sequences that spanned our integration
score. We ensured that the vast majority of glimpse sequences received an integration
score of 2 or higher, meaning that our symbolic counter required querying both input
streams to determine the numerosity. This dataset design allowed us to quantify the specific
deficits associated with unistream models. We showed that the performance of a model
receiving only gaze locations grades with integration score, generalizing perfectly on glimpse
sequences with an integration score of 1 (no integration required). This result validated
our interpretation of RGN’s generalization success as the result of integrating both input
streams. However, it remains to be seen how biologically realistic these saccadic trajectories
are. In future work, we plan to explore more biologically plausible models of salience-based
attention and to collect eye-tracking while human subjects view images similar to those

10



Learning to count by combining “what” and “where”

used here. Our theory will be further validated if we can predict human visual reasoning
responses from real glimpse sequences.

Acquiring the abstract concept of numerosity was one of the Bongard Problems for
AI posed over 50 years ago (Bongard, 1970), alongside other relational problems like same-
different tasks that still challenge modern AI systems (Stabinger et al., 2021; Mitchell, 2021;
Chollet, 2019). In the present work, numerosity recognition is primarily a spatial-relation
task. In future work, we plan to extend our approach to other tasks involving an integration
of multiple object relations and identities, for example, counting objects that satisfy some
query in cluttered images, comparing quantities of different object types, and recognizing
Gestalt properties. Such tasks will invariably require a more developed ventral stream, but
we expect the computational principles studied here to transfer well to other task settings.
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Appendix A. Additional Controls

To verify that RGN’s generalization ability is not limited to the case of homogenous item
sets, we also trained the same model on images with heterogenous item sets. Here the
shapes within an image are selected randomly. In comparing Fig. 8 and Fig. 9, we see that
the gaze contents are more informative during training when the items are not all the same
than when they are, but in a way that does not generalize well to the OOD test sets. The
model that receives both inputs still learns to integrate both streams and generalize to new
shapes, but struggles somewhat with new luminances compared to when all items are the
same, presumably because it has learned to rely more on the gaze contents.

Gaze 
contents 

only

Gaze
locations 

only

Contents 
and 

locations

Validation New shapes New luminance Both new

Figure 8: Accuracy of uni-stream and dual-stream RGN versions for homogenous item sets divided
by integration score.

Appendix B. Model and Training Specifications

All models were initialized with random weights and trained for 500 epochs with stochastic
gradient descent. We used a momentum factor of 0.9 and a step learning rate schedule,
decreasing by a factor of 0.7 every 25 epochs. Dropout (p=50%) was applied before the
map layer in all models during training. The CNN included a 2x2 max-pooling layer before
the second conv layer. A sigmoid nonlinearity was applied to the map layer units. All other
units (except for the number readout units) were leaky rectified linear units with a negative
slope of 0.1.
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DISTINCTIVE
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Figure 9: Accuracy of uni-stream and dual-stream RGN versions for heterogenous item sets divided
by integration score.

Table 1: RGN trainable model parameters

Layer Shape Parameters

embedding [100, 38] 3800

i2h [100, 200] 20000

h2o [100, 100] 10000

map [9, 100] 900

number readout [7, 9] 63

Total params with biases 35079

Appendix C. Symbolic Model of Counting

Here we describe an idealization of the problem of counting the number of objects in an
image.

C.1. Data synthesis

An image consists of a 1x1 square containing 2 ≥ No ≤ 6 objects. Each object Oi for
i = 1 . . . No is described by its Cartesian coordinates c oi ∈ {(xi, yi)|xi ∈ S ∧ yi ∈ S}
where S = {0.2, 0.5, 0.8} and its shape. s oi is a one-hot vector indicating which of Ns

shapes Oi is. This defines a 3x3 grid within the image where objects may lie. These nine
locations are labeled 0 . . . 8. So we can indicate the set of all possible object locations
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Table 2: CNN trainable model parameters

Layer Shape Parameters

conv1 [33, 1, 3, 3] 287

conv2 [33, 33, 2, 2] 4356

conv3 [33, 33, 2, 2] 4356

fc1/map [9, 2904] 26136

number readout [7, 9] 63

Total params with biases 35323

A = {0, 1, 2, 3, 4, 5, 6, 8}. For a given image, the set of actual object locations L will be a
subset L ⊂ A where |L| = No, i.e., the number of ’filled’ locations is equal to the image’s
numerosity.

We then simulate taking a sequence of Ng noisy glimpses of this image. Similarly to
the objects, each glimpse Gj is described by its Cartesian coordinates c gj (gaze locations)
and a shape feature vector s gj (gaze contents) for j = 0 . . . Ng. To generate the gaze
locations, we first construct a random sequence of image objects, making sure that the
sequence contains every object in the image at least once. For example, in an image that
contains 3 objects, our sequence might be O2, O1, O3, O3. Therefore, there is some map f(j)
that maps from the glimpse index to the object index. The corresponding sequence of gaze
locations will be the coordinates of those objects plus some noise: c gj = c of(j) + ϵj . The
noise for x and y are sampled independently: ϵjx ∼ N (xf(j), σ

2) and ϵjy ∼ N (yf(j), σ
2). In

this version, the noise is truncated such that the total euclidean distance between c gj and
c of(j) does not exceed some threshold g(σ2), but this could be relaxed in a fully Bayesian

version of the counter. The glimpse shape feature s
(g)
j is also constructed from the object

shape features. Whereas the mth element of s oi indicates whether object i is an instance
of shape m, the mth element of s gj is the proximity of glimpse j to objects of shape m.

s g
(m)
j =

{∑
k∈K 1− dist(c gj ,c ok)

g(σ2)
if |K| > 0

0 otherwise

(1)

where K is the set of object indices for which s o
(m)
k = 1 and dist(c gj , c ok) ≤ g(σ2).

This proximity score is a positive real number where 0 indicates that there are no objects
of shape m in the vicinity of that glimpse and 1 could mean either that the gaze locations
are equal to the coordinates of an object of shape m, or that a glimpse is in between two
objects of shape m. If the glimpse is close to more than two objects of the same shape, this
proximity value can exceed 1.
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C.2. Counter

Given only a sequence of glimpses Gj = (c gj , s gj) for j = 1 . . . Ng, the noise level σ2

with which the glimpses with synthesized, and knowledge of the minimum and maximum
numerosities, the counter tries to determine the number of objects in the image. It will
do so by estimating L, the set of object locations, or by taking a shortcut based on prior
knowledge about the minimum and maximum possible number of objects, if available. The
counter will assign each image a difficulty level (or integration score) ranging from 0–6 which
indicates the degree to which the two input streams (gaze locations and gaze contents) need
to be integrated in order to determine the numerosity.

C.2.1. Shortcuts

Figure 10: An idealized image depicting the nine
possible object locations. In this example, the im-
age contains three objects: a square at location 3,
another square at location 6, and a diamond at lo-
cation 7. Glimpse locations are indicated by the
blue-green numerals.

There are two shortcuts that might be
available, one based on s g and one based
on c g. The number of unique shapes rep-
resented in s g provides a lower bound on the
number of objects in the image. Our lower
bound is initialized to the minimum numeros-
ity. If the number of unique shapes is greater
than this initial lower bound, we will update
the lower bound to be equal to the number of
unique shapes. When the number of unique
shapes is equal to the maximum numerosity
present in the dataset, the numerosity can be
predicted exactly without further processing.
Images for which this shortcut is available are
assigned a difficulty level of 0. If this shortcut
is unavailable, the next step is to process c g.

C.2.2. Processing gaze locations

For each glimpse coordinate tuple c g, we
infer a set of candidate object locations. This
will be the set of object locations within
some radius (defined by the noise level) of
the glimpse coordinate. For example, in Fig-
ure 10, the set of candidate locations for G0

would be 3, 6; G0 indicates that there could be an object in location 3, in location 6, or in
both location 3 and 6. With these sets of candidates for each glimpse, we can now check for
our second shortcut. If the total number of unique candidate locations over all glimpses is
equal to the lower bound, then the numerosity is equal to the current lower bound. Images
for which this shortcut are available receive an integration score of 1.

Based on the candidate sets, each glimpse is categorized as either unambiguous—if there
is only one location in its set of candidates—or ambiguous, otherwise. Without any further
processing, the unambiguous glimpses tell us locations where there are definitely objects.
We will update our estimate of the object locations L̂ accordingly. The ambiguous glimpses
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can be further categorized as those that need to be resolved to determine the numerosity
and those that do not. The ambiguity of an ambiguous glimpse does not need to be resolved
if its set of candidate locations is contained within our current estimate L̂. For example, in
Figure 11, glimpses 1 and 3 are unambiguous, as indicated by the filled line that connects
them to only one location. Glimpses 0 and 2 are both ambiguous, but only the ambiguity
of glimpse 0 needs to be resolved because the candidates of glimpse 2 (indicated by the
dashed lines) are locations already indicated by the unambiguous glimpses. If there are no
ambiguous glimpses that need to be resolved, then we are done: our current estimate L̂ but
be equal to L and the numerosity must be |L̂|. Images with no ambiguous glimpses to be
resolved also receive a difficulty level of 1 because it required a single pass of computation
through c g to determine the numerosity.

C.2.3. Resolving ambiguity with the shape feature

Figure 11: Knowledge state after processing the
gaze coordinates. Filled lines indicate candidate lo-
cations for ambiguous glimpses. Filled lines indi-
cate unambiguous glimpses. Red circles indicate lo-
cations where items are known to lie. G1 and G3

unambiguously reveal that there are items in loca-
tions 8 and 7 respectively. The candidate locations
for G2 are also 7 and 8, so G2 is ambiguous but ir-
relevant. The only glimpse ambiguity that needs to
be resolved is that of G0.

If there are ambiguous glimpses to be re-
solved, we use s g to resolve that ambiguity.
s g is used to arbitrate among the hypotheses
proposed by the initial processing of c g. For
example, recall in Figure 11, glimpse 0 is an
ambiguous glimpse that needs to be resolved
to determine the numerosity. Its candidate
locations are 3 and 6. Location 6 has already
been surmised to host an object based on in-
formation from the other glimpses. So the
hypotheses are :

1. There is only an object in location 6.
Location 3 is empty.

2. There are objects in both location 3 and
location 6.

These hypotheses predict different pat-
terns in s g0. If hypothesis 1 were true, s g0
would be all zeros except for one element
which would be equal to the proximity of
glimpse 0 to location 6. There are two ways
that hypothesis 2 could be true. Either lo-
cation 3 and 6 host the same type of shape,
or they host different shapes. If two differ-
ent shapes, s g0 will be all zeros except for
two elements, whose values are equal to the
glimpse’s proximity to location 3 and 6. If the
same shape, than s g0 will be all zeros except
for one element whose value will be equal to the sum of the proximities of glimpse 0 to
location 3 and location 6. These three predictions can be compared to the actual s g0 to
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determine which hypothesis is true. In general, the counter enumerates all hypotheses sug-
gested by c gj and uses s gj to arbitrate among them. When the set of candidate locations
is greater than 2 (can be max 4 in these simulations), the number of predicted patterns
increases significantly since we need to enumerate all possible combinations of shapes.

After resolving an ambiguous glimpse, we update L̂ and check if any of our previous
stopping conditions are met. Note that resolving one ambiguous glimpse might render other
ambiguities inconsequential as well, so we re-evaluate the set of ambiguous glimpses to be
resolved. If any such glimpses remain, we pick another at random to be resolved and go
back to the beginning of the loop. The integration score will be incremented each time
we resolve the ambiguity of an ambiguous glimpse. A glimpse cannot ever necessarily be
uniquely assigned to an object—a glimpse is not ‘of’ an object per se—but each glimpse,
because of how they were simulated, contains information about the set of objects in the
image.
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