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Abstract
We introduce a distributed policy gradient play algorithm with networked agents playing Markov
potential games. Agents have rewards at each stage of the game, that depend on the joint actions
of agents given a common dynamic state. Agents implement parameterized and differentiable poli-
cies to take actions against each other. Markov potential games assume the existence of potential
value functions. In a differentiable Markov potential game, partial gradients of a potential function
are equal to the local gradients with respect to the individual parameters. In this work, agents re-
ceive information on other agents’ parameters via a communication network in addition to rewards.
Agents then use stochastic gradients with respect to local estimates of joint policy parameters to
update their policy parameters. We show that agents’ joint policy converges to a first-order station-
ary point of Markov potential value function with any type of function approximation, state and
action spaces. Numerical experiments confirm the convergence result in the lake game, a Markov
potential game.
Keywords: Game theory, reinforcement learning, distributed algorithms

1. Introduction

Multiple agents learn and adapt their actions in dynamic states to optimize their utilities using multi-
agent reinforcement learning (MARL) algorithms without explicitly knowing the analytical struc-
ture of their rewards and dynamic state transitions (Zhang et al. (2021a)). Agents learn how to take
actions in networked MARL, using the information gathered through communication (Zhu et al.
(2022)). Many real-life applications such as autonomous driving (Shalev-Shwartz et al. (2016)),
electric vehicles (Qiu et al. (2022)), and power grids (Hu et al. (2022)) possess a competitive
multi-agent nature where agents obtain rewards and transition to next state as the result of joint
actions taken. Markov games represent the framework for the competitive (MARL) algorithms
where agents select their actions to gain more rewards while their rewards and state changes are
determined by joint actions taken (Littman (1994)). In this study, we address and propose a new
algorithm to solve Markov potential games as a subclass of Markov games. They admit a poten-
tial value function mirroring individual value function changes by one-sided policy updates against
fixed policies of other agents.

Our algorithm is built upon single-agent policy gradient algorithms (Williams (1992); Sutton
et al. (1999)). Agents iteratively play through episodes to estimate gradients given their parametrized
policies. They update their parameters with stochastic gradients of their value functions. We define
and introduce a novel version of policy gradient play where agents implement policy functions con-
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sidering other agents’ parameters. More specifically, agents assign parameters to others’ policies
in addition to state variables. Agents sample actions from their policies and observe their rewards
together with the next state during two different episodes with randomly generated horizon lengths.
They need to retrieve the parameters of all other agents, which may not be possible in reality. They
alternatively store their local estimates and update them with signals coming from their neighbors.
We prove that the joint policy of agents converges to a first-order stationary point of the poten-
tial function (Theorem 8). This result relies on the properties that the estimation procedure with
random horizons provides unbiased policy gradient estimates (Lemma 5), and local estimates on
others’ parameters converge to the correct values of others’ parameters (Lemma 6).

Early studies on policy gradient play in Markov potential games consider continuous state and
action spaces, assuming that rewards and state transition probabilities are known (González-Sánchez
and Hernández-Lerma (2013); Macua et al. (2018)). More recent works study direct or softmax pa-
rameterization of finite state and action problems. They design independent policy gradients among
agents with several variants of first-order methods such as projected and natural gradients in addi-
tion to the standard version of gradient ascent (Zhang et al. (2021b); Leonardos et al. (2021); Ding
et al. (2022); Mguni et al. (2021); Giannou et al. (2022); Chen et al. (2022); Fox et al. (2022); Mao
et al. (2022)). Our analysis generalizes the setting of these recent studies to continuous state and
action pairs given unknown rewards and state transition dynamics. Policies that incorporate other
agents’ policy parameters and local exchange information are additional features of the proposed
algorithm that distinguish it from existing MARL algorithms. Numerical experiments on the lake
game (a Markov potential game Dechert and O’Donnell (2006)) demonstrate the convergence of the
proposed networked policy gradient play.

2. Markov Potential Games

Agents defined by the set N :“ t1, . . . , Nu play a Markov game (Shapley (1953)), and each agent
i P N takes an action ai P Ai at a common state s P S . The joint action profile is formed by
individual actions, a “ pa1, a2, ¨ ¨ ¨ , aN q P AN :“

Ś

iPN Ai. Note that the sets of actions and
states are not necessarily finite. The joint actions and the state generate a conditional probability
transition to a next state, Pa

s2,s1 “ Pps2|s1, aq, whereas initial state s0 is also distributed with ρ : S Ñ

r0, 1s. Each agent obtains a reward ri,t : S ˆAN Ñ R as the result of the joint actions and the state
pst, atq P S ˆ AN at time t P N. Rewards are accumulated over an infinite horizon by the discount
rate γ P p0, 1q. A Markov game is formally defined by the tuple Γ :“ pN ,AN ,S, triuiPN ,P, γ, ρq.

Each agent takes an action sampled from a policy function πi : S ˆ π´i Ñ ∆pAiq given a
state and other agents’ policies π´i. ∆p.q defines any probability distribution over the given set, and
´i :“ N ztiu denotes the set of all agents except agent i. The rewards ri,t at each time step t P N,
induced by the joint policy Π “

Ś

iPN πi, constitute individual value functions V Π
i : S Ñ R, as a

discounted sum of rewards over infinite horizon starting from each state,

V Π
i psq “ Eps,aq„P

”

8
ÿ

t“0

γtri,tpst, atq|s0 “ s
ı

, (1)

where the sequence of states and actions generated by the joint policy is distributed with P 1.
Similarly, the Q-function of agent i, Qi : S ˆ AN Ñ R is defined as a discounted sum of rewards

1. We remove the distribution notation from the expectations in the rest of the paper for simplicity, unless necessary.
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starting given each state s P S, and joint action a P AN sampled from the joint policy Π as below,

QΠ
i ps, aq “ E

”

8
ÿ

t“0

γtri,tpst, atq|s0 “ s, a0 “ a
ı

. (2)

Potential games are an important class of games with a potential function expressing the change
in individual utilities based on unilateral action changes when other agents’ actions are fixed (Mon-
derer and Shapley (1996)). Markov potential games hold the same property in the setting of Markov
games, and have a potential value function capturing value function changes of agents when a uni-
lateral change in policies occurs.

Definition 1 (Markov Potential Games) A game Γ is a Markov potential game, if there exist a
rt P R and a potential value function V Πpsq : Π ˆ S Ñ R that is equal to the discounted sum of
the rewards rt P R, i.e., V Πpsq “ E

”

ř8
t“0 γ

trtpst, atq|s0 “ s
ı

, such that for all i P N

V Π̂
i psq ´ V Π

i psq “ V Π̂psq ´ V Πpsq for all s P S, (3)

where Π̂ and Π are two joint policies differing only in the policy of agent i P N , i.e., Π̂ “ pπ̂i, π´iq

and Π “ pπi, π´iq.

We suppose that agents use parametrized joint policies by unconstrained and continuous vari-
ables θ “ pθi, θ´iq P RM where individual policy parameters θi P RKi are such that it holds
ř

iPN Ki “ M .

uipθi, θ´iq “ V Πθ
i psq “ EΠθ

”

8
ÿ

t“0

γtri,tpst, atq|s0 “ s
ı

, (4)

where Πθ is the joint policy parametrized by the parameters θ “ pθi, θ´iq P RM . Differentiable
Markov potential games are equivalently defined as follows.

Definition 2 (Differentiable Markov Potential Games) A game Γ is a Markov potential game
with differentiable individual value functions ui, if there exists a potential value function u : RM Ñ

R such the following holds,

∇iuipθi, θ´iq “ ∇iupθi, θ´iq for all θ P RM (5)

where ∇ip.q “
Bp.q
Bθi

denotes the partial derivative of a given function with respect to the agent i1s
parameters θi.

Differentiable Markov potential games are the natural extensions of the standard definition of po-
tential games (Monderer and Shapley (1996)) with discrete actions.

3. Policy Gradient Play with Networked Agents

Each agent i’s policy πi,θpai|sq is conditionally independent given the state and joint policy param-
eters θ “ pθi, θ´iq,

Πθpa P AN
q |sq “

ź

iPN
πi,θpai P Ai,q|sq (6)
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where AN
q “

Ś

iPN Ai,q and Ai,q are countable measurable subsets over the joint and individual
set of actions respectively such that probability distributions can be defined, i.e, Ai “

Ť8
q“1Ai,q.

Each agent aims to maximize its value function as the cumulative reward in the long term given the
joint actions and state transition dynamics.

The gradient of agent i’s value function is defined in terms of the Q-function and sum of log-
policies—see Section 7 for proof.

Lemma 3 Given the parameterized value functions ui : RM Ñ R, the gradient of each value
function ui with respect to agent i’s parameters θi is equal to,

∇iuipθi, θ´iq“
1

p1 ´ γq
E

“

QΠθ
i ps, aq

ÿ

nPN
∇i log πn,θpan|sq

‰

. (7)

For this aim, agents are assumed to use their gradient information iteratively against each other,
named policy gradient play. Each agent computes stochastic gradients to update its policy parame-
ters,

θi,t “ θi,t´1 ` αt∇̂iuipθi,t´1, θ´i,t´1q, (8)

where αt is a common step size (for the sake of simplicity), and ∇̂iuipθi,t´1, θ´i,t´1q is the stochas-
tic gradient computed based on estimated rewards collected on a roll-out horizon (episode).

As per the gradient definition (8), the individual policies πi and their stochastic gradients ∇̂iui
depend on joint policy parameters θ “ pθi, θ´iq. However, other agents’ parameters θ´i may not be
available to agent i. In this setting, agent i keeps an estimate of other agents’ policy parameters with
the information received from its neighbors Ni :“ tj : pi, jq P Eu in the communication network
G “ pN , Eq. Agent i updates its local estimate on agent j’s parameters θ̂ij,t with the the weights
wi
j,l ě 0 that agent i gives agent l’s estimate on agent j’s parameters,

θ̂ij,t “
ÿ

lPNi
Ť

tiu

wi
j,lθ̂

l
j,t, (9)

We assume that the communication network and the weights satisfy the following properties,

Assumption 1 The network G is strongly connected with weights satisfying a) wi
j,l ě υ for υ ą 0

only if l P Ni Y tiu, otherwise wi
j,l “ 0, b) wi

i,i “ 1, and c)
ř

lPNi
Ť

tiu w
i
j,l “ 1 for all i, j.

We implement the estimation of the gradient ∇iui in (8) by the adaptation of the random hori-
zon sampling method as outlined in (Zhang et al. (2020)). Agents play together during two episodes
whose lengths are randomly sampled from geometric distributions where the Q-values Qi and gra-
dient of log-policy ∇i log πθ, are estimated. The sequential actions and states create a bias for the
estimation of gradients in deterministic episode lengths for discounted rewards over infinite hori-
zons. The episode lengths T1 and T2 are generated from a geometric distribution Geomp1 ´ γ0.5q

such that PpTk “ τq “ p1 ´ γ0.5qγ0.5ˆτ for k P t1, 2u in order to obtain unbiased estimates (see
Lemma 5). The random horizons at each time step require coordination among agents compared to
the episodes with constant lengths. This issue can be solved via preset random seeds to ensure that
agents use the same samples over time. The steps of the networked policy gradient play with the
episodes and updates are provided in Algorithm 1.
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Algorithm 1 Networked Policy Gradient

1: Input: Local estimates θ̂i´i,0 and G “ pN , Eq, initial state s0 and initial policy Πθ,0, and
discount factor γ.

2: for t “ 1, 2, ¨ ¨ ¨ do
3: Draw T1 „ Geomp1 ´ γ0.5q and reset s0, for all i P N ..
4: Each agent sample actions ai,0 „ πi,θ̂t´1

p.|s0q

5: for τ “ 1, 2 ¨ ¨ ¨ , T1 do
6: Each agent i reaches state sτ „ Paτ

sτ ,sτ´1
.

7: Each agent i samples and takes actions, ai,τ`1 „ πi,θ̂t´1
p.|sτ`1q

8: end for
9: Each agent i computes ∇i log πn,θpaT1`1|sT1`1q for all i P N .

10: Draw T2 „ Geomp1 ´ γ0.5q and set Q̂i “ 0, for all i P N .
11: for τ “ 1, 2, ¨ ¨ ¨ , T2 do
12: Each agent receives rewards ri,τ`T1 for all i P N .
13: Each agent collects rewards Q̂i “ Q̂i ` γτ{2ri,τ`T1 for i P N .
14: Each agent i reaches state sτ`T1`1 „ Paτ

sτ`T1`1,sτ`T1
.

15: Each agent i samples and takes actions ai,τ`T1`1 „ πi,θ̂t´1
p.|sτ`T1q

16: end for
17: Each agent i computes Q̂i “ Q̂i ` γτ{2ri,T1`T2`1 for i P N
18: Each agent i computes stochastic gradients by replacing Qi with Q̂i and computing

∇i log πn,θ at the joint state-action pair paT1`1, sT1`1q for the corresponding terms in (7).

19: Each agent i updates parameters (8) with θ´i,t´1 replaced by θ̂´i,t´1.
20: Each agent i updates local estimates θ̂ij,t using (9).
21: end for

4. Convergence of Networked Policy Gradient Play in Markov Potential Games

We state the assumption on the gradient step size.

Assumption 2 The step size αt satisfies α “ Op1{tq.

This assumption is standard for the analysis of stochastic gradient algorithms. It assures the square
summable but not summable step-sizes. We also have the following assumptions on rewards and
policies.

Assumption 3 The absolute value of rewards for any agent i at any state and joint action ps, aq P

S ˆ AN is bounded, |ri,tps, aq| ď R and where R ą 0.

Assumption 4 The gradient of log-policy of agent i P N , ∇i log πi,θ exists and its norm is
bounded, ||∇i log πi,θ|| ď B for any θ, state s P S and action ai P Ai, where B ě 0. Furthermore,
it is Lipschitz continuous, i.e., ||∇i log πi,θ1 ´ ∇i log πi,θ2 || ď L||θ1 ´ θ2|| for any θ1, θ2 P RM ,
where L ą 0.

These assumptions are standard to show that (stochastic) gradients are bounded and Lipschitz con-
tinuous.
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Lemma 4 (Lipschitz-Continuity of Networked Policy Gradient) Suppose Assumptions 3-4 hold.
The policy gradient of any agent i P N , ∇iuipθi, θ´iq is Lipschitz continuous with some constant
L ą 0, i.e., for any θ1i , θ

2
i P Rd

||∇iuipθ
1
i , θ

1
´iq ´ ∇iuipθ

2
i , θ

2
´iq|| ď L||θ1 ´ θ2||, (10)

where the value of the Lipschitz constant L is defined as,

L :“ NRp
1

p1 ´ γ2q
L `

p1 ` γq

p1 ´ γq3B2
. (11)

The proof relies on the exchange of the order of summations and integrals by the Fubini Theorem,
and the Lipschitz continuity follows after using the Taylor expansion.

Lemma 5 (Unbiased and Bounded Stochastic Gradient of Agents) The stochastic gradient ∇̂iuipθi, θ´iq

to estimate the policy gradient in (7) is unbiased and its norm is bounded for all i P N and for any
θ P RM , i.e. Ep∇̂iuipθi, θ´iqq “ ∇iuipθi, θ´iq and ||∇̂iuipθi, θ´iq|| ď λ̂ where λ̂ ą 0.

The result follows from Zhang et al. (2020) by the fact that the rewards are collected with special
discount rates γτ{2. This assures that agents have unbiased estimates of their Q-values. Using two
independent identically sampled random horizon lengths T1 and T2 (steps 13 and 17 in Algorithm
1), it can be shown that the term

ř

nPN ∇i log πn,θpan|sq is unbiasedly estimated, thus giving the
unbiased stochastic gradients. Moreover, the estimates Q̂i of Qi-functions for any i P N as the
rewards collected with the discount rate γτ{2 over a random horizon is still bounded by the fact
γτ{2 P p0, 1q given γ P p0, 1q for τ P N and Assumption 3. Again by Assumption 4, the gradi-
ent of log gradient is also bounded, which certifies the boundedness of stochastic gradients. This
lemma assures that agents update their parameters with the correct gradient direction in expectation.
Together with Lemma 4, this leads to the exploitation of standard gradient ascent analysis.

Lemma 6 (Consensus on Parameters) Suppose Assumptions 1-3 hold. If θ̂ij0 “ θj0 is satisfied
for any pair of agents pi, jq P N ˆ N ztiu, then local copies θ̂ij,t converges to θj,t with the rate
Oplog t{tq, i.e. ||θ̂ij,t ´ θj,t|| “ Oplog t{tq.

The proof is provided in Section 7. The result follows by showing that change in parameters is
bounded given bounded stochastic gradients (Lemma 5). When the step size is such that αt “

Op1{tq, the change in parameters is slowed down while agents’ estimates about others’ policy pa-
rameters continue to be updated according to (9) given weights that form a row stochastic weights.

Lemma 7 The potential function u : RM Ñ R of the Markov game has the following relation
between any consecutive time steps t and t ` 1 during Algorithm 1,

ET1,t,T2,trupθt`1q|θts ´ upθtq ě αt||∇upθtq||2 ´ Oplog t{t2q, (12)

where ET1,t,T2,tr.|θts is the expectation over the variables T1,t, T2,t that are the lenghts of random
horizons generated at time step t, given the parameters θt at time t.

Proof By Taylor Expansion and Lemma 4, we obtain,

upθt`1q ´ upθtq ě pθt`1 ´ θtq
T∇θtupθtq ´

1

2
L}|θt`1 ´ θt||

2, (13)

ě αtgpθtq
T∇θtupθtq ´

1

2
Lα2

t λ̂
2 (14)
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where gpθtq “ r∇̂1u1pθ1,t, θ̂´1,tq, ¨ ¨ ¨ , ∇̂NuN pθN,t, θ̂´N,tqs is the vector of stochastic policy gra-
dient of each agent i P N with respect to θi,t against the local copies θ̂´i,t. By Lemma 5 and
Definition 2, it holds, Er∇̂θi,tuipθi,t, θ̂´i,tqs “ ∇θi,tuipθi,t, θ̂´i,tq “ ∇θi,tupθi,k, θ̂´i,tq,

ET1,t,T2,trupθt`1q|θts ´ upθtq ě αtEpgpθtqqT∇θtupθtq ´
1

2
Lα2

t λ̂
2 (15)

ě αt∇θtupθ̂tq
T∇θtupθtq ´

1

2
Lα2

t λ̂
2 (16)

ě αt||∇θtupθtq||2 ´ αtOplog t{tq ´
1

2
Lα2

t λ̂
2 (17)

ě αt||∇θtupθtq||2 ´ Oplog t{t2q. (18)

where ∇θtupθ̂tq “ r∇1upθ1,t, θ̂´1,tq, ¨ ¨ ¨ ,∇NupθN,k, θ̂´N,kqs. Then by Lemmas 4-6, it follows
that ||∇iupθi,t, θ̂´i,tq ´∇iupθi,t, θ´i,tq|| “ Oplog t{tq. Hence, it also holds, ||upθtq ´∇θtupθtq|| “

Oplog t{tq. Thus, the result follows by the fact that αt “ Op1{tq and Lemma 5.

We use the obtained lower bound on the potential change in expectation to show convergence of the
gradients.

Theorem 8 Let tθtutě1 be the sequence of policy parameters generated by Algorithm 1. Then,
the policy parameters tθtutě1 converge to a first-order stationary point of the potential function in
expectation,

lim
tÑ8

Ep||∇θtupθtq||2q “ 0. (19)

Proof is omitted. The proof is mainly based on the fact that the limit sum over the product of
step sizes and norm of gradients over iterations is finite implying that the gradients goes to zero,
since the infinite sum of step sizes are divergent by Assumption 2. This result suggests that agents
converge to a Nash equilibrium (NE), i.e., optimal behavior, for convex potential value functions.
For non-convex potential value functions, a stationary point is not necessarily a NE, indicating that
a stationary point is an approximate NE.

5. Numerical Experiments

We use the Lake game as an example of Markov potential games (Dechert and O’Donnell (2006))2.
Each agent i P N decides on its usage of phosphorus rate ai,t P r0, 1s in a dynamic state of
phosphorus level st P R` around a lake, with the given dynamics,

st “ bst´1 `
sct´1

sct´1 ` 1
`

ÿ

iPN
ai,t´1, (20)

where b and c are positive constants. The reward of each agent i increases with the logarithmic rate
of phosphorous usage and observes a quadratic rate of decrease in the phosphorus level,

ri,t “ logpdai,t ` 1q ´ s2t , (21)

where d ą 0 and, we bound the rewards in the range of r´4, 4s to satisfy Assumption 3. We
experiment with N “ 5 agents, and game parameters b “ 0.45, c “ 2, and d “ 104. Agents use

2. The code is available at Aydin (2022).
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Figure 1: Networked policy gradient in lake game. (Left) Average norm of gradi-
ents of agents 1

N

ř

iPN ||∇iuipθi, θ̂´iq|| (Right) Average estimation error
1

NpN´1q

ř

iPN
ř

jPN ztiu ||θi,t ´ θ̂ij,t||.

truncated normal distribution Normalpµi,θ, κIq where κI is identity covariance matrix scaled with
κ “ 0.1 and µi is the parametrized mean of the policy distribution given as,

µi,θ “ sigmoid pθi,ss ` θi,´ip
1

pN ´ 1q

ÿ

jPN ztiu

pθj,sqq. (22)

In (22), there are two policy parameters, i.e., Ki “ 2. θi,s P R is the parameter multiplying
the state and θi,´i P R multiplies the average state parameter of other agents. We note that the
sigmoid function maps the unconstrained parameters θ P RM to the range of the actions r0, 1s. We
also utilize the unbiased estimation technique for the gradient of truncated policy distributions as
outlined in (Fujita and Maeda (2018)). Agents communicate over a ring network given weights on
local beliefs wi

i,l “ 0.30, and remaining weights on information received from neighbors equally
distributed, i.e., wi

j,l “ 0.70{|Ni| for all j P Ni.
Fig. 1 (Left) indicates the average of individual gradients over 50 runs with random initialization

converge closely to a stationary point of the value functions. Fig. 1 (Right) shows that the local
beliefs on other agents’ parameters converge to the true parameter values. The two observations
confirm the result that the joint policies in policy gradient play converge to a stationary point.

6. Conclusion

We formulate a new class of networked policies where agents play against each other by updating
their parameters with gradient information. Our algorithm has novel features in which individual
policies are conditioned on others’ parameters in addition to the state variables, and parameters
are shared over a communication network. We prove that local beliefs on others converge to true
values. The algorithm is based on random roll-out horizons which provide unbiased policy gradient
estimates. We stated the convergence of the algorithm to a stationary point. We verify our results
with numerical experiments.
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7. Appendix

7.1. Proof of Lemma 3

We define the agents’ gradients by Policy Gradient Theorem Sutton et al. (1999),

∇iuipθi, θ´iq “

ż

aPA,
sPS

QΠθ
i ps, aqdΠθ∇iπθpa|sq da ds, (23)

where dΠθ “
ř8

t“0 γ
tρas0,s,t is the discounted sum of density functions ρas0,s,t of the transition

probabilities Pa
s0,s,t from the initial state s0 to the state s given the joint action a at t steps ahead,

and similarly πθpa|sq is defined as the density function of the joint policy Πθ. Then, we use the
log-likelihood trick by dividing and multiplying the gradient of ∇iπθpa|sq by the density πθpa|sq,

∇iuipθi, θ´iq“

ż

aPA,
sPS

QΠθ
i ps, aqdΠθπθpa|sq

∇iπθpa|sq

πθpa|sq
da ds (24)

“

ż

aPA,
sPS

QΠθ
i ps, aqdΠθπθpa|sq∇i log πθpa|sq da ds. (25)

We divide the integral by p1´γq to have a proper expectation satisfying the properties of probability
measures,and the policy gradients become by the definition of networked policies (6),

“

ż

aPA,
sPS

QΠθ
i ps, aqdΠθπθpa|sq

ÿ

nPN
∇i log π

θ
npan|sq da ds (26)

“
1

p1 ´ γq
Eps,aq„P

“

QΠθ
i ps, aq

ÿ

nPN
∇i log πn,θpan|sq

‰

. (27)

7.2. Proof of Lemma 6

Firstly, we are going to provide the update of local copies as a recursion in relation with the values
at the previous step. Let θj,tpmq and θ̂j,t`1pmq P RN be mth index of agent j’s policy at time t and
the local copies of mth index of agent j’s policy at time step t ` 1. Wj P RNˆN is communication
weight matrix created by the values Wjpi, lq “ wi

jl. Note that by Assumption 1, Wj is a row
stochastic matrix. Then, recursion can be written as follows,

θ̂j,t`1pmq “ Wjpθ̂j,tpmq ` pθj,t`1pmq ´ θj,tpmqqejq, (28)

where ej is the canonical vector of jth base in RN . Subtracting the vector θj,t`1pmq1, where
1 P RN is the vector in RN whose all values are 1, from both sides of (28), we obtain,

θ̂j,t`1pmq ´ θj,t`1pmq1 “ Wjpθ̂j,tpmq ` pθj,t`1pmq ´ θj,tpmqqej ´ θj,t`1pmq1q, (29)

The term θj,t`11 can go inside the matrix multiplication, since Wj is a row-stochastic matrix. By
letting yt “ θ̂j,tpmq ´ θj,t, we rearrange the equation (29) as,

yt`1 “ Wjpyt ` pθj,t`1pmq ´ θj,tpmqqej ´ pθj,t`1pmq ´ θj,tpmqq1q. (30)

9
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Next, we are going to derive an upper bound for the term δt “ pθj,t`1pmq ´ θj,tpmqqpej ´ 1q, by
Lemma 5,

||pθj,t`1pmq ´ θj,tpmqqpej ´ 1q|| ď||ppθj,t`1pmq ´ θj,tpmqq||p||ej || ` ||1||q (31)

ďαt||∇̂j,mujpθj,t, θ̂´j,tq||p||ej || ` ||1||q (32)

ďαt||∇̂j,mujpθj,t, θ̂´j,tq||pN ` 1q, (33)

where ∇̂θit,mupθi.t, θ̂´i,tq is the stochastic gradient of agent j’ value function with respect to the
parameter value at the index m. Since stochastic gradient of any agent is bounded by Lemma 5, and
the step size αt “ Op1{tq by Assumption 2, it holds,

δt “ ||pθj,t`1pmq ´ θj,tpmqqpej ´ 1q|| “ Op1{tq. (34)

Now we rewrite (30) as follows,

yt`1 “ Wjpyt ` δtq “

t
ÿ

ζ“0

W ζ`1
j δt´ζ ` W t

j y1. (35)

As it holds θ̂ij0 “ θj0, then y1 “ 0. Hence, the norm ||yt`1|| can be expressed as follows,

||yt`1|| “ ||

t
ÿ

ζ“0

W ζ`1
j δt´ζ || ď

t
ÿ

ζ“0

||W ζ`1
j δt´ζ ||. (36)

Since Wj is row stochastic matrix, it holds limtÑ8 W t
j “ 1eTj . Then, define the matrix W̄j “

Wj ´ 1eTj . It holds limtÑ8 W̄j “ 0 and W̄j1 “ 0. If the equation (36) is written with the relation
W̄j “ Wj ´ 1eTj , then we obtain the following,

||yt`1|| ď

t
ÿ

ζ“0

||pW̄j ` 1eTj qζ`1δt´ζ ||. (37)

Since, we have W̄j1 “ 0, eTj W̄j “ 0, and p1eTj qζ “ 1eTj q for any ζ ě 1 by the definition of given
matrices, we rewrite the upper bound in (37),

||yt`1|| ď

t
ÿ

ζ“0

||W̄ ζ`1
j δt´ζ || ` |||p1eTj qζ`1δt´ζ || (38)

By definition, see that δtpjq “ 0, for any t, which gives eTj δt “ 0. Moreover, the spectral radius λ
of W̄j is strictly less than 1, λ ă 1. Hence, we have,

||yt`1|| ď

t
ÿ

ζ“0

λζ`1||δt´ζ ||. (39)

By Chebychev’s sum inequality, it holds,

||yt`1|| ď δavgt

t
ÿ

ζ“0

λζ`1, (40)

where δavgt “ p1{tq
řt

ζ“0 ||δt´ζ ||. By using the fact δavgt “ p1{tq
řt

ζ“0 ||δt´ζ || “ p1{tq
řt

ζ“0pn`1
t´ζ q “

Oplog t{tq and hence, we have ||yt`1|| “ Oplog t{tq. Thus, it assures Ep||θ̂ij,t ´ θj,t|| “ Oplog t{tq
and the proof is completed.
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