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Abstract
We propose a sample-based, sequential method to abstract a (potentially black-box) dynamical
system with a sequence of memory-dependent Markov chains of increasing size. We show that this
approximation alleviates a correlation bias that has been observed in sample-based abstractions. We
further propose a methodology to detect on the fly the memory length resulting in an abstraction
with sufficient accuracy. We prove that, under reasonable assumptions, the method converges to a
sound abstraction in some precise sense, and showcase it on two case studies.
Keywords: dynamical models, switched systems, finite abstractions, memory, ergodicity, observ-
ability

1. Introduction

Safety-critical applications, such as autonomous vehicles, traffic control, and space systems, re-
quire the control designer to enforce rich temporal properties on trajectories of complex models
(Lee and Seshia, 2011). A renown approach to address this goal relies on abstractions (Baier and
Katoen, 2008), whereby a finite-state machine (also known as ”symbolic model”) approximates the
behaviour of the original (a.k.a. ”concrete”) system that, instead, evolves in a continuous (or even
hybrid) state space. Formal verification and correct-by-design synthesis frameworks have been de-
veloped by defining mathematical relationships between the finite-state machine and the original
dynamics (van der Schaft, 2004; Tabuada, 2009; Reissig et al., 2017; Majumdar et al., 2020b).

Despite the success of abstraction methods, most of the existing techniques rely on full knowl-
edge of the underlying dynamical system (Zamani et al., 2018; Mufid et al., 2019; Majumdar et al.,
2020a). This may hamper applicability of these methods when the model is too complex or when
it cannot be fully built. For this reason, data-driven methods are gaining popularity (Laurenti et al.,
2021; Salamati et al., 2021; Rossa et al., 2021; Wang and Jungers, 2021; Kazemi et al., 2022;
Coppola et al., 2022; Badings et al., 2022). In order to generate data-driven abstractions, a com-
mon approach consists in sampling the initial condition and observing trajectories of a fixed length
that unfold from the sampled points, as in Devonport et al. (2021). Alternative approaches consist
in combining backward reachable-set computations and scenario optimization to generate, with a
given confidence level, an abstract interval Markov chain (Badings et al., 2022), or in representing
noisy dynamics with non-deterministic/probabilistic abstractions (Lahijanian et al., 2015).
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Figure 1: (Left) Pictorial represen-
tation of a discrete-time dynamical
system. The state-space is parti-
tioned into two cells (labelled a and
b) and allowable transitions are in-
dicated by the arrows. (Right) Illus-
tration of two possible abstractions,
a memory-1 and a memory-2 one.

Building Markov chain abstractions of dynamical systems must be made with care, as this pro-
cess may introduce properties in the abstraction that were not present in the original dynamics. As
an example of this phenomenon, consider the pictorial discrete-time dynamical system in Figure 1
and a partition of its state space into two cells corresponding to labels a and b. All initial states from
the light-red region of a are mapped into the same region, as depicted by the self-loop, and all states
in the dark-red region are mapped into a measure-zero subset of b – represented by the black line
segment contained in b. Initial states at the yellow region of b are mapped into the same region, and
points in the line segment are mapped back into partition a.

On the top-right corner of Figure 1 we illustrate an abstraction obtained by sampling initial con-
ditions from a known distribution and using the frequencies of the different transitions to compute
the probabilities shown on the edges; notice that nodes of this model are in one-to-one correspon-
dence with elements in the partition. Using the obtained abstraction to infer transitions of our
dynamics leads to erroneous conclusions. First, observe that words abb or aabb may happen with
non-zero probability in the top-right model of Figure 1 but are, in fact, not valid trajectories of the
original dynamics since each ab must necessarily be followed by an a. We call these words spurious.
Notice also that the same model does not represent all allowable words. To see this, observe that
word aba is not allowed in the abstraction, despite it being a valid word in the original dynamics.
We call such words missing.

In this paper, we propose a new, sequential approach to build abstractions, where the uncer-
tainty raising from the abstraction step is quantified probabilistically. Such an approach entails
turning epistemic uncertainty about the dynamics into aleatoric uncertainty represented by transi-
tion probabilities of the Markov chain, a feature we believe to be unique to our strategy, as far as
abstraction of dynamical systems is concerned. By handling abstract probabilistic models, we can
analyse the convergence of the probabilistic behaviours. As the abstraction precision increases, we
can heuristically estimate the error associated to our models.

Consider now the abstraction illustrated in the bottom-right of Figure 1. The states of this al-
ternative model contains information about one-step transitions, i.e., word ab represents knowledge
that we are currently at some state in partition b, which was previously in partition a. Due to richer
states, our abstraction can now capture all possible words associated with the dynamics and, as
opposed to the memory-1 model, does not possess spurious words. Hence, increasing memory is
beneficial to representing dynamical systems.

We prove below that, under some reasonable assumptions, our abstraction procedure converges
to the original system in a sense to be described in the sequel. We show on numerical examples that
the technique works well even when the assumptions are not satisfied.
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The idea of adding memory to produce richer abstractions has been largely explored in different
fields of mathematics, engineering, and computer science (see, e.g. Belta et al. (2017); McCallum
(1996); Schmuck and Raisch (2014); Frezzatto et al. (2016)). In particular, Coppola et al. (2022)
recently proposed it in a non-probabilistic setting. We show here that adding memory is crucial for
the construction of probabilistic data-driven abstractions.

This paper is organised as follows. In Section 2, we introduce the setting and describe our
data-driven abstraction procedure. In Section 3, we first prove our theoretical results. Numerical
experiments are presented in Section 4. We then briefly conclude in Section 5.

2. Definitions and methodology

2.1. Definitions

Consider the discrete-time stochastic system given by

S(ν) =


xk+1 ∼ T (·|xk)
yk = H(xk)
x0 ∼ ν,

(1)

where xk ∈ X ⊂ Rn is the state variable, ν is an initial distribution from which the initial state
is sampled, T (·|·) : X → P(X) : xk 7→ T (·|xk) is a mapping from X to the set of probability
measures on X , and H : X → A is the output map, where A is a finite set (also referred to as the
output alphabet). If the stochastic kernel T maps to Dirac distributions, and the initial distribution
ν is also a Dirac distribution we say that the system is deterministic, and we rewrite the first line of
1 as xk+1 = F (xk) for the sake of clarity.

Assumption A (Measurability) The mapping T : X → P(X) is such that, for any A ⊂ X the
function g(x) =

∫
A T (dξ|x) is measurable and integrable with respect to any measure on X , that

is, the integral
∫
A g(ξ)µ(dξ) is properly defined for any measure µ ∈ P(X).

Assumption A is a standard technical requirement that enables one to assign probabilities to (sets
of) trajectories1 generated by the stochastic dynamical system (1). The semantics of the dynamical
system are denoted as follows: given an initial state x0 ∼ ν, at any time index k, the next state xk+1

is defined by sampling according to the probability measure defined by the mapping T , conditional
on the current state xk. Such semantics are known as stochastic hybrid systems (Abate et al., 2008).

The output map H induces a partition on the state space as follows. Let A = {y1, . . . , yM} and
consider the equivalent relation on Rn given by x ≈ x′ if and only if H(x) = H(x′). Denote the
equivalence classes associated with each element of A by [yj ], j = 1, . . . ,M , i.e., [yj ] = {x ∈ Rn :
H(x) = yj}.

Definition 1 (Probabilities on the states) For any k ∈ N, consider the set A = A0×A1×. . .×AL,
where Aj ⊂ Rn for all j ≤ k, and a probability measure µ ∈ P(Rn) be given. The dynamical
system (1) induces a measure on

∏L+1
i=1 Rn that is given by

QL(A) =

∫
A0

. . .

∫
AL

L∏
j=1

T (dxj |xj−1)µ(dx0).

1. For a complete measure-theoretic description of system (1) we refer the reader to Salamon (2016); Tao (2011) and
Chapters 2-7 of Rudin (1970).
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Definition 2 (Probabilities on the equivalence classes) For any L ∈ N, let QL be defined as in
Definition 1 and let y = (y0, y1, . . . , yL), where yj ∈ A, j = 0, . . . , L, be the output of the
dynamical system given in (1). Let A = [y0]× [y1]× . . .× [yL] be the set associated with the word
y. Then, the probability of such a word is given by QL(A).

The measures in definitions 1 and 2 are well defined thanks to Assumption A, which ensures that
all the nested integrals are well-defined. Next, we formally introduce the set of trajectories that can
be observed with probability larger than zero for the system (1), which is also referred to as the
behaviour of (1) (see Polderman and Willems (1997) for more details).

Definition 3 (Behaviour) Consider the dynamical system in (1), let A⋆ be the countable Cartesian
product of A and let AL be the L-fold Cartesian product of A. Then we have that:

• The behaviour of system (1), denoted by B(S), is the subset of A⋆ defined as B(S) = {y ∈
A⋆ : Q(y) > 0}, where Q is the unique measure induced by (1) in the space2 A⋆.

• The L-th step behaviour of the dynamical system (1), denoted by BL(S), is a subset of AL+1

defined as BL(S) = {y = (y0, . . . , yL) ∈ AL+1 : QL(y) > 0}.

The behaviours B(S) and BL(S) are naturally equipped with the probability measures QB(S) and
QBL(S), as per their definition.

In this paper, we will compare the behaviour of a dynamical system to the behaviour of a discrete
model that will be described in Section 2.2. Therefore, in addition to the concepts, we provide a
notion of measure between two behaviours.

Definition 4 Given two dynamical systems S1 and S2 with the same set of outputs A as in (1), and
a horizon h ∈ N, we define the measure dh(S1, S2) as

dh(S1, S2) := QBh(S1)(Bh(S1) \ Bh(S2)) +QBh(S2)(Bh(S2) \ Bh(S1)).

For a given horizon h, the measure dh is the sum of the measure of h-step trajectories that can only
be observed for S1, and the measure of h-step trajectories that can only be observed for S2.

2.2. Memory-based Markov chains

Inspired by the discussion about the behaviour of the dynamical system depicted in Figure 1, in
this section we formalise the syntax and semantics of a memory-based Markov model, which we
employ as a template for the abstractions of the given dynamical system.

Definition 5 (Memory-ℓ Markov model) Let ℓ ∈ N be a natural number and A be a finite alpha-
bet. A memory-ℓ Markov model is the 4-tuple Σℓ := (Sℓ, Pℓ, νℓ, Hℓ), where Sℓ is a subset of Aℓ, Pℓ

is the associated stochastic transition matrix, νℓ is the initial state probability, and Hℓ : Sℓ 7→ A
is the output (or labelling) map defined as Hℓ((y0, . . . , yℓ−1)) = yℓ−1, that is, it is the projec-
tion onto the last coordinate of elements of Sℓ. The semantics of the model is a follows: a path
(y(0), . . . , y(L)), where each y(j) ∈ Aℓ, j = 0, . . . , L, is an admissible path of size L + 1 of a
memory-ℓ Markov model (Sℓ, Pℓ, νℓ, Hℓ) if the following three conditions hold:

2. This construction can be made rigorous using adequate measure-theoretic results that we omit for brevity, however
see Tao (2011) for more details.
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1. Each y(j) is an element of Sℓ and y(0) is sampled from νℓ.

2. For all j = 0, . . . , L − 1, each y(j+1) is obtained from y(j) by shifting its entries to the left,
removing the first element, and inserting an element of A into the last, empty entry.

3. For all j = 0, . . . , L − 1, we have that Pℓ(y
(j+1) | y(j)) > 0, that is, there is a non-zero

probability of transitioning from y(j) to y(j+1).

Similarly as in Definition 3, we denote by B(Σℓ) the behaviour of a memory-ℓ Markov model,
which is the collection of all possible outputs that can be observed by running trajectories of the
model according to its semantics. The probabilities QB(Σℓ) and QBh(Σℓ) are respectively the unique
measures on B(Σℓ) and Bh(Σℓ) defined by the transition probability and the initial distribution on
words. Details are omitted for brevity. An example of a memory-2 Markov model as explained
above is depicted on the bottom-right corner in Figure 1, where y(j) belong to {aa, ab, ba, bb}.

In this work, we compute the measure defined in Definition 4 on two Markov models Σℓ1 and
Σℓ2 where one is a refinement of the other, it is dh(Σℓ1 ,Σℓ2), where h > ℓ1 > ℓ2. In that case,
the symmetric measure dh(Σℓ1 ,Σℓ2) evaluates the measure of spurious and missing trajectories as
defined in Section 1.

2.3. Construction and refinement of probabilistic abstractions

In this subsection we explain in detail our methodology that provides, at every step, an abstract
model in the form of a memory-ℓ Markov model, obtained by recording the last ℓ observations.
Increasing memory of the Markov representation then leads to more precise abstractions of the
original dynamics. Our technique, which is summarized in Algorithm 1, provides a memory-ℓ
abstraction for the dynamics in (1). It computes the probability Pℓ by sampling long trajectories
of length L > ℓ, of the dynamics in (1). The entries of Pℓ are estimated using the empirical
probabilities, i.e., we let

Pℓ(y
(2) | y(1)) = Ny0y1...yℓ−1yℓ

/
Ny(1) , (2)

where y(1) = y0 . . . yℓ−1, y
(2) = y1 . . . yℓ ∈ Aℓ. The symbol Ny, where y ∈ Aℓ for some ℓ ∈ N,

represents the number of times the word y appears in a word of size L > ℓ. The procedure consists
thus in a Monte-Carlo sampling procedure, where one samples trajectories of length ℓ + 1 of the
form y0y1 . . . yℓ−1yℓ, and increments a counter between y(1) = y0 . . . yℓ−1 and y(2) = y1 . . . yℓ. For
example, if one samples aab, a counter between aa and ab is incremented. Additionally, following
the same idea, the initial state distribution for the memory-ℓ Markov model is defined for all y ∈ Aℓ

by
νℓ(y) = N ′

y /N
′, (3)

where N ′
y is the number of times the word y appears as the ℓ-long prefix of a L-long sample, and

N ′ is the total number of sampled trajectories of length L.
In our results below, for the sake of clarity, we assume that we know exactly the conditional

probabilities defined above. In practice, one would resort to finite sampling, and thereby would
imply an estimation error. There are techniques in order to bound this error as, for instance, in
Coppola et al. (2022). However, the study of the impact of the sampling error, while certainly of
practical importance, is not the focus of the present paper, and we leave it for further work. We
formalise this in the next assumption.
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Assumption B For any memory-ℓ Markov model Σℓ = (Sℓ, Pℓ, νℓ, Hℓ), we assume that the tran-
sition probability Pℓ and the initial distribution νℓ are known exactly.

Assumption B also implies that B(Σℓ) contains no missing words, that is B(Σ) \ B(Σℓ) = ∅, which
implies that, for all h, the expression of dh(Σℓ,Σ) as presented in Definition 4 contains at most one
term.

An important feature of our approach is the fact that, irrespective of the memory of the model,
the resulting Markov chain is only an approximation of the true dynamics. The reason for this
relates to our discussion in the introduction of the paper: the original dynamics may require infinite
memory to be represented without errors, and we are instead using a finite memory model, which
naturally results in approximation errors. Despite this, we will show that under some hypotheses,
successive refinements allow to better approximate the behaviour of a dynamical system. This claim
will also be supported by the numerical examples to be presented later.

Algorithm 1 Constructing a memory-ℓ Markov model

1. Fix a horizon h > 1, a number of samples N ′ ≫ 1, and a sampling length L ≫ h.

2. Sample N ′ initial conditions according to initial distribution and simulate N ′ trajectories of
length L.

3. Construct memory-h Markov model (see Def. 5) from samples as described above.

4. Fix i = 1, construct the memory-i Markov model from samples, as described above.

5. Compute dh(Σi,Σh) as a proxy of distance between i-memory models and h-step behaviour.

6. If dh(Σi,Σh) is smaller than a given threshold, output memory-i model as final model. If not,
i := i+ 1, and return to item 4.

3. Technical Results

We first state the following elementary proposition.

Proposition 6 Consider a dynamical system Σ as in (1). For any horizon h ∈ N, consider a
Markov model approximation Σh as in Definition 5. It holds that dh(Σh,Σ) = 0, where dh is
defined as in Definition 4.

Proof By Assumption B and by definition, Bh(Σh) contains neither spurious or missing trajectories,
that is Bh(Σh) = Bh(Σ). Therefore Bh(Σh) = Bh(Σ) \ Bh(Σh) = Bh(Σh) \ Bh(Σ) = ∅, which
proves the claim.

We now present our main result, which provides a justification for the procedure described in
Subsection 2.3 and shows that it converges (in some sense) to a correct description of the infinite
behaviour of the concrete system. The result leverages two important notions in dynamical systems
theory: observability and ergodicity. In the result, we restrict our analysis to deterministic systems,
and leave the derivation of a similar result for stochastic systems to future work.
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Definition 7 A deterministic system as in (1) is observable if for any two trajectories x0x1 . . . and
x′0x

′
1 . . . such that, for all i ≥ 0, H(xi) = H(x′i), one has that liml→∞ ∥xl − x′l∥ = 0.

Theorem 8 Consider a deterministic and observable dynamical system S as in (1), and the proce-
dure illustrated in Section 2.3 that generates models Σℓ, ℓ ∈ N, as an approximation of the original
dynamics. Suppose that Assumption B holds and that the transition function F is continuous. Then
there exists a sequence (ϵℓ)ℓ∈N with limℓ→∞ ϵℓ = 0 such that the perturbed system

Sϵℓ(ν) :=


xk+1 = F (xk + wk)

yk = H(xk)

x0 ∼ ν

, (4)

where wk is a noise sampled from some distribution W (xk, k) for which ∥wk∥ ≤ ϵℓ, has the same
behaviour as the corresponding Markov model, that is B(Sϵℓ) = B(Σℓ).

Proof Our proof relies on the implicit existence of an abstraction of the concrete system S. In this
abstraction, the abstract states correspond to the equivalence classes

[y0 . . . yℓ−1] := {x : ∃x0 : F ℓ−1(x0) = x, H(F i(x0)) = yi : i = 0, . . . , ℓ− 1},

where F i denotes the i-th functional power3. Let ϵ(ℓ) be the diameter of the largest cell of the
memory-ℓ Markov model, that is, ϵ(ℓ) = maxy0,...,yℓ−1

{diam([y0 . . . yℓ−1])}. By observability of
F and compactness of X , the maximal diameter ϵ(ℓ) tends to zero. Moreover, it is well known
that since F is continuous on the compact X , it admits an invariant measure µ (see (Viana and
Oliveira, 2016, Theorem 2.1)). We now prove that, by Birkhoff’s theorem (Viana and Oliveira,
2016, Theorem 3.2.3), and assuming perfect sampling by Assumption B, the probability on edge
([y0 . . . yℓ−1], [y1 . . . yℓ]) in model Σℓ is equal to

Pµ(xk+1 ∈ [y1 . . . yℓ] |xk ∈ [y0 . . . yℓ−1]) :=
µ({x ∈ [y0, . . . , yℓ−1] : H(F (x)) = yℓ})

µ([y0, . . . , yℓ−1])
.

Indeed, denoting the indicator function

χ[y0...yℓ](x) :=

{
1 if ∃x0 : x = F ℓ(x0) and H(x0F (x0) . . . F

ℓ(x0)) = y0 . . . yℓ,

0 otherwise,

and applying Birkhoff’s theorem, we have that

Ny0...yℓ/Ny0...yℓ−1
=

∫
X
χ[y0...yℓ](x)dµ

/∫
X
χ[y0...yℓ−1](x)dµ (5)

=

∫
x∈[y0...yℓ−1]:H(F (x))=yℓ

dµ

/∫
x∈[y0...yℓ−1]

dµ (6)

= Pµ(F (x) ∈ [y1 . . . yℓ] |x ∈ [y0 . . . yℓ−1]). (7)

3. For i = 0, f0 = id, the identity function, and for i > 0, the i-th functional power of some function f is defined
inductively as f i = f ◦ f i−1 = f i−1 ◦ f .
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Equation (5) above follows from the application of Birkhoff’s theorem (twice), Equation (6) follows
from the invariance of the measure µ, and Equation (7) is the definition of conditional probability.

Now, we claim that we can modify the probabilities Pk, the probability to sample xk, such that
the concrete system behaves as our model. We will first prove the latter for k = 0, and then iterate
the same argument for times k > 1. Consider any probability distribution P0 = ν, we show that one
can build a probability distribution P′

0 such that their densities P′
0([y0 . . . yℓ−1]) = P0([y0 . . . yℓ−1]),

and such that P′
0(x |x ∈ [y0 . . . yℓ−1]) = Pµ(x |x ∈ [y0 . . . yℓ−1]). This new distribution is defined

as follows:

P′
0(A) = µ(A)

P0([y0 . . . yℓ−1])

µ([y0 . . . yℓ−1])
,

for all A ∈ B(X), where B(X) is the Borel algebra of X . Moreover, since P′
0([y0 . . . yℓ−1]) =

P0([y0 . . . yℓ−1]), one can express x′ ∼ P′
0 as x′ = x + w, where x ∼ P0 and w ∼ W (x, 0), and

W (x, 0) has support of diameter ϵ(ℓ) (because W (x, 0) perturbs P0 in the cell to which x belongs).
Now, the push-forward measure P1, defined as P1(A) := P′

0(F
−1(A)) for all A ∈ B(X), will not,

in general, be equal to µ. However, we can reiterate the construction above and provide a pertur-
bation P′

1 such that P′
1([y0 . . . yℓ−1]) = P1([y0 . . . yℓ−1]), and such that P′

1(x |x ∈ [y0 . . . yℓ−1]) =
Pµ(x |x ∈ [y0 . . . yℓ−1]). Again, P′

1 can be achieved by a perturbation w ∼ W (x, 1) such that
w < ϵ(ℓ), and the proof is concluded by induction.

4. Experiments

For a fixed dynamical system S, experiments are set up as follows. For successive values of ℓ,
we compute the associated memory-ℓ Markov model Σℓ = (Sℓ, Pℓ, νℓ, Hℓ), as explained in sub-
section 2.3. We also fix a horizon h > ℓ, for which we compute the corresponding memory-h
Markov model Σh = (Sh, Ph, νh, Hh). First, for each memory-ℓ model, we compute their measure
as defined in Definition 4 with respect to the memory-h model, that is, dh(Σℓ,Σh). This measure
is a probabilistic representation of the quality of the memory-ℓ model with respect to Bh(S), the
h-step behaviour of the true system, which we use as a proxy for B(S). Second, for each pair of
memory-ℓ and memory-(ℓ + 1) models, we compute their metric with respect to the same horizon
h, namely dh(Σℓ,Σℓ+1). This second measure can be effectively computed in practice, and this
distance between models ℓ and ℓ+1 allows us to estimate how close our approximations are to con-
vergence. In our experiments, we then verify this by comparing Bh(Σℓ) with Bh(S) (which might
not be available in practical applications).

We begin by considering the system generating Sturmian words (Fogg et al., 2002).

Example 1 (Deterministic dynamical system) A sturmian system is a deterministic system de-
fined on the state-space [0, 2π) ⊂ R where the next state is defined as

xk+1 = F (xk) = xk + θ mod 2π, (8)

for some irrational angle θ and where the output is yk = H(xk), where H(x) = 0 if x ∈ [0, θ)
and H(x) = 1 otherwise. An illustration of the Sturmian dynamics is provided in Figure 2. In the
formalism introduced in (1), the alphabet is A = {0, 1}.

We also consider a system of different nature, namely endowed with switching and stochastic
behaviour, which has been studied in Dettmann et al. (2020); Stanford and Urbano (1994).
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x0

x1 = x0 +
= 1 + 5

2

H(x) = 0

H(x) = 1

y0y1 y19 = 01110111011101110111

Figure 2: Illustration of the Sturmian dynamical system (see
Example 1). The initial state x0 ∈ [0, 2π) lies in [0, θ).
Therefore, it has an output y0 = H(x0) = 0. The next state
x1 = x0 + θ leaves [0, θ) and lies in [θ, 2π). Therefore it
has an output y1 = H(x1) = 1. The first 20 states and
associated outputs are shown.

Example 2 (Stochastic switched system) Consider a switched system with two modes defined on
the state-space R2, where the next state is defined as xk+1 = Fσk

(xk), where σk ∈ {1, 2} and the
maps Fi : R2 → R2 are linear maps Fi(x) = Aix for two matrices A1, A2 ∈ R2×2 defined as

A1 =

(
cos(π/6) sin(π/6)
− sin(π/6) cos(π/6)

)
and A2 =

(
1.02 0
0 1/2

)
.

Suppose in addition that, at each time step, there is a fair probability (equal to 1/2) to switch to
either mode. In the formalism introduced in (1), the stochastic kernel T (·|xk) is defined as4

T (·|·) : R2 → P(R2) : xk 7→ T (·|xk) =
1

2
δ{F1(xk)} +

1

2
δ{F2(xk)}. (9)

It is not clear whether it is possible to obtain a bi-simulation with classical refinement techniques,
and thus we wish to obtain a non-trivial abstraction thanks to the data-driven approach explained
in Section 2.3. For this reason, we propose a first rough partition of the state space. The alphabet
A = {0, 1, . . . , 8} and the output function H define a partitioning of the state-space as illustrated
in the right part of Figure 3. Together with the output, three trajectories of length 20 are represented
in the left of Figure 3.

Figure 3: Illustration of the
stochastic switched system in
Example 2. (Right) The out-
put map H for this system,
with circles of radius 1 and 2.
(Left) Three different trajecto-
ries sampled from the stochas-
tic kernel T (·|xk) are illus-
trated, and their output re-
ported in like colour.

In these examples, we assume that one knows the closed-form description of the systems, but
would like to find an abstraction of them. Results of multiple executions of the algorithm described
above for Example 1 and Example 2 can respectively be found in Figure 4 and Figure 5. One can
observe in these figures the red curve dh(Σℓ,Σℓ+1), which we can compute in practice, and the blue

4. δA is the Dirac function, it is δA(x) = 1 if x ∈ A, and δA(x) = 0 otherwise.
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curve dh(Σℓ,Σh), which shows that the successive models indeed converge to the concrete model in
terms of their behaviours for the (large) horizon h. This suggests a heuristic argument that, using the
method described in Algorithm 1, one can infer the probabilistic precision of the memory-ℓ abstract
Markov model with any horizon h. Moreover, in Figure 6 and Figure 7, we display how in practice
we can automatically build non-trivial abstractions of the concrete models. Observe that the method
works well even for Example 2, which does not satisfy all assumptions of Theorem 8.

The generated abstract models can be further used to perform analysis or verification on the ini-
tial system, leveraging information from the probabilistic behaviour of transitions between abstract
cells. This goal requires proper handling of the results in Theorem 8, and is left to future work.

Figure 4: Abstraction results for Exam-
ple 1. Averages obtained from execut-
ing the algorithm 10 times.

Figure 5: Abstraction results for Exam-
ple 2. Averages obtained from execut-
ing the algorithm 5 times.

Figure 6: State-space partitioning gen-
erated by the algorithm for the abstrac-
tion built for Example 1, for ℓ = 10.

Figure 7: State-space partitioning generated
by the algorithm for the abstraction built for
Example 2, for ℓ = 2.

5. Conclusions

In this work, we have proposed a new approach to build data-driven abstraction of rather general
dynamical systems. We approximate the concrete system with a Markov model, thus aggregating the
(aleatoric and) epistemic nondeterminism of the given model in the exclusively aleatoric uncertainty
of the abstract stochastic model.

This technique can be expanded in many directions, both theoretical and practical: by making
our computations more efficient, by leveraging the obtained abstraction as an actionable symbolic
model, by adding control inputs, or by relaxing or removing some of the raised assumptions. We
finally note that, as done recently in a non-probabilistic setting (Yang et al., 2020), one could push
this methodology further and refine only certain memory-states, rather than increasing the memory
level uniformly from ℓ to ℓ+ 1. We leave this for further work.

10



DATA-DRIVEN MEMORY-DEPENDENT ABSTRACTIONS OF DYNAMICAL SYSTEMS

References

A. Abate, M. Prandini, J. Lygeros, and S. Sastry. Probabilistic reachability and safety for controlled
discrete time stochastic hybrid systems. Automatica, 44(11):2724–2734, 2008.

Thom Badings, Licio Romao, Alessandro Abate, D. Parker, H. Poonawala, M. Stoelinga, and
N. Jensen. Robust control for dynamical systems with non-gaussian via formal abstractions.
Journal of Artificial Intelligence Research. To appear, 2022.

Christel Baier and Joost Pieter Katoen. Principles of Model Checking. MIT Press Books, 2008.

Calin Belta, Boyan Yordanov, and Ebru Aydin Gol. Formal Methods for Discrete-time Dynamical
Systems. Springer, 2017.

Rudi Coppola, Andrea Peruffo, and Manuel Mazo. Data-driven abstractions for verification of
deterministic systems, 2022. URL https://arxiv.org/abs/2211.01793.

Carl P. Dettmann, Raphael M. Jungers, and Paolo Mason. Lower bounds and dense discontinuity
phenomena for the stabilizability radius of linear switched systems. Systems Control Letters,
142:104737, 2020.

Alex Devonport, Adnane Saoud, and Murat Arcak. Symbolic abstractions from data: A pac learning
approach. In 2021 60th IEEE Conference on Decision and Control (CDC), pages 599–604, 2021.
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