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Abstract
In this paper, we present a method for table tennis ball trajectory filtering and prediction. Our gray-
box approach builds on a physical model. At the same time, we use data to learn parameters of the
dynamics model, of an extended Kalman filter, and of a neural model that infers the ball’s initial
condition. We demonstrate superior prediction performance of our approach over two black-box
approaches, which are not supplied with physical prior knowledge. We demonstrate that initializing
the spin from parameters of the ball launcher using a neural network drastically improves long-time
prediction performance over estimating the spin purely from measured ball positions. An accurate
prediction of the ball trajectory is crucial for successful returns. We therefore evaluate the return
performance with a pneumatic artificial muscular robot and achieve a return rate of 29/30 (97.7 %).
Keywords: robotic table-tennis, trajectory prediction, gray-box model learning

1. Introduction

Playing table tennis with a robot is a long-standing challenge in robotics research (Andersson, 1989).
An important difficulty resides in tracking and predicting the ball’s trajectory, which is strongly
influenced by nonlinear effects, arising from drag, spin, and impacts with the table.

In this paper, we focus on designing an accurate model for estimating the ball’s state and predict-
ing its future trajectory. Predicting the future trajectory is crucial for computing a hitting point for
the robot to return the ball. We build our model on existing knowledge about the physical dynamics
of a flying ball, including drag and spin effects. Our method is based on the extended Kalman filter
(EKF) and includes various parameters which are trained from offline data.

This gray-box approach demonstrates superior prediction performance compared to two deep-
learning based (black-box) baselines in our experiments. In addition, we demonstrate that estimating
the ball’s initial spin from parameters of the ball launcher with a neural network drastically improves
prediction performance over an uninformed initialization of the initial spin. We also highlight the
performance of our model by successfully returning balls with a pneumatic artificial muscular robot.
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2. Related Work

Models for time series can be categorized into white-box, gray-box, and black-box models. Black-
box models follow a purely statistical, data-driven approach without incorporation of prior physical
knowledge on the system to model. In contrast, white-box models are purely based on a-priori sys-
tem knowledge, without incorporation of data. In gray-box models, both physical a-priori knowl-
edge and data are used for model design and the identification of its parameters. For many dynami-
cal systems, it is difficult or impossible to achieve accurate white-box modeling due to unmodelled
effects or variable parameters. Incorporation of data enables black- and gray-box models to adapt
to the specifics of the system at hand, which is why we will focus on these two model classes in the
following. Inferring dynamics models and their parameters from data is classically referred to as
system identification, see (Ljung, 1986) for an overview.

Black-box models Black-box time series models often leverage a latent space formulation. They
comprise an encoder-decoder pair mapping to and from the latent space, and a forward model in the
latent space. Recurrent cells such as long short-term memory (LSTM) (Hochreiter and Schmidhu-
ber, 1997) or gated recurrent units (GRU) (Cho et al., 2014) are commonly used as latent forward
models. Such purely deterministic models can be extended by stochastic nodes to handle noisy ob-
servations and transitions, as in variational recurrent neural networks (VRNN) (Chung et al., 2015)
or stochastic RNNs (SRNN) (Fraccaro et al., 2016). Several latent sequence models have been pro-
posed which allow for state estimation through filtering, such as the Kalman-VAE (Fraccaro et al.,
2017), Recurrent Kalman Networks (Becker et al., 2019), and Deep Variational Bayes Filters (Karl
et al., 2017). Hafner et al. (2019) present a recurrent (variational) state-space model (RSSM) which
they use for model-based reinforcement learning. We use RSSM as a black-box baseline in our
paper. Girin et al. (2021) present a comprehensive overview of latent sequence models.

Gray-box models In our work, we follow a gray-box approach, yielding lower prediction error
than a black-box baseline and allowing for physical interpretation of the estimated quantities. In
contrast to the black-box models discussed above, gray-box models incorporate prior knowledge
about the system to model, such as the laws of physics. One line of work in this direction are differ-
entiable physics engines (de Avila Belbute-Peres et al., 2018). These engines enable gradient-based
system identification from data for physical systems with a given structure. Our approach com-
bines ideas from system identification with machine learning. It is therefore capable of exploiting
prior knowledge from physics, while also learning parameters of the filter, dynamics, and a state
initialization neural network from data.

2.1. Table tennis ball trajectory modeling

Approaches for table tennis ball trajectory modelling and prediction can also be categorized as
white-box, black-box, and gray-box models. A common white-box approach is to use an aero-
dynamic model of the ball respecting gravity, drag, and Magnus forces (Andersson, 1989) and a
physics-grounded rebound / impact model (Nakashima et al., 2010) in an extended / unscented
Kalman filter (Zhang et al., 2010; Mülling et al., 2010; Wang et al., 2014; Zhang et al., 2015; Koç
et al., 2018; Tebbe et al., 2018). Common black-box models approximate the ball trajectories with
polynomial curves which are fitted to recorded data (Matsushima et al., 2005; Li et al., 2012; Tebbe
et al., 2018; Lin et al., 2020). We compare our approach to the deep-learning based black-box ap-
proach by Gómez-González et al. (2020) which leverages a variational auto-encoder architecture for
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table tennis ball trajectory prediction. The ball’s spin constitutes a particular challenge for table ten-
nis ball trajectory prediction, since it is hard to infer from position measurements of the trajectory.
As a result, prior works have resorted to detecting the ball’s spin by following the brand logo on
the ball (Zhang et al., 2015) or by equipping the racket with an inertial sensor (Blank et al., 2017).
In our gray-box approach, we use information from the ball’s launch process to initialize the spin.
More precisely, we learn the parameters of a neural network that relates the ball launcher settings
to the initial spin of the ball. This is shown to drastically improve the quality and accuracy of the
predicted ball trajectories.

3. Method

We present a gray-box method based on the extended Kalman filter (EKF), which includes parame-
ters that are learned from data. In our notation, scalars are denoted by lowercase letters (σ), vectors
are denoted by bold lowercase letters (σ), and matrices are denoted by bold uppercase letters (Σ).
The operator diag(x) forms a square matrix with x on its diagonal. The operator [x]+ applies the
softplus function and adds a constant: [x]+ = log(1 + ex) + 10−6 (elementwise for vectors).

3.1. Physical model

We assume the ball’s dynamics in free-flight (not impacting with the table) to follow the ordinary
differential equation (ODE)

v̇(t) = −kd ∥v(t)∥2 v(t) + km(ω(t)× v(t)) + g (1)

with linear velocity v⊤(t) = (vx(t), vy(t), vz(t)) and its Euclidean norm ∥v(t)∥2, angular velocity
(spin) ω⊤(t) = (ωx(t), ωy(t), ωz(t)), drag coefficient kd, Magnus effect coefficient km and gravi-
tational acceleration g⊤ =

(
0, 0,−9.802m s−2

)
. We model the table impact by a linear map that

relates the pre- and post-impact velocity v and spin ω as

((v+)⊤, (ω+)⊤)⊤ = C((v−)⊤, (ω−)⊤)⊤, C ∈ R6×6 (2)

where the superscripts +(−) indicate the linear/angular velocities directly after (before) table impact.

3.2. Discrete-time state space model

We formulate a discrete-time state-space model for the ball trajectory for filtering and prediction.

Free flight We introduce a state-space model for the ball dynamics with state

z(t) = (p(t)⊤,v(t)⊤,ω(t)⊤, ad(t), am(t))
⊤ ∈ R11 (3)

where p ∈ R3 is the position of the ball’s center in Cartesian coordinates. The variables ad, am
parameterize the drag and Magnus coefficients kd(t) = a2d(t) + ϵ, km(t) = a2m(t) + ϵ to avoid
explicit non-negativity constraints and stabilize training. We choose ϵ = 0.05 in our experiments.
As in Eq. (1), v ∈ R3 and ω ∈ R3 relate to linear and angular velocity, respectively. To model
free-flight phases, we time-discretize the ODE in Eq. (1) by Euler’s method

p(t+∆t) = p(t) + ∆tv(t)

v(t+∆t) = v(t) + ∆t (−kd(t)||v(t)||v(t) + km(t)(ω(t)× v(t)) + g)

ω(t+∆t) = ω(t), ad(t+∆t) = ad(t), am(t+∆t) = am(t)

(4)
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The function z(t + ∆t) = gfree(z(t),∆t) abbreviates Eq. (4). To refer to states at discrete time
indices n ∈ {1, ..., N} we use the notation zn+1 = gfree(zn,∆T ). In our setting, ∆T = 1

180 s−1 ≈
5.56ms as the cameras of the video tracking system are triggered with a fixed frequency of 180 s−1.

Impact model An impact of the ball with the table occurs within a discrete-time increment from
n to n + 1 if the lower edge of the ball (with radius r) at pz,n+1 − r penetrates the table, i.e.,
pz,n+1 − r < ztable. We approximate the time of impact ∆imp ∈ [0,∆T ] with a simplified model
to avoid numerical instabilities. It incorporates the velocity of the ball at the last discrete timestep
before the impact vz,n, the gravitational acceleration gz, and the height difference to the table h =
−((pz,n−r)−ztable) such that ∆imp = −(vz,n+

√
vz,n · vz,n + 2gzh)/gz. The state of the ball just

before the impact is given by z− = gfree(zn,∆imp). At the time of impact, the velocity and spin
are updated according to Eq. (2), yielding the state z+ after impact. We denote this by z+ = C ′z−

withC ′ = blockdiag(I3,C, 1, 1). After the impact a free-flight phase follows, such that at the next
discrete timestep, the state is zn+1 = gfree(z

+,∆T −∆imp).

Joint model We denote our discrete-time forward step, incorporating free flight and impacts, as

zn+1 = g(zn) =

{
gfree(zn,∆T ) [gfree(zn,∆T )]z − r ≥ ztable

gfree(C
′gfree(zn,∆imp),∆T −∆imp) otherwise.

(5)

where [z]z extracts the z-coordinate of the position in state z.

3.3. Extended Kalman Filter (EKF)

For filtering and prediction, we assume the ball dynamics as in Eq. (5) with additive Gaussian noise

ẑn+1 = g(ẑn) + ζ, ζ ∼ N (0, diag([σq]
+)), σq ∈ R11. (6)

We obtain measurements of the ball’s center mn ∈ R3 through a vision tracking system, which
we assume to be perturbed by additive Gaussian measurement noise, i.e. mn = p̂n + ϵ, ϵ ∼
N (0, diag([σr]

+)) with σr ∈ R3. We estimate a belief of the state p(ẑn | m1:n), given past
position measurements m1:n, with an extended Kalman filter. Occasionally, the vision tracking
system is unable to compute a position estimate (e.g. due to occlusions), which leads to missing
measurements. To this end, we introduce the operator τ(n), which maps to the index of the nth

available measurement.

State initialization We are interested in initializing the state belief at the time when the second
measurement is available, i.e. p(ẑτ(2) |mτ(1),mτ(2)). The expected ball’s position is estimated by
the second measurement, p =mτ(2), and the expected velocity v by a finite difference approxima-
tion v = (mτ(2) −mτ(1))/(∆T (τ(2)− τ(1))). The initial values for the position and velocity co-
variance are learned and denoted by Σp = diag([σp]

+), Σv = diag([σv]
+). Before a table impact

has happened, we can relate the ball’s spin to the launcher parameters (as we assume the spin to be
constant within the free-flight phase). After an impact has happened, this is no longer possible, as the
impact changes the initial spin of the ball. We indicate by 1ai whethermτ(2) is taken after an impact.
To compute a belief for the initial spin, we first assume the launcher’s head to be oriented horizon-
tally along the x-axis. For this launch orientation, we compute a “canonical spin” and its covariance
depending on the motor parameters sm (see Sec. 4.1.1), which we denote by ω→x = fω(sm,ψf ),
Σω→x = diag([fΣω(sm,ψf )]

+). The functions fω, fΣω are implemented by a neural network with
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two heads with parameters ψf . The azimuthal launch orientation can be changed by rotating the
whole launcher frame by ϕf and by rotating the launcher’s head by ϕl (see Fig. 3(c)). The eleva-
tional launch orientation can be changed by rotating the launcher’s head by θl. To obtain the initial
spin in the world coordinate system, we rotate the “canonical” spin ω→x accordingly. We absorb all
rotations in a rotation matrix Rrot(ϕf + ϕl, θl), such that ω = Rrotω→x, Σω = RrotΣω→xR

⊤
rot.

These considerations only hold true for the free-flight phase after ball launch. After a table im-
pact has happened, we cannot directly relate the ball spin to the launcher parameters. Therefore, in
this case, we set the moments of the initial spin ω = 0, Σω = diag([σω,ai]

+). During training,
we obtain the angles ϕl, θl from piecewise linear regression models which map from launcher pa-
rameters sϕ, sθ to ϕl, θl. We obtained these models on the training split of trajectories recorded
from the default launcher orientation. For the default orientation, we assume the launcher to shoot
balls in the −y direction, i.e. ϕf = −90◦. When evaluating the filter in simulation or on the real
robot, we infer the total azimuthal launch angle ϕf + ϕl from the first two measurements of the
trajectory, to avoid measuring the orientation of the launcher frame ϕf . In summary, we provide
the information (ϕf , ϕl, θl, sm,1ai) of the ball launch to the model. As an ablation, we initialize
ω = 0, Σω = diag([σω]

+), not depending on this information. For the drag and Magnus effect
coefficient, we learn the mean and covariance of the initial state. The full initial state belief incorpo-
rating the first two available measurements is thus given by µτ(2)|τ(1:2) = (p⊤,v⊤,ω⊤, ad, am)⊤,
Στ(2)|τ(1:2) = blockdiag(Σp,Σv,Σω, [σad ]

+, [σam ]
+). In summary, the parameters of our gray-

box model are Ψ = {C,σq,σr,σp,σv,ψf ,σω,σω,ai, ad, am, σad , σam}.

Prediction step We follow the standard extended Kalman filter prediction step, yielding the pre-
diction mean and covariance matrix µn+1|1:n = g(µn|1:n), Σn+1|1:n = JΣn|1:nJ⊤ +Q, where J

is the Jacobian matrix of the transition model, J = ∂
∂zn

g(zn)|zn=µn|1:n .

Correction step In the case of missing observations, we perform multiple prediction steps before
correcting the state belief with the next available measurement. We now assume that at timestep
n+1 a measurement is available. For the correction step, we first compute the Kalman gain K with
the observation matrix H = [I3,0

3×8] as K = Σn+1|1:nH⊤(HΣn+1|1:nH⊤+R)−1. From this, we
obtain the corrected moments as µn+1|1:n+1 = µn+1|1:n +K(mn+1 −Hµn+1|1:n), Σn+1|1:n+1 =
(I−KH)Σn+1|1:n.

Learning For notational simplicity, we again assume that there are no missing observations.
Let P = {(m̂k

1, ..., m̂
k
Lk
)}Kk=1 denote the set of training trajectories, consisting of K sequences

of ball position measurements, each sequence being of length Lk. The chunk operator ex-
pands a single trajectory into L + 1 − N chunks of length N = 50: chunk(m̂1, ..., m̂L) =
{(mi, ...,mi+N−1)}L+1−N

i=1 . By Pc =
⋃K

k=1 chunk(m̂
k
1, ..., m̂

k
Lk
) we denote the set of training

chunks and ∆(Pc) the distribution over training chunks with uniform probability. For learning the
filter parameters Ψ, we maximize their expected marginal log-likelihood under the training chunk
distribution, that is, maxΨ Em1:N∼∆(Pc) log p(m3:N | m1,m2,Ψ). As we do not aim to learn a
generative model of chunks but are only interested in applying the learned model for filtering and
prediction, we additionally condition the marginal log-likelihood on the first two measurements,
since we use these for initializing the filter. The marginal log-likelihood log p(m3:N |m1,m2,Ψ)
can be decomposed (Särkkä, 2013) as follows

log p(m3:N |m1,m2,Ψ) =

N∑
n=3

log p(mn|m1:n−1,Ψ) =

N∑
n=3

logN (mn;µn|1:n−1,Σn|1:n−1) (7)
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(a) Setup with the ball launcher (left) and the
robot arm (right).
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(b) Dataset of recorded table tennis trajectories,
launched from the “default” orientation. Five
randomly selected trajectories are colored.

Figure 2: Experimental setup (a) and visualization of recorded trajectories (b).

which allows for an iterative computation with complexity O(N) when filtering the
chunk (m1, ...,mN ). We maximize the expected marginal log-likelihood on batches of chunks
with batchsize 64 using the Adam optimizer (Kingma and Ba, 2015) with learning rate 5 · 10−3.

4. Experiments

−0.71.0

x [m]

0

1

2

3
y

[m
]

Figure 1:
Trajectories of balls
launched towards the
robot arm (at y ≈ 0),
with unreturned trajec-
tories colored orange.
29/30 launches are re-
turned; details: Sec. 4.4.

We conduct several experiments to answer the following research ques-
tions: Q1: How large is the prediction error of the EKF model, and how
does it compare to black box baselines? Q2: Does supplying the launch
parameters (launch direction, launcher motor speeds) to the predictive
model improve prediction performance for the EKF and the RSSM base-
line? We use a neural network to infer the initial ball spin from motor
parameters, leading us to Q3: Does the spin inferred from the launcher
parameters relate to a simple spin model derived from physical princi-
ples? Finally, we are interested in the ratio of balls returned by a robot
arm (Büchler et al., 2016) when using the proposed model for trajectory
prediction (Q4).

4.1. Setup

In Fig. 2 we show our experimental setup. A ball launcher shoots table
tennis balls towards a robot arm that is actuated with pneumatic artificial
muscles (Büchler et al., 2016). The position of the ball is measured
using four RGB cameras as described in Gomez-Gonzalez et al. (2019).
Details of the ball launcher are described in Sec. 4.1.1. The robot is only
used for the return experiment in Sec. 4.4. For training the predictive
models, we use recorded trajectories (Sec. 4.1.2).

4.1.1. LAUNCHER DETAILS

Our ball launcher follows the design of Dittrich et al. (2022). It accelerates the table tennis ball
using three rubber wheels which are actuated by brushless motors. The azimuthal and elevational
angle of the launcher’s head can be adjusted with servo motors to change the direction of the launch.
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(a) Ball launcher (b) Schematic drawing
(rear view)
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(top/side view)
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Figure 3: Experimental setup of the ball launcher. (a) Photo of the launcher (taken in the direction
of ball launch, with table in background), (b) a schematic drawing of the launcher with
rotating wheels (gray) and ball (orange), (c) frame (ϕf ) and launch angles (ϕl, θl), (d)
shoot directions for the “default” and “unseen” configurations.
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Figure 4: Relation of launcher parameters s ∈ [0, 1]5 to launch angles ϕl, θl and angular velocity
of launcher wheels. The left two panels show the result of piecewise linear regression
(red) to initial trajectory angles (blue); the right panel shows angular velocity of wheels
depending on the actuation. The outlier (orange, center panel) is excluded.

The launcher frame can be freely positioned and rotated about the z-axis, as parameterized by the
angle ϕf . We refer to Fig. 3 for more details on the launcher, including its geometry and the launch
angles. The angular velocity of the top-left, top-right, and bottom motor are controlled through three
actuation parameters sm = (sm,tl, sm,tr, sm,b)

⊤ ∈ [0, 1]3. The mapping from actuation parameters
to angular motor velocity is nonlinear, see Fig. 4. The azimuthal (ϕl) and elevational (θl) launch
angles can be controlled through two parameters sϕ ∈ [0, 1], sθ ∈ [0, 1]. We fit piecewise linear
functions to the launch angles of the recorded trajectories to find a mapping from the actuation
parameters sϕ ∈ [0, 1], sθ ∈ [0, 1] to launch angles ϕl, θl (see Fig. 4). The azimuthal launch
direction can further be changed by rotating the launcher’s frame about the z-axis by the angle ϕf .
For the default orientation, we oriented the launcher such that it shoots along the negative y-axis for
ϕl = 0, i.e., ϕf = −90◦.

4.1.2. DATA RECORDING

For collecting trajectories for training, validation, and testing, we position the launcher at six differ-
ent positions and orientations (see Fig. 3(d)). We term one particular position/orientation default,
which we use both for training and testing, and the other five unseen, which we use for testing only.
On the default orientation we collect 334 trajectories, which we split in 108 for training, 63 for
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validation, and 163 for testing. For each of the five unseen configurations we collect 30 trajectories
which are used for testing only. For each trajectory we randomly sample the launcher parameters
uniformly from sϕ ∈ [0.4, 0.6], sθ ∈ [0.7, 1.0], stl ∈ [0.095, 0.155] (default), stl ∈ [0.105, 0.165]
(unseen), s{tr,b} ∈ [0.135, 0.195] (default), s{tr,b} ∈ [0.145, 0.205] (unseen). To simulate different
launcher orientations, we optionally augment the training data by rotating each trajectory by a ran-
dom angle ϕf ∈ [0, 2π] about the z-axis at the point with minimal z coordinate. We add 19 rotated
trajectories for each existing trajectory to the training set, which forms the augmented dataset.

4.2. Prediction performance

Evaluation protocol The predictive performance of the investigated models is quantified by mea-
suring the prediction error when filtering until one second before the trajectory ends, and predicting
the remaining part of the trajectory. For shorter trajectories, we filter at least ten measurements. The
prediction error for each sequence is given by the maximum Euclidean distance between the last
five prediction-measurement pairs.

Baselines As a first baseline, we train a recurrent state space model, taken from a re-
implementation1 of (Hafner et al., 2019). We inherit the standard parameters except for the ”free
nats” parameter, which we determined empirically as 0.3 for minimal average prediction error on
the validation split of the default dataset. Optionally, we pass the same ball launch information
used in the EKF model for state initialization as action to the RSSM model. We train the model for
100,000 steps. As a second baseline, we train a trajectory variational auto-encoder (TVAE) from
Gómez-González et al. (2020), using the provided implementation2. We use a model length of 250
as our longest trajectory is 235 steps. We train the model until the validation loss increases.

Results We refer to Fig. 5 for a visualization of the results. We observe that augmenting the
training data is important for the EKF approach presented herein to generalize to the unseen launcher
positions (Fig. 5(a)). In all settings, the EKF approach shows superior performance compared to the
RSSM and TVAE baselines. Fig. 5(b) shows that initializing the spin using ball launch information
reduced the prediction error drastically, both on the default and unseen launcher configurations. We
show representative filtering and prediction results on three trajectories in Fig. 6.

4.3. Spin evaluation

With this experiment, we aim to verify the plausibility of spins which are estimated by the learned
neural network fω(sm,ψf ) given launcher parameters sm (see Sec. 3.3). For this, we formulate a
simple model for the ball spin, which is derived from the geometry of the launcher (see Fig. 3(b)).
We model the ball’s spin for a launcher which is oriented to shoot balls in the −y direction as

(
ω
x,
−→−y

, ω
y,
−→−y

, ω
z,
−→−y

)⊤
= ωtlα

(
1

2
, 0,−

√
3

2

)⊤

+ ωtrβ

(
1

2
, 0,

√
3

2

)⊤

+ ωbγ (−1, 0, 0)⊤ . (8)

The reasoning behind the model is that every motor adds a spin component to the ball, which
is the motor speed (ωtl, ωtr, ωb) scaled by a constant (α, β, γ). We note that the bottom motor
causes a spin in negative y direction. The direction of the spin of the top motors is obtained by

1. https://github.com/Kaixhin/PlaNet
2. https://github.com/sebasutp/trajectory_forcasting
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Figure 5: Prediction error for various methods on the test set of default (def.) and unseen (uns.)
launcher positions, with and without ball launch information (launch info), for a predic-
tion horizon of one second (see Sec. 4.2). Depicted statistics are over the prediction errors
for ten independently trained models. All models are trained on the augmented dataset,
except “EKF w/o aug.”. The EKF model outperforms the RSSM (Hafner et al., 2019) and
TVAE (Gómez-González et al., 2020) models (a). The EKF’s prediction error can further
be reduced by providing ball launch information (b).
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Figure 6: EKF filtering / prediction results on the unseen launcher orientations (with ball launch
information). We filter until one second before the end of the trajectory (orange) and
predict the remaining one second (green). Measurements are colored blue. We show
every tenth measurement for visual clarity. Shown are the trajectories with max. / median
/ min. prediction error at the end of the trajectory from all unseen launcher configurations,
over ten independently trained models. The median prediction error is 10.3 cm.

rotating the bottom-motor spin unit vector (−1, 0, 0)⊤ by 120◦ (240◦) about the y-axis. For this
experiment, we obtain the values for ωtl,tr,b from measurements for the angular launcher wheel
velocity given the actuation parameters (see Fig. 4(c)). For all test trajectories from the default
dataset, we first compute the spin for a launch in x direction with fω(sm,ψf ). We rotate this spin
by −90◦ about the z-axis to obtain the spin in −y direction, as in Eq. (8). Finally, we obtain the
parameters α, β, γ by minimizing a squared error between the rotated spins from fω and the spins
estimated by Eq. (8). In Fig. 7 we show that the two spin estimates highly correlate, indicating
that the values fω(sm,ψf ) indeed relate to the actual spin of the ball. It is important to note that
without additional physical information, we can determine the spin only up to a scaling factor. This
is because we both learn km = a2m and ω which appear as a product in Eq. (1). The actual spin
could be inferred as ω∗ = kmω/k

∗
m with k∗m = CmρAr/(2m) for known values of the ball’s mass

m, Magnus lift coefficient Cm, ball radius r, air density ρ and cross-sectional area A = πr2.
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Figure 7: Correlation of spin values estimated by the neural network (NN) fω(sm,ψf ) from motor
actuations sm and spin values computed with Eq. (8). Both estimated spin values highly
correlate, indicating physical plausibility of spins estimated by fω(sm,ψf ), see Sec. 4.3
for details.

4.4. Return performance

We evaluate the performance of our ball motion predictions by intercepting and returning balls
with a four-degrees-of-freedom robot arm, where each degree of freedom is controlled by a pair of
pneumatic artificial muscles (PAMs) (Büchler et al., 2016; Büchler et al., 2023). The robot arm is
controlled by a learning-based iterative control framework for trajectory tracking (Ma et al., 2022).
A table tennis racket is attached to the robot arm in order to return balls. As the ping-pong ball flies
through the air, its position, velocity, and spin are continuously estimated with the EKF presented
herein. The future evolution of the ball’s states is then simulated in a receding horizon scheme using
the learned model of the ball dynamics, with the latest state estimate as the initial condition. This
predicted ball trajectory is used to determine the interception of the ball with the racket, which we
represent as a pair of position (the interception position of the ball and the racket) and time (the
time of interception). The predicted trajectory, and therefore the interception point, is repeatedly
recalculated, as the state estimate is updated and improved with new measurements of the ball. The
robot arm successfully returns 29 of 30 (97.7 %) launched balls, leveraging the EKF for filtering
and prediction presented above. We refer to Fig. 1 for a visualization of returned and unreturned
trajectories.

5. Conclusion

Based on a physically grounded model for the aerodynamic behavior of a flying ball respecting
Magnus and drag effects and the extended Kalman filter, we have designed a filter and predictive
model for table tennis ball trajectories. As we fit the parameters of the filter on offline data, no
tedious tuning of initial, transition, and observation covariances is required. Our formulation allows
for learning a neural model which estimates the ball’s initial spin from ball launch information.
This drastically improves the performance of long-term predictions compared to an uninformed
initialization. Our results also support the findings of other works, which state that the ball’s spin can
only insufficiently be estimated from ball position measurements alone (Zhang et al., 2015; Blank
et al., 2017). Our method could constitute groundwork for future research which, e.g., incorporates
information on the racket movement to estimate the ball’s spin and predict its future trajectory with
high accuracy.
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