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Abstract
Recent advances in safety-critical risk-aware control are predicated on apriori knowledge of the
disturbances a system might face. This paper proposes a method to efficiently learn these distur-
bances online, in a risk-aware context. First, we introduce the concept of a Surface-at-Risk, a risk
measure for stochastic processes that extends Value-at-Risk — a commonly utilized risk measure in
the risk-aware controls community. Second, we model the norm of the state discrepancy between
the model and the true system evolution as a scalar-valued stochastic process and determine an
upper bound to its Surface-at-Risk via Gaussian Process Regression. Third, we provide theoretical
results on the accuracy of our fitted surface subject to mild assumptions that are verifiable with
respect to the data sets collected during system operation. Finally, we experimentally verify our
procedure by augmenting a drone’s controller and highlight performance increases achieved via
our risk-aware approach after collecting less than a minute of operating data.
Keywords: Value-at-Risk, Risk-Aware Control, Gaussian Process, Scenario Optimization

1. Introduction

The models we use for control synthesis are useful, though oftentimes inaccurate. To wit, re-
duced order models are heavily utilized for controller synthesis for complex robotic systems, e.g.
quadrupeds, bipeds, drones, etc (Bouman et al. (2020); Fan et al. (2021); Ubellacker et al. (2021);
Xiong (2021)). However, these models require robustification to disturbances (e.g. to compensate
for the gap between the reduced and full order models) to function reliably on these complex sys-
tems (Thieffry et al. (2018); Kim et al. (2020); Alan et al. (2021); Kolathaya and Ames (2018);
Ahmadi et al. (2020)). As a result, recent studies on the robust control of nonlinear systems cen-
ter around input-to-state-safe control (Kolathaya and Ames (2018); Romdlony and Jayawardhana
(2016); Taylor et al. (2020)) and risk-aware control (Ahmadi et al. (2020); Lindemann et al. (2021);
Majumdar and Pavone (2020); Dixit et al. (2021); Akella et al. (2022a)) among other techniques.
These methods typically assume apriori knowledge of a model and possible disturbances (or at least
the magnitude thereof) and employ control techniques designed to reject those known disturbances.
On the other hand, learning-based approaches attempt to identify the underlying model (Buisson-
Fenet et al. (2020); Nguyen-Tuong and Peters (2011); Jain et al. (2018); Berkenkamp and Schoellig
(2015); Folkestad et al. (2022); Westenbroek et al. (2021); Wang et al. (2018)), in many cases
through Gaussian Process Regression (GPR) (Williams and Rasmussen (2006)).
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Figure 1: (Top Left) A general overview of our procedure, (Top Right) a photo of our experimental
setup, and (Bottom) snippets of flight paths taken by the drone during the second set of
experiments run — the experiments depicted on the left in Figure 3. Our procedure has
two parts. First, we implement a nominal controller and calculate norm discrepancies
between predicted model evolution and true system evolution. Then, we fit, via gaussian
process regression, a risk-aware disturbance model for the disturbances that the nominal
system experiences. We show in Section 4 how our procedure dramatically improves
baseline controller performance and provide a statement on the theoretical accuracy of
our model in Section 3.

However, assuming apriori knowledge of disturbances might not be accurate in real-world set-
tings, and gaussian process regression for model determination tends to be sample-complex and only
uncover expected system behavior. While learning expected behavior is indeed useful, control pred-
icated on expected models of system behavior might yield problematic behavior in safety-critical
settings where risk-sensitive approaches are preferable (Ahmadi et al. (2021); Ono et al. (2018)).
Skipping the model identification step, recent work in Bayesian Optimization and Reinforcement
Learning aims to identify such risk-aware policies in a model-free fashion (Cakmak et al. (2020);
Makarova et al. (2021); Heger (1994); Chow et al. (2017); Mihatsch and Neuneier (2002); Geibel
and Wysotzki (2005)). However, these prior works assume an ability to sample disturbances di-
rectly, assume apriori knowledge of disturbances, or are sample-complex.
Our Contribution: We propose a risk-aware model augmentation approach via learning distur-
bance models online that does not require apriori disturbance knowledge. Our approach is sample-
efficient as shown in Section 4, where we require less than a minute of flight data to make risk-aware
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control improvements on a drone mid-flight. Furthermore, by building off prior work (Akella et al.
(2022b,a)), we both define and ensure that our learned disturbance surface is a Surface-at-Risk for
the stochastic process accounting for the discrepancy between model and true system evolution.
Hence, augmenting the controller with our learned disturbance model yields an efficient risk-aware
controller as we demonstrate experimentally.
Structure: Section 2.1 provides a brief background on gaussian process regression, and Section 2.2
formally defines a Surface-at-Risk for a stochastic process. Section 3 presents the problem of upper-
bounding such a surface and provides a theoretical statement on the accuracy of our procedure with
respect to identifying such an upper bound. Finally, Section 4 showcases the utility of our procedure
for risk-aware control of a drone with online disturbance learning.

2. Mathematical Preliminaries and Definitions

2.1. A Brief Aside on Gaussian Process Regression

A key concept in our approach is the notion of Surfaces-at-Risk which we fit via GPR as part of our
procedure. GPR typically assumes the existence of an unknown function f : X → R that we aim to
represent by taking noisy samples y of f at points x ∈ X where the noise ξ is typically assumed to
be sub-Gaussian (Srinivas et al. (2009); Chowdhury and Gopalan (2017); Williams and Rasmussen
(2006)). Let X = {xi}Ni=1 be a set of N points x ∈ X and Y be the corresponding set of noisy
observations, i.e. Y = {yi = f(xi) + ξ, ∀ xi ∈ X}. Furthermore, let k : X × X → R be a
positive-definite kernel function. Then, a gaussian process is uniquely defined by its mean function
µ : X → R and its variance function σ : X → R. These functions are defined as follows, with
kN (x) = [k(x, xi)]xi∈X, K = [k(xi, xj)]xi,xj∈X, y1:N = [yi]yi∈Y, and λ = (1 + 2

N ):

µN (x) = kN (x)T (K+ λIN )−1 y1:N , σN (x) = kN (x, x), (1)

kN (x, x′) = k(x, x′)− kN (x)T (KN + λI)−1 kN (x′).

Lastly, each kernel function has a space of functions it can reproduce to point-wise accuracy,
it’s Reproducing Kernel Hilbert Space (RKHS). Under the assumption that the function to-be-fitted
f has bounded norm in the RKHS of the chosen kernel k, GPR guarantees high-probability rep-
resentation of f as formalized in the theorem below, taken from Chowdhury and Gopalan (2017):

Theorem 1 Let f : X → R, X = {xi}Ni=1 be a set of N points x ∈ X , Y = {yi = f(xi)+ ξ}xi∈X
be a set of noisy observations yi of f(xi) with R sub-gaussian noise ξ, and k : X ×X → R be a
positive-definite kernel function. If f has B-bounded RKHS norm for some B > 0, i.e. ∥f∥RKHS ≤
B, then, with µN and σN as per (1) and with minimum probability 1− δ,

|µN (x)− f(x)| ≤

B +R

√√√√
2 ln

√
det

(
(1 + 2

N )IN +KN

)
δ

σN (x), ∀ x ∈ X.

2.2. Surfaces-at-Risk for Scalar Stochastic Processes

This section formally defines a Surface-at-Risk for a scalar stochastic process — the specific struc-
ture we aim to fit via GPR. Given a probability space (Ω,F ,P) with Ω a sample space,F a σ-algebra
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Figure 2: Example Surfaces-at-Risk at risk-levels ϵ ∈ [0.1, 0.05, 0.01] for a Weiner Process (Left)
and Binomial Process (Right). Distributions for the indexed scalar random variables Sx

comprising each process S are provided on the axes. Sample realizations of the stochastic
processes are shown in black, with Surfaces-at-Risk shown via colored lines.

over Ω defining events, and P a probability measure, we define a scalar stochastic process S over
the indexed space X as a collection of scalar random variables Sx : Ω → R, i.e. S = {Sx}x∈X .
Here, each scalar random variable Sx has a (perhaps) different distribution πx : R → [0, 1] such
that probability of Sx taking values in A ⊆ R, i.e. Pπx [Sx ∈ A ⊆ R], is well-defined.

Risk-measures are functions of these scalar random variables, and Value-at-Risk is a specific
type of risk-measure stemming from the financial literature (Linsmeier and Pearson (2000)).

Definition 2 The Value-at-Risk level ϵ ∈ [0, 1] of a scalar random variable X defined over the
probability space (Ω,F ,P) with distribution π is defined as the (1− ϵ)− th quartile of X , i.e.

VaRϵ(X) ≜ c s. t. c = inf{z ∈ R | Pπ[X ≤ z] ≥ 1− ϵ}.

Then, the Surface-at-Risk for a scalar stochastic process is a similar collection of the Values-at-Risk
of the underlying scalar random variables constituting the scalar stochastic process.

Definition 3 The Surface-at-Risk level ϵ ∈ [0, 1] of a scalar stochastic process S indexed by the set
X is the indexed collection of the Values-at-Risk level ϵ of each random variables Sx comprising S:

SaRϵ(S, x) = VaRϵ(Sx).

Figure 2 shows a few examples of Surfaces-at-Risk for varying risk-levels ϵ overlaid on realizations
of common stochastic processes.

3. Learning Disturbances

3.1. The Risk-Aware Disturbance-Norm Identification Problem

From a risk-aware standpoint, we aim to identify a Surface-at-Risk as per Definition 3 for a scalar
stochastic process S indexed over the model state-space X̂ . Sample realizations of this process
correspond to disturbance norms the system might experience at any given model state x̂ ∈ X̂ . To
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formally state this problem, we will first denote our true system via x and sim model via x̂, i.e.
∀ k, j = 0, 1, 2, . . . , (perhaps) different state and input spaces, and process noise ξ with (unknown
and perhaps) state-dependent distribution π

True: xk+1 = f(xk, uk) + ξ, xk ∈ X , uk ∈ U , ξ ∼ π,

Sim: x̂j+1 = f̂(x̂j , ûj), x̂j ∈ X̂ , ûj ∈ Û .
(SYS)

As an example consistent with the demonstration to follow, the true system would be a drone, with
our reduced-order simulator model a single integrator. The true state would be the drone’s position
and orientation, and the true input would be the rotor torques. Meanwhile, the model state would be
the drone’s position in 3-space, and the model input would be the desired velocity.

To identify the discrepancy between the systems in (SYS), we define two maps - Mx which
projects the true state x to the model state x̂ and Mu which extends the model input û to the true
input u, e.g. Mu provides rotor torques to realize the desired velocity in 3-space:

Mx : X → X̂ , Mu : Û × X → U . (MAPS)

To note, we only assume the existence of these maps and the ability to use them, we do not assume
that they are unique, we know their analytic form, etc. To put these maps in the context of our drone
example, the drone’s underlying controller operates at 1 kHz making the true-system time step 1 ms.
Since we aim to provide model inputs at 50 Hz, K = 20. Mx is just the projection of our drone’s
position in 3-space, and Mu is the on-board controller that takes in a commanded 3-space velocity
— model input û — and updates rotor speeds at 1 kHz to achieve that velocity. These maps will
be further explained in Section 4. Finally, we assume that after some amount of true system time-
steps K > 0, we can observe projected true system evolution. We denote K as the time-dilation
parameter and the observation function O is defined as follows:

xk+1 = f(xk,Mu(û, xk)), O(x0, û) = Mx(xK). (OBS)

These maps let us formally state the projected evolution of our true system, i.e. evolution of
x̂j = Mx(xKj), when driven by a feedback controller U : X̂ → Û . Comparing projected and sim
model evolution results in the discrepancy d we aim to learn:

x̂j+1 = f̂(Mx(xKj), U(Mx(xKj)) +O(xKj , U(Mx(xKj))− f̂(Mx(xKj), U(Mx(xKj))︸ ︷︷ ︸
d, and δ=∥d∥ has distribution πx̂:R→[0,1]

. (2)

Then, inspired by input-to-state-safe barrier and input-to-state-stable Lyapunov works whose ro-
bust controllers only require information on the 2-norm of this disturbance d, we aim to learn a
probabilistic upper bound on ∥d∥ by taking samples of indexed random variables Sx̂ comprising a
disturbance-norm stochastic process S indexed by X̂ as in (SYS).

Definition 4 The disturbance-norm stochastic process S = {Sx̂}x̂∈X̂ where samples of each ran-
dom variable Sx̂ correspond to norms δ of disturbances d as defined in equation (2). The variability
in norm samples δ arises through the assumed process noise ξ in the true system dynamics in (SYS).

Remark on Residuals: If we only consider a deterministic discrepancy between the true and sim
models, then the disturbances d as per (2) would correspond to residual dynamics, and our proce-
dure would fit a surface to the norm of the residual dynamics (learning residual dynamics has a
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well-studied history, see Saveriano et al. (2017); Johannink et al. (2019); Schperberg et al. (2022);
Zeng et al. (2020) and citations within). The discrepancy between these approaches and ours is
that we also learn a probabilistic bound on the norm of any stochastic, model-state-dependent dis-
turbances that affect the system during operation. This is why we represent the discrepancies as a
stochastic process and fit a Surface-at-Risk, which provides a natural way to reason about risk-aware
disturbance rejection in a context including model errors and stochastic uncertainty.

Furthermore, we assume our disturbance-norm stochastic process is indexed over the model
state space X̂ as opposed to the true state space X as we only assume the ability to measure the
projected state x̂j = Mx(xKj). Therefore, we can only correspond sampled disturbance norms δ

to points in the projected state space X̂ . Then, our goal is to identify a “close” upper bound to the
Surface-at-Risk for this disturbance-norm stochastic process at some risk-level ϵ ∈ [0, 1].

Problem 1 Identify an upper bound to the Surface-at-Risk at some risk-level ϵ ∈ [0, 1] for the
disturbance-norm stochastic process S as per Definition 4 with Surfaces-at-Risk as defined in Defi-
nition 3. Specifically, identify an estimate SRϵ such that,

SRϵ(S, x̂) ≥ SaRϵ(S, x̂), ∀ x̂ ∈ X̂ . (3)

While the aforementioned upper bound SRϵ could be arbitrarily large and satisfy (3), we aim to find
a “close” upper bound to the true Surface-at-Risk level ϵ to facilitate risk-aware control.

3.2. Fitting a Disturbance-Norm Surface-at-Risk

For identifying such an upper bound SRϵ, we first note that even for stochastic processes whose sam-
ple realizations are non-differentiable, their Surfaces-at-Risk are relatively smooth — see Figure 2
for examples. Intuitively, we expect the disturbance norms δi, δj at “close” model states x̂i, x̂j ∈ X̂
are similarly “close”:

Assumption 1 For the disturbance-norm stochastic process S in Definition 4, the Surface-at-Risk
at a given risk-level ϵ ∈ [0, 1] has bounded discrepancy. I.e. ∃ α, β ∈ R≥0 such that,

∀ x̂i, x̂j ∈ X̂ , ∥x̂i − x̂j∥ ≤ α =⇒ |SaRϵ(S, x̂i)− SaRϵ(S, x̂j)| ≤ β.

Notably, this assumption only implies a bounded discrepancy, and not continuity, e.g. a bounded
piecewise continuous function would have bounded variance as per our assumption. We will verify
that this assumption holds for the data set we collect in Section 4.

Second, we need to take (perhaps noisy) unbiased samples of SRϵ(S, x̂) for a given model state
x̂ ∈ X̂ . By equation (3), SRϵ(S, x̂) ≥ VaRϵ(Sx̂), and we can define one sample δj of Sx̂j

as
follows, where O is as per (OBS), and Mx is as per (MAPS):

δj = ∥O(xKj , U(Mx(xKj))− f̂(Mx(xKj), U(Mx(xKj))∥, x̂j = Mx(xKj). (4)

Then, we can group multiple samples δj for sequential model states visited during operation, i.e.
δj , δj+1, . . . for x̂j , x̂j+1, . . . to produce an upper bound to at least one Value-at-Risk level ϵ of a
sampled random variable, i.e. VaRϵ(Sx̂j

),VaRϵ(Sx̂j+1
), . . . . To do so, we require the following

proposition, stated for N scalar random variables X with (perhaps) different distributions π.
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Algorithm 1: Fitting a Disturbance-Norm Surface-at-Risk

Data: α, β for Assumption 1, an integer NRV > 0 for Proposition 2 corresponding to the number
of random variables to sample, time-step dilation parameter K > 0 between true system
evolution and model evolution as per (OBS), and k : X̂ × X̂ → R a kernel function

Initialize: s = 0, X = [], Y = []
References: Disturbance Norm samples δj as per (4) and projector Mx as per (MAPS)
while True do

Initialize empty data-set, i.e. Ds = [ ]
for j = NRV · s,NRV · s+1, . . . ,NRV(s+1)− 1 do

Collect state-indexed disturbance norm samples, i.e. Ds ← Ds ∪ (δj , x̂j = Mx(xKj))
end
Augment GP state dataset with Ds: X← X∪ x̂NRV(s+1)−1

Augment GP norm dataset with Ds: Y← Y∪ max{δℓ ∈ D}+ β
Fit µs, σs as per (1) with data sets X,Y. s++

end

Proposition 2 Let {Xi}Ni=1 be a collection of N scalar random variables with (perhaps) different
distributions {πi}Ni=1, and let {xi}Ni=1 be a set of N samples of these random variables, one sample
per each random variable, i.e. xi is a sample of Xi. Then, for any ϵ ∈ [0, 1], the probability that at
least one sample xℓ ∈ {xi}Ni=1 is greater than the Value-at-Risk level ϵ of its corresponding random
variable Xℓ is equivalent to 1− (1− ϵ)N , i.e. with VaR as per Definition 2 and ∀ ϵ ∈ [0, 1],

Pπ1,π2,...,πN

[
∃ xℓ ∈ {xi}Ni=1 s. t. xℓ ≥ VaRϵ(Xℓ)

]
≥ 1− (1− ϵ)N .

Proof: Consider a random variable Xℓ ∈ {Xi}Ni=1. The probability of taking a sample xℓ of Xℓ

such that xℓ ≥ VaRϵ(Xℓ) is less than or equal to ϵ by Definition 2. The same line of reasoning
holds ∀ Xℓ ∈ {Xi}Ni=1. As such, the probability that no sample xℓ ∈ {xi}Ni=1 is greater than the
corresponding Value-at-Risk level ϵ is less than or equal to (1− ϵ)N , yielding our result.

Our procedure for generating unbiased samples of the upper bound SRϵ stems directly from
Proposition 2 and Assumption 1. First, we let the system evolves for NRV model time-steps and
collect one norm sample δj per model state x̂j visited during operation. This norm sample δj is
calculated as per (4). Second, Proposition 2 guarantees that the largest norm sample δ∗j is greater
than the Value-at-Risk level ϵ for its corresponding indexed random variable Sx̂∗

j
with some mini-

mum probability. Third, if all norm samples were drawn from indexed random variables Sx̂j
whose

indices x̂j were “close”, i.e. ∥x̂s − x̂r∥ ≤ α ∀ x̂r ̸= x̂s ∈ {x̂j+i}N−1
i=0 and for some α > 0, we

can use Assumption 1 to augment the largest norm sample δ∗j by a constant β > 0. The sum is,
with minimum probability 1− (1− ϵ)N , an unbiased, non-noisy sample of SRϵ(S, x̂j). Algorithm 1
formalizes this procedure and our main theoretical result follows.

Theorem 2 Let α, β,NRV, s, µs, σs, and k be as defined in Algorithm 1, let B > 0, let SaR be the
Surface-at-Risk measure as per Definition 3 for some risk-level ϵ ∈ [0, 1], let S be the disturbance-
norm stochastic process as per Definition 4, and let Assumption 1 hold for each data set Ds in
lines 5-7 of Algorithm 1 with respect to the given parameters α, β. If ∥SRϵ(S)∥RKHS ≤ B, then
with minimum probability

(
1− (1− ϵ)NRV

)s the following holds ∀ x̂ ∈ X̂ and ∀ s = 1, 2, . . . :

|µs(x̂)− SRϵ(S, x̂)| ≤ Bσs(x̂), µs(x̂) +Bσs(x̂) ≥ SaRϵ(S, x̂).
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Figure 3: Depictions of the two types of periodic trajectories implemented in our drone experiments
described in Section 4. These trajectories approximate difficult types of behaviors com-
monly asked of drones,

Proof: First, by the assumptions above, we know that for each data set Ds in lines 5-7 of Al-
gorithm 1, we have taken one sample δj of NRV (potentially) different random variables Sx̂j

.
By Proposition 2, we know that with minimum probability 1 − (1 − ϵ)NRV , the maximum sam-
ple δ∗j ≜ max{δℓ ∈ D} is greater than the Value-at-Risk of its corresponding random variable
VaRϵ(Sx̂∗

j
) (VaR is defined in Definition 2). Since we assume Assumption 1 holds for each such

set of random variables, then we know that with minimum probability 1 − (1 − ϵ)NRV , the sum
δ∗j +β is greater than the value-at-risk level ϵ of any sampled random variable, i.e. the sum δ∗j +β
is a non-noisy estimate of SRϵ(S, x̂), ∀ x̂ ∈ Ds. Hence, repeating this same argument for each data
point in X,Y and setting R = 0, as each sampled point is a non-noisy sample of our upper-bounding
surface, we recover the results of Theorem 1 with minimum probability (1− (1− ϵ)NRV)s:

|µs(x̂)− SRϵ(S, x̂)| ≤ Bσs(x̂), ∀ x̂ ∈ X̂ . (5)

Our final result holds by unraveling the absolute-value inequality in (5), as SRϵ(S) is an upper-
bounding surface for SaRϵ(S).

4. Learning Disturbances Mid-Flight for Risk-Aware Control

4.1. Implementation Specifics

All flight tests are performed at the Caltech Center for Autonomous Systems and Technology arena
which is equipped with an Optitrack motion capture system that samples and streams the rotor-craft
pose at 190 Hz. We belay a safeguard tether to the drone (weights 2.46 kg) with a ∼200 g passive
weight attached on the other end to partially eliminate tether slack, which is another source of un-
certainty. Figure 3 depicts the two types of flight paths taken, wherein we aimed to realize complex
behaviors commonly asked of drones, e.g. ascent and descent with both headwind and tailwind,
circulating low to the ground, and taking off vertically in the presence of transverse wind. All dis-
turbing winds were realized by The Caltech Real Weather Wind Tunnel, and windspeed information
was not made available to the baseline controller to-be-augmented. This baseline controller was de-
veloped against a single integrator model, and as such, it outputs 3-space velocities at 50 Hz for the
drone to follow. The velocities provided by this controller are tracked by the drone’s onboard flight
controller, a Hex Cube Orange running a PX4 autopilot Meier et al. (2015).
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With respect to the mathematical setting in Section 3.1 then, we do not know our true system
dynamics, though we model the system as a single integrator:

x̂j+1 = x̂j + ûj(∆t = 0.02), x̂j ∈ [−2, 2]2 × [1.2, 2]︸ ︷︷ ︸
X̂

, ûj ∈ [−0.8, 0.8]2 × [−0.5, 0.5]︸ ︷︷ ︸
Û

.

The state projection map Mx as in (MAPS) reads the drone’s position in 3-space. The input map
Mu corresponds to the onboard PX4 controller that maps true drone states x ∈ X and commanded
3-space velocities û ∈ Û to rotor speeds at 1 kHz. As we update these desired velocities at 50
Hz, our time-dilation parameter K = 20 for Algorithm 1. Finally, our observation function O as
per (OBS) outputs the projected true-system 3-space position after K true-system time-steps, and
our disturbance-norm samples δ as per (4) are defined as follows:

δj = ∥O(xKj , U(Mx(xKj))− (x̂j + U(Mx(xKj))∆t∥, x̂j = Mx(xKj).

The baseline controller U : X̂ → Û is a discrete-time Lyapunov controller designed to send the
single-integrator system to a provided waypoint, and does not take into account complex aerody-
namic effects, e.g. ground effects, transverse wind, and tethered disturbances, which are challenging
to model and can degrade flight performance when ignored (O’Connell et al. (2022); Folkestad et al.
(2022)). Furthermore, the number of random variables sampled per data-collection step NRV = 60
was kept constant, and we used the squared-exponential kernel function with length-scale parameter
ℓ = 1.0 for all experiments as well.

Our desired outcomes were twofold. First, we fit an upper bound to the disturbance-norm
Surface-at-Risk level ϵ = 0.05 over the course of one traversal of the desired flight path. In this
initial flight path, we only implement the baseline controller and augment this controller if the
system takes longer than 10 seconds to reach within 0.1 m of the subsequent waypoint along the
desired path. As each path comprises fewer than 6 waypoints, this ensures that our learned model
considers less than a minute of data for all experiments on both flight paths. These cutoff times
were specifically chosen to highlight the efficiency of our method with limited data. Second, on
all subsequent flight paths, we provide from our fitted surface the norm of disturbances that the
Lyapunov controller should reject while providing velocity commands. As such, we expect perfor-
mance improvements from our augmented controller in the form of traversal time speedups through
the series of waypoints, as subsequent waypoints are provided once the drone reaches within 0.1 m
of the current, commanded waypoint, and the drone’s controller should account for the vast major-
ity of disturbances caused by wind, ground, and tether effects as we fitted an upper bound to the
disturbance-norm Surface-at-Risk level ϵ = 0.05.

4.2. Discussion of Results

We performed four sets of experiments: (A) Hovering and moving while maintaining a 0.15 m
height above ground (see right in Figure 3); (B) Ascent, descent, and vertical take-off without any
wind (see left in Figure 3); (C) The same flight path as (B) but with a 0.6 m/s transverse wind. The
wind flows from left to right when looking at the setup in Figure 3. A graphical example is also
provided in Figure 1; (D) The same flight path as (B) and (C) but with a 2 m/s transverse wind.

Figure 4 shows the fitted SaRϵ=0.05 for each of the four experiments (A)-(D) ran on the drone,
as labeled prior. As mentioned, in all cases we see at least a 2× speedup in flight path times when
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Figure 4: Fitted SaRϵ=0.05 for the four experiments depicted in Figure 3, with αD the maximum
distance between two sampled states for GPR, and βD the maximum discrepancy be-
tween two sampled disturbance norms. Over all four experiments, we see a consistent
2× speedup in flight path times after implementation of the augmented controller — a
qualitative result we expect as per Theorem 2, as we fit an upper bound to disturbance
norms at 95% probability. This information is further explained in Section 4.2.

implementing the augmented controller, with as much as a 5× speedup in the hovering case (A).
Furthermore, we were also able to verify Assumption 1 with respect to the data sets we collected
for each experiment. Specifically, for (A), we assumed that for states within α = 1m their Values-
at-Risk level ϵ = 0.05 would not change by more than β = 0.05. As can be seen in the title of
the associated subfigure in Figure 4, the reported values from data are smaller than their assumed
counterparts, indicating that Assumption 1 held over this experiment, at least with respect to the
collected data. For the remaining experiments, the assumed α, β values were as follows: (B) α =
3m, β = 0.05; (C) α = 3m, β = 0.1; (D) α = 3m, β = 0.2. Therefore, as we can see from the
associated titles in Figure 4, we are similarly able to verify that Assumption 1 held over each of
these cases as well — at least with respect to the data collected. As such, we expected a significant
increase in performance according to Theorem 2 as was realized in all four cases with respect to
flight path time speedups. All experiments can also be seen in our supplementary video here: vid.

5. Concluding Remarks and Future Work

Our results were threefold. First, we defined Surfaces-at-Risk, an extension of Value-at-Risk to
scalar-valued stochastic processes. Second, we defined the discrepancy between simulator and true-
system evolution as a stochastic process, and provided a method to fit an upper bound to this pro-
cess’s Surface-at-Risk. Third, we provided a theoretical statement on the accuracy of our proposed
approach with respect to fitting such an upper bound. Finally, we showcased the utility of our pro-
cedure in facilitating risk-aware control by implementing our procedure on a drone mid-flight and
exhibiting dramatic performance improvements as a result. In future work, we hope to integrate
our procedure with existing works in safety-critical control, to create a pipeline for online, adaptive,
safety-critical risk-aware control.

10
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