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Abstract
We address a benchmark task in agile robotics: catching objects thrown at high-speed. This is a
challenging task that involves tracking, intercepting, and cradling a thrown object with access only
to visual observations of the object and the proprioceptive state of the robot, all within a fraction of a
second. We present the relative merits of two fundamentally different solution strategies: (i) Model
Predictive Control using accelerated constrained trajectory optimization, and (ii) Reinforcement
Learning using zeroth-order optimization. We provide insights into various performance trade-
offs including sample efficiency, sim-to-real transfer, robustness to distribution shifts, and whole-
body multimodality via extensive on-hardware experiments. We conclude with proposals on fusing
“classical” and “learning-based” techniques for agile robot control. Videos of our experiments may
be found here: https://sites.google.com/view/agile-catching.

Figure 1: Mobile Manipulator with Lacrosse Head catching a ball within a second. (right) Auto-
matic ball thrower with controllable yaw angles and speed of around 5m/s.

1. Introduction

Chasing a ball in flight and completing a dramatic diving catch is a memorable moment of athleti-
cism - a benchmark of human agility - in several popular sports. In this paper, we consider the task
of tracking, intercepting and catching balls moving at high speeds on a mobile manipulator platform
(see Figure 1), whose end-effector is equipped with a Lacrosse head. Within a fraction of a second,
the robot must start continuously translating visual observations of the ball into feasible whole body
motions, controlling both the base and the arm in a coordinated fashion. In the final milliseconds,
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the control system must be robust to perceptual occlusions while also executing a cradling maneuver
to stabilize the catch and prevent bounce-out. The physics of this task can be surprisingly complex:
despite its geometric simplicity, a ball in flight can swing and curve in unpredictable ways due
to drag and Magnus effects (Mehta, 1985); furthermore, the contact interaction between the ball
and the deformable end-effector involves complex soft-body physics which is challenging to model
accurately.

In this paper, we study the relative merits of synthesizing high speed visual feedback con-
trollers for this task from two ends of a design spectrum: Model Predictive Control (MPC) (Borrelli
et al., 2017; Rawlings, 2000) representing a “pure control” strategy, and Blackbox policy optimiza-
tion (Choromanski et al., 2018a) representing a “pure learning” approach. MPC optimizes robot
trajectories in real time in response to state uncertainty - it is nearly “zero-shot” in terms of data
requirements and gracefully handles kinematics, dynamics and task-specific constraints, but can be
computationally expensive and sensitive to errors in dynamics modeling. On the other hand, policy
learning via blackbox or RL (Reinforcement Learning) methods can be extremely data inefficient,
but can adapt, in principle, to complex and unknown real world dynamics. Our primary contribu-
tion is to provide insights into subtle trade-offs in reaction time, sample efficiency, robustness to
distribution shift, and versatility in terms of whole-body multimodal behaviors in a unified exper-
imental evaluation of robot agility. We conclude the paper with proposals to combine the “best of
both worlds” in future work.

1.1. Related work

Both classes of techniques have been previously applied to the robotic catching task. Examples
of optimization-based control for ball catching include Hove and Slotine (1991); Hong and Slotine
(1995); Yu et al. (2021); Frese et al. (2001); Kober et al. (2012). Bäuml et al. (2010a) and Lam-
pariello et al. (2011) present an unified approach subsuming catch point selection, catch configu-
ration computation and path generation in a single, nonlinear optimization problem (also see, Koç
et al. (2018), Jia et al. (2019)). Several papers utilize human demonstration and machine learning
for parts of the control stack. Kim et al. (2014) probabilistically predict various feasible catching
configurations and develop controllers to guide hand–arm motion, which is learned from human
demonstration. Riley and Atkeson (2002) also learn motion primitives from human demonstration
and generate new movements. Dong et al. (2020) use bi-level motion planning plus a learning based
tracking controller. Some papers aim for soft catching explicitly. Salehian et al. (2016) extend Kim
et al. (2014) further, offering a soft catching procedure that is more resilient to imprecisions in con-
trolling the arm and desired time of catch. Bäuml et al. (2011) extend Bäuml et al. (2010a) further
for enabling soft landing. Hong and Slotine (1995); Lippiello and Ruggiero (2012) add heuristics
for soft catching, moving the hand along the predicted path of the ball, while decreasing its velocity
to allow the dissipation of the impact energy.

2. Problem formulation and proposed solution

We describe the trajectory of the object to be caught by a function Fo, which maps a query time
t ∈ R≥0 to the object’s position and velocity at time t, i.e., (po(t), vo(t)) ∈ R3×R3. Depending on
the aerodynamic and inertial properties of the object, Fo may be highly non-trivial. Our knowledge
of Fo is encoded via a known F̂o which maps a query time t ∈ R≥0 and a set of parameters
θo ∈ Rd to a prediction for the object position and velocity at time t, i.e., (p̂o(t; θo), v̂o(t; θo)). For
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this work, we limit our scope to spherical, rigid balls and implement F̂o via classical Newtonian
physics; catching objects with non-trivial aerodynamics and non-uniform shapes is left to future
work. However, we only observe the ball position and velocity indirectly via two fixed cameras,
and use θo to encode our vision system’s current position and velocity estimate.

For the robot, we let q ∈ R7 denote the joint configuration vector, where q1 ∈ R corresponds
to the translational base joint, and q2:7 ∈ R6 represent the arm joint angles. We also let FK : q ∈
R7 7→ FK(q) = (ph(q), Rh(q)) ∈ R3 × SO(3) denote the forward-kinematics transform that maps
the joint configuration vector q to the SE(3) pose of the robot’s end-effector, i.e., a lacrosse head.

2.1. Catching via optimal control

We assume that there exists a lower-level position and/or velocity controller that compensates for the
arm’s nonlinear manipulator dynamics. Abstracting away the closed-loop behavior of this lower-
level control system, we plan for the motion of the arm by assuming second-order integrator dy-
namics1 for q, i.e., q̈(t) = ua(t) ∈ R7.

With this assumption, the optimal catching problem (OCP) can be formalized as a free-end-time
constrained optimal control problem over the function ua(·) and catching time tf :

minimize
ua(·),tf

J(ua, tf ) :=

∫ tf

0

(
λ+ ‖ua(τ)‖2

)
dτ + Ψ(q(tf ), q̇(tf ), tf ), (1)

where λ ∈ R>0 is a weighting constant and Ψ : R7 × R7 × R≥0 → 0 is a terminal cost; subject to
the second-order integrator dynamics q̈(t) = ua(t), and the following constraints:

∀τ ∈ [0, tf ], ua(τ) ∈ [ua, ua], q(τ) ∈ [q, q], q̇(τ) ∈ [q̇, q̇], c(q(tf ), tf ) ≥ 0. (2)

The first three constraints capture limits on the control effort and the joint configurations and ve-
locities. The terminal cost Ψ and endpoint constraint function c capture two desirable properties
for catching: (i) SE(3) pose alignment of the lacrosse head with the ball’s position and velocity
direction at the catching time tf , and (ii) minimizing any residual velocity of the lacrosse head
perpendicular to the ball’s velocity vector. We capture both these properties via both hard and soft
constraints.

Hard endpoint constraint c. The endpoint catching constraints capture the requirement that the
lacrosse head must be positioned and oriented correctly to accept the incoming projectile. In partic-
ular, let (po(tf ), vo(tf )) be the true 3D position and velocity of the object at the catching time tf .
Then, we require:

‖ph(q(tf ))− po(tf )‖ ≤ εp, and (Rh(q(tf ))e2)
T vo(tf )

‖vo(tf )‖
≥ cos εr, (3)

where εp, εr ∈ R>0 are prescribed tolerances on the position and angular errors, respectively, and
e2 = (0, 1, 0)T . The second constraint enforces alignment of the local ŷ−axis on the lacrosse head,
which is orthogonal to the net’s catching plane, and the ball’s velocity vector at tf .

1. Note that the lower-level control system may have some non-trivial closed-loop response characteristics, including
delays. However, these can be pre-compensated for by adjusting the commanded (q, q̇) trajectory from the planned
(q, q̇) trajectory.
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The constraint above is written assuming access to the ball’s true 3D position and velocity.
However, since we only have access to a prediction of these quantities via the parametric predic-
tor F̂o(·; θo), we enforce the above constraints w.r.t. the predicted quantities p̂o(tf ; θo), v̂o(tf ; θo),
making the endpoint catching constraint function c(q(tf ), tf ; θo) parametric in θo.

Soft terminal cost Ψ. In conjunction with the hard constraints above, the terminal cost Ψ takes
the following form:

Ψ(q(tf ), q̇(tf ), tf ; θo) := wpψp(q(tf ), tf ; θo) + wvψv(q(tf ), q̇(tf )) (4)

ψp(q(tf ), tf ; θo) := ‖ph(q(tf ))− p̂o(tf ; θo)‖2 +

(
1− (Rh(q(tf ))e2)

T v̂o(tf ; θo)

‖v̂o(tf ; θo)‖

)
(5)

ψv(q(tf ), q̇(tf )) :=

∥∥∥∥∥∥Rh(q(tf ))T vh(q(tf ), q̇(tf ))−

 0
vc
0

∥∥∥∥∥∥
2

, (6)

where wp, wv ∈ R≥0 are constant weights, and vh(q(tf ), q̇(tf )) ∈ R3 is the lacrosse head’s trans-
lational velocity expressed in the inertial frame, and computed via the Jacobian-vector product
∂qph(q)q̇. The constant vc ∈ R is a desired catching speed. Thus, the terminal cost Ψ penal-
izes the catching-time pose errors, as defined within (3), as well as the motion of the lacrosse head
perpendicular to the ball’s velocity vector at the catching instant.

The overall OCP is thus parametric in θo, the parameters of the ball’s 3D predictor function F̂o,
and problem parameters {εp, εr, vc, wp, wv, λ}.

3. Reduction to Sequential Quadratic Programming

The OCP (1) is a non-trivial problem which could be solved by leveraging the necessary conditions
of optimality for free end-time problems and using boundary-value-problems solvers. However,
this would entail optimizing over control, state, and co-state trajectories using dense discretization
of the dynamics and inequality constraints (e.g., via collocation). Instead, we simplify the compu-
tational burden by optimizing over a restricted class of solutions – a sequence of acceleration and
coasting phases, and in the process, convert the problem into a multi-stage discrete-time trajectory
optimization problem that is subsequently solved using a state of the art shooting-based Sequential
Quadratic Programming (SQP) solver (Singh et al., 2022).

3.1. Conversion to Multi-Stage Trajectory Optimization

We assume that the acceleration limits are given by symmetric intervals [−q̈a, q̈a], where q̈a ∈ R7
>0

is a fixed vector. Then, we can define an N -stage discrete-time trajectory optimization problem,
where each “stage” is composed of a constant acceleration phase followed by constant cruise phase.
Formally, stage-k for k ∈ {0, . . . , N − 1} lasts for δt[k] seconds, where δt[k] ∈ R≥0. Then, within
the acceleration phase of stage-k, joint i ∈ {1, . . . , 7} accelerates at ±q̈ai starting at (qi, q̇i)[k] to
achieve a net velocity change of δq̇i[k]. In the cruise phase, the joint moves at a constant rate of
q̇i[k] + δq̇i[k] for δt[k] − (|δq̇i[k]|/q̈ai) seconds. We can summarize the stage transition above by
defining a composite state x and control u:

x[k] := (q[k], q̇[k], t[k]) ∈ R15, u[k] := (δq̇[k], δt[k]) ∈ R8

4



AGILE CATCHING WITH WHOLE BODY MPC AND BLACKBOX POLICY LEARNING

Then, the stage-“dynamics” are written as:

x[k + 1] =

q[k + 1]
q̇[k + 1]
t[k]

 =

q[k] + (q̇[k] + δq̇[k])δt[k]− (1/2)∆−1q̈a (δq̇[k] ◦ |δq̇[k]|)
q̇[k] + δq̇[k]
t[k] + δt[k]

 (7)

where ◦ denotes the Hadamard product, and ∆v is the diagonal matrix form of the vector v. Let
u := (u[0], . . . , u[N − 1]). The stage-equivalent discrete-time objective is given as:

J(u) =

N−1∑
k=0

(
λδt[k] + ‖δq̇[k]‖2

)
+ Ψ(x[N ]). (8)

Remark 1 Note that the exact conversion of the integral objective in (1) to the stage-wise discrete-
time objective would result in a stage-cost of the form λδt[k] + q̈Ta |δq̇[k]|. However, this was found
to be numerically less robust than the C2 smooth objective used above.

The terminal cost and endpoint catching inequality constraints from (3) carry over directly,
and are applied to x[N ] = (q(tf ), q̇(tf ), tf ), where tf =

∑N−1
k=0 δt[k]. We now tackle the limit

constraints on (q, q̇, q̈). For acceleration, we require:

|δq̇[k]| ≤ q̈aδt[k], k = 0, . . . , N − 1. (9)

Since q̇(t) linearly interpolates between the stage-values q̇[k], the velocity limit constraints need
only be enforced at the stage values:

q̇ ≤ q̇[k] ≤ q̇, k = 0, . . . , N. (10)

Finally, to handle the limit constraints on q(τ) for all τ ∈ [0, tf ], we must account for both the
parabolic (constant acceleration) and linear (cruise) profiles within each stage:

• Case 1: q̇i[k](q̇i[k] + δq̇i[k]) ≥ 0. In this case qi(τ) interpolates in-between {qi[k], qi[k+ 1]}
for all τ ∈ [t[k], t[k + 1]]. Thus, we need only apply the limit constraints on the endpoints
qi[k], qi[k + 1].

• Case 2: q̇i[k](q̇i[k] + δq̇i[k]) < 0. In this case, there is a local max/min for qi(τ) within
[t[k], t[k + 1]] where q̇i(τ) = 0. Denote this max/min as q̂i[k]. Then, in addition to enforcing
the limit constraints at qi[k], qi[k + 1], we must also enforce the constraint on q̂i[k]. The
expression for q̂i[k] is given by:

q̂i[k] = qi[k] +


q̇i[k]

2

2q̈ai
if q̇i[k] > 0

− q̇i[k]
2

2q̈ai
if q̇i[k] < 0

.

Given the discrete-time “stage”-dynamics, optimization objective, and constraints, we can use
any off-the-shelf constrained discrete-time trajectory optimization solver. In this work, we leverage
Dynamic Shooting SQP, introduced in Singh et al. (2022).
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Remark 2 Note that the combination of max/min acceleration and cruise phases within each stage
reflects the nature of mixed control-effort/minimum-time optimal control solutions, colloquially
characterized as the ‘bang-off-bang’ strategy. Further, recent work (Sarkar et al., 2021) has shown
that for LTI systems with a single control input, the optimal solution to a mixed control-effort/minimum-
time problem with an endpoint reachability constraint is a sequence of “bang-off” stages. This
justifies our use of such a stage-wise reduction of the original continuous-time OCP, and is similar
in spirit to previous works on catching using trapezoidal velocity profiles (Bäuml et al., 2010b).

3.2. Further implementation details

We now describe further implementation details of our SQP implementation.

Asynchronous Implementation: Running concurrently to the catching controller is an estimator
that generates updates of the predictor parameters θo, necessitating online re-planning. We achieve
this via an asynchronous implementation where the optimization problem is continually re-solved in
a separate thread, using the latest estimate for θo and the current robot state (q, q̇). The commanded
(q, q̇) for the robot’s lower-level PD controllers are computed by decoding the most recent stage-
wise solution to a continuous-time trajectory, thereby guaranteeing a consistent control rate. We
note that since there is no receding horizon, re-planning is more akin to fine-tuning of the plan in
response to the updating estimate of the ball’s trajectory, as opposed to traditional model-predictive-
control. Thus, in the absence of errors in the ball’s trajectory’s prediction, the problem remains
recursively feasible.

Cradling: Following the intercept of the ball, we use an open-loop cradling motion primitive,
modeled as a 2nd-order ODE in q, to slow the lacrosse head and simultaneously rotate the net to
point upwards. In particular, for t ≥ tf , we let q̈(t) := uc(t, q(t), q̇(t)), where uc is an acceleration
controller, detailed below. Define ŷh(q) := Rh(q)e2, i.e., the end-effector frame’s ŷ−axis. Then,
for t ≥ tf , let ν(t) := min{(t − tf )/ts, 1}, where ts ∈ R>0 is a user-set constant, denoted as the
“slow-down” time. Then, we define the desired translational vd and rotational ωd velocity for the
lacrosse head as follows:

vd(q(t), t) := vc(1− ν(t)) cos(πν(t))ŷh(q(t))

ωd(q(t)) := −π(ŷh(q(t))× e3),

where e3 := (0, 0, 1)T , and vc ∈ R is the desired catching speed defined in (6). Thus, the desired
translational velocity vd is aligned with the end-effector’s ŷ−axis, and slows the head down from
vc to 0. Meanwhile, the desired rotational velocity tries to align the net to point upwards. The
combination of these velocities results in a “scooping-like” motion, intended to cradle the ball. The
desired acceleration is then given by simple proportional feedback:

v̇h = kv(vd − vh(q, q̇)), ω̇h = kω(ωd − ωh(q, q̇)), (11)

where ωh(q, q̇) is the lacrosse head’s rotational velocity expressed in the inertial frame, and kv, kω ∈
R>0 are user-set constant gains. To convert these accelerations into the joint accelerations uc at each
sampled control step, we integrate (11) from the current (vh(q, q̇), ωh(q, q̇)) using Euler integration
for one controller time-step, and invert the Jacobian of the FK transform at q to compute an updated
set of desired joint velocities q̇+. The resulting desired change in velocity, q̇+ − q̇ is then clipped
according to the acceleration constraints, yielding the final joint acceleration uc. Finally, we perform
one controller time-step integration of q̈ = uc assuming a zero-order-hold on uc, to update (q, q̇).
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4. Blackbox Gradient Sensing Optimization

The catching problem (1) can also be formulated as a Partially-Observable Markov Decision Process
(POMDP), defined by the tuple (S,O,A,R, P ) where S is the state space partially observed by O,
the observation space,A is the action space,R : S×A 7→ R is the reward function and P : S×A 7→
S is the dynamics function. The optimization objective is to learn a parameterized policy πθ : O 7→
A that maximizes the expected total episode return, J(θ) = Eτ=(s0,a0,...,sT )

∑T
t=0 r(st, πθ(ot)).

The state space consists of the ball position, velocity, and a predicted trajectory, which are approx-
imated from the raw observations generated by the perception system and an imperfect dynamics
model, thereby justifying the POMDP categorization. In this work, we optimize a neural network
policy via Blackbox policy optimization (Choromanski et al., 2018b, 2019; Mania et al., 2018).

4.1. Reward design

Careful reward design is necessary to ensure the success of blackbox policy optimization. The
reward function is different for training in sim vs. real due to differences in quality of data from
each. In both cases we reward the net getting close to the ball during the episode. In sim, we
additionally reward orientation alignment before the catch + a stability reward for keeping the ball
in the net; in real, we use a flat reward for successful catches (detected by a sensor). Finally, we
discourage excessive motion via penalizing position/velocity/acceleration/jerk in sim, and hardware
limit violation in real. All terms are summed together to yield the net reward. In more detail:

• Object Position Reward (sim/real): We compute the closest distance the end-effector comes
to the object during the episode. The closest distance is scaled on an exponential curve with
a cutoff at 20cm, scoring 1.0 for any episodes below this threshold.

• Object Orientation Reward (sim): We compute the orientation of the net right when the
ball is within 20cm of the net. The score is computed as a dot product of the velocity vector
of the object and the axis of the net, scaled between 0 to 1.

• Object Stability Reward (sim): This reward computes how stable the object remains after
it is close to the net (within 20cm of the net). Entering the close criteria and staying there
through the end of the episode provides a flat 0.2 reward. The remaining 0.8 part of the
stability reward is given by measuring the speed of the ball while it’s close for 0.25s. Each
time-step during this duration contributes equally and is scored on an exponential curve based
on object speed, capping out at speeds less than 0.2m/s scoring full for that timestep. A full
score keeps the speed less than 0.2m/s for the full 0.25s. This reward is only used in sim as
the precision of ball tracking in real is difficult when the ball is in the net or obscured.

• Object Catch Reward (real): We use a proximity sensor attached close to the net that can
reliably detect whether a ball is in the net or not. The ball is declared as caught if the sensor
detects a ball continuously in the net for greater than 0.25s. This provides a flat 0 or 1 reward.

• Penalties for exceeding dynamic constraints (sim): We use multiple penalty rewards used to
ensure the policy learns to operate within the robot constraints such as joint position, velocity,
acceleration and jerk limits. The penalty rewards are implemented as a flat 1.0 if the agent
actions stay within constraints and reduces to 0 depending on how much it violates them. The
reward is reduced depending on how many timesteps and by how much it exceeds them.
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• Penalties for exceeding dynamic constraints (real): The hardware produces a fault error
code and freezes when movements exceed constraints. Thus, we assign a binary penalty
whether the hardware encounters the fault code or not.

While the Object Catch Reward is a direct measure of catch success, it is a sparse metric for
optimization, particularly during early stages of training. Consequently, the Object Position and
Object Orientation reward terms provide more dense guidance, encouraging the policy to align the
net correctly with the catching pose and start learning. The Object Stability reward was necessary
to penalize interactions where the ball simply bounced off the net. Finally, the Dynamic constraint
penalties were necessary for successful transfer to the real robot in order to respect physical con-
straints.

4.2. Further implementation details

We now describe further implementation details of our blackbox policy optimization.

Policy Network: We use a two-tower CNN neural network. The first tower process the histor-
ical joint positions represented as an image of size (nhist, 7), where nhist is the number of past
timesteps. The second CNN tower process the predicted ball trajectory represented as an image of
size (npred, 6), where npred is the number of predicted timesteps. The output of the two towers is
concatenated into a single tensor, which is fed into two fully-connected layers. The final output is
then taken as the commanded joint velocities. In total, our policy network has 3255 parameters.

Blackbox Gradient Sensing and Sim-to-Real Finetuning: We apply Blackbox Gradient Sens-
ing (BGS) for optimizing the policy neural network parameters θ, due in part to both the simplicity
of the method and recent successes in a variety of robotic domains (Abeyruwan et al., 2022). The
algorithm optimizes a smoothened version Jσ(θ) of the original total-reward objective J(θ), given
as: Jσ(θ) = Eδ∼N (0,Id)[J(θ + σδ)], where σ > 0 controls the precision of the smoothing, and δ
is an isotropic random Gaussian vector. We first train in a simulation environment implemented in
PyBullet (Coumans and Bai, 2016–2021). Once the policy performs well in simulation, we transfer
the policy to the real robot and run further BGS finetuning steps using the mechanical thrower.

5. Experiments

We evaluate both our SQP and blackbox (BB) agents in simulation, on the real robot, and also
explore performance under various distribution shifts of the thrower. Our SQP agent uses a state of
the art SQP solver (Singh et al., 2022) built on top of trajax (Frostig et al., 2021), a JAX library for
differentiable optimal control. For the SQP agent, we found that a single stage, i.e., N = 1 in (8),
was sufficient to achieve a high catching success rate, albeit with less flexibility on matching the
desired catching speed defined in the soft terminal cost in (6). For our BB agent, we use a distributed
BGS library (Choromanski et al., 2018a) with policy networks implemented in Tensorflow Keras.
The robot used is a combination of an ABB IRB 120T 6-DOF arm mounted on a one-dimensional
Festo linear actuator, creating a 7-DOF system. The ball location is determined using a stereo pair
of Ximea MQ013CG-ON cameras running with a trained recurrent tracker model.

Error bars: We show catch success for the real robot with error bars which give at least 95%
coverage, by using the Clopper–Pearson method to compute binomial confidence intervals.
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Inference speed and Reaction time: The BB agent computes a single policy action in time 7.253
ms (std. 0.160 ms), whereas SQP takes 43.046 ms to solve (std. 21.255 ms). Recall that the SQP
runs asynchronously, so this solve time does not block the agent; the synchronous part runs in 2.139
ms (std. 0.212 ms). Vision/hardware joint data processing takes about 5 ms. Overall agents are set to
synchronously run at 75Hz. The mechanical thrower is 3.9 meters away from the robot and imparts
4.5 m/s horizontal velocity alone; including the z-component the speed is ∼ 5.5 m/s at catch time.

Simulation to Reality Transfer: Figure 2 highlights the real robot catch performance of both
SQP and BB agents. First, we see that while BB performance in sim is mostly monotonically in-
creasing (Figure 2, left), this does not necessary translate to monotonic improvement on the real
hardware (Figure 2, middle). Secondly, we see that SQP suffers less performance degradation com-
pared to BB when transferring to real. Finally, we see that it takes 40 iterations of fine-tuning on
real (30 ball throws per iteration) in order for the fine-tuned BB agent to match SQP’s real perfor-
mance (and eventually exceed it). Both methods achieve about 80 to 85% success on mechanical
ball throws.
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Figure 2: (Left) Performance of agents in sim. (Middle) Performance of agents on real without
fine-tuning. (Right) Performance of sim2real transfer after fine-tuning the BB agent
starting from the 30k iteration sim checkpoint. Note that each iteration corresponds to
30 mechanical ball throws. The higher variance of the BB fine-tuned policy is a conse-
quence of using a significantly smaller number of throws per BGS gradient step on real
(30) as compared to simulation (100).

Robustness to Distribution Shifts: Next, we look at the robustness of both agents to out-of-
distribution throws. For BB, this is the post-fine-tuned on real policy. We consider three different
distribution shifts: (i) varying the speed of the thrower, (ii) varying the yaw angle of the thrower, and
(iii) throwing balls by hand instead of using the mechanical thrower. The first two distribution shifts
are plotted in Figure 3. In Figure 3 (left), we see that while BB is reasonably robust to faster throws,
its performance significantly degrades for slower throws. This is in contrast to the SQP agent,
which moderately degrades in performance for faster throws (most likely due to computational
bottlenecks), but is quite robust to slower throws. In Figure 3 (middle), we see that both agents have
similar performance across the in-distribution yaw angles, but for out-of-distribution angles SQP
maintains its performance better relative to BB.

Our last distribution shift involves hand throws (lobs) to the thrower instead of using the me-
chanical thrower. Using hand throws, the SQP agent has a 68.9% catch success (over 196 throws),
whereas the BB agent catch performance degrades to 2.0% (over 150 throws). While the BB policy
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Figure 3: (Left) Catch performance as thrower speed varies between faster (∼ 4.7 m/s), training
(∼ 4.5 m/s), and slower (∼ 4.1 m/s) throws. (Middle) Catch performance as the thrower
yaw angle varies from−9.5◦ to 8◦. Note that the training distribution varies between−6◦

and 6.3◦ (marked by the dashed vertical black line). (Right) Distribution of left and right
catches by the SQP agent on both mechanical ball throws and hand throws. Note that the
BB agent catches to the right 100% of the time, likely due to the learning bias from the
ball throw distribution.

can be further fine-tuned on the hand-thrower distribution, the number of throws required would be
prohibitively time-consuming.

Multimodality: In Figure 3 (right), we demonstrate that the SQP agent is able to catch balls in
both a left and right pose configuration at fairly even rates matching the bias of the thrower. On
the other hand, the BB agent is only able to catch to the right, since the ball thrower distribution is
biased (60/40%) towards throwing to the right. We intuit that during the early phase of training the
policy exploits the split in throw distribution to learn a right hand side catching behavior which is
locally optimal and later fine-tunes this strategy to catch the left hand side balls by moving the base.

6. Conclusion and future work

While the fine-tuned blackbox agent has the highest catching success performance, the SQP agent
is much more robust to distribution shifts in the thrower. To obtain the “best of both”, we plan to
investigate the following strategies combining blackbox optimization and SQP:

• Use blackbox optimization (via CMA, BGS, etc.) to optimize the set of tuneable SQP and
cradling parameters θ.

• Optimize a (smaller) BB policy to output SQP and cradling parameters θ for each episode,
conditioned on ball history and current proprioception.

• Study a “switch-over” policy, where SQP is followed until a switch-over point where control
is handed over to the BB policy right before intercept and cradling. The BB policy addition-
ally outputs a binary variable indicating when to switch. This limits the complexity of the BB
policy to just capturing the correct “cradling” behavior.

Future extensions also include introducing tools from adaptive nonlinear dynamics prediction, for
applications such as catching of light balls with significant aerodynamics (e.g., quadratic drag and
Magnus effects), as well as catching of larger non-spherical objects.
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B. Bäuml, T. Wimböck, and G. Hirzinger. Kinematically optimal catching a flying ball with a hand-
arm-system. 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages
2592–2599, 2010a.
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