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Abstract
Variational autoencoders allow to learn a lower-dimensional latent space based on high-dimensional
input/output data. Using video clips as input data, the encoder may be used to describe the move-
ment of an object in the video without ground truth data (unsupervised learning). Even though the
object’s dynamics is typically based on first principles, this prior knowledge is mostly ignored in
the existing literature. Thus, we propose a physics-enhanced variational autoencoder that places a
physical-enhanced Gaussian process prior on the latent dynamics to improve the efficiency of the
variational autoencoder and to allow physically correct predictions. The physical prior knowledge
expressed as linear dynamical system is here reflected by the Green’s function and included in the
kernel function of the Gaussian process. The benefits of the proposed approach are highlighted in
a simulation with an oscillating particle.
Keywords: physics-enhance learning, scientific machine learning, variational autoencoders, Gaus-
sian processes

1. Introduction

Variational autoencoders (VAEs) have been one of the most popular approaches to unsupervised
learning of complex distributions (Doersch, 2016). Their effectiveness has been proven in several
examples, such as for handwritten digits (Kingma and Welling, 2013), faces (Rezende et al., 2014),
CIFAR images (Gregor et al., 2015), segmentation (Sohn et al., 2015), and prediction of the future
from static images (Walker et al., 2016). Further, VAE can not only be used to learn the latent state
for static objects but also for time-transient inputs such as videos. In this case, there exists a latent
time series to describe the evolution of the latent state over time. VAEs for videos have been used in
the context of anomalies detection (Waseem et al., 2022), long-horizon predictions (Saxena et al.,
2021), learning spatial knowledge for mobile robots (Nagano et al., 2022), and training data gener-
ation for autonomous driving (Amini et al., 2018). In all of these applications, the observed objects
are typically subject to certain physical rules as they exist and operate in real world environments.
However, this prior knowledge is mostly neglected, which might lead to unrealistic predictions and
data-hungry algorithms.

In this article, we consider the learning of a physical grounded latent time series of a video
showing a moving object. The object’s dynamics is based on physical laws encoded as linear latent
dynamics, which can be excited by an external, unknown input (see Figure 1). A simple example is a
mass-spring-damper system with an external excitation generated by an electromechanical actuator.
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Figure 1: Model of the physics-enhanced Gaussian process variational autoencoder (PEGP-VAE).
The input consists of a batch of video sequences of a physical system generated by latent
dynamics with unknown excitations, e.g., the position of a ball over time. The latent
dynamics are used to formulate a physics-enhanced kernel function to model the latent
time series with a Gaussian process.

Other examples include pedestrian movements, where the pedestrians are modeled as masses driven
by an external force, or micro-particles in electromagnetic fields.

Although learning approaches such as neural networks are highly flexible in describing latent
time series, physical knowledge expressed as differential equations is much less restricted by data
availability, as they can make accurate predictions even without training data (Hou and Wang, 2013).
Therefore, we aim to combine the best of both worlds: Using physical prior knowledge for the
latent space with expressive models for the unknown external excitation. For this purpose, we
leverage Gaussian processes with prior knowledge expressed as linear differential equation as prior
for the latent time series. Gaussian processes (GPs) have been developed as powerful function
regressors. A GP connects every point in a continuous input space with a normally distributed
random variable such that any finite group of those infinitely many random variables follows a
multivariate Gaussian distribution (Rasmussen and Williams, 2006). In contrast to most of the other
techniques, GP modeling provides not only a mean function but also a measure for the uncertainty
of the prediction.

Contribution: In this article, we propose a physics-enhanced Gaussian process variational au-
toencoder (PEGP-VAE) bringing together physical prior knowledge encoded as a linear system with
a GP prior on the latent dynamics. For this purpose, we use the Green’s function of the linear system
to construct a linear operator that is included in the kernel function of the GP. The PEGP-VAE is
trained with a batch of video sequences consisting of a moving object following the linear dynamics
with unknown excitation. Then, new video sequences can be generated with uncertainty quantifi-
cation based on the posterior variance of the GP. The physical model allows the VAE to be more
efficient in training and to make predictions which respect the physical prior.

The remainder of the paper is structured as follows. After introducing the problem statement
in Section 1.1, we briefly summarize the background techniques in Section 2, followed by presenting
the PEGP-VAE in Section 3. Finally, a simulation is performed in Section 4.
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Notation: Vectors and vector-valued functions are denoted with bold characters v. The no-
tation [a; b] is used for [a⊤, b⊤]⊤ and x(1:n) denotes [x⊤

1 , . . . ,x
⊤
n ]

⊤. Capital letters A describes
matrices. The matrix I is the identity matrix of appropriate dimension. The expression N (µ,Σ)
describes a normal distribution with mean µ and covariance Σ. N+ and R+ denote the positive
natural and positive real numbers, respectively.

1.1. Problem description

We consider the problem of learning a lower-dimensional, physics-enhanced latent time series based
on a batch of video sequences of a moving object. Movement of the object is generated by linear
dynamics based on first principles with an unknown (nonlinear) external, time-dependent excitation
u : R+ → Rm. The latent dynamics is defined by

ẋ(t) = Ax+Bu(t), y = Cx (1)

with state x ∈ Rn, output y ∈ Rp, system matrix A ∈ Rn×n, input matrix B ∈ Rn×m, output
matrix C ∈ Rp×n, and time t ∈ R+. The matrices A,B,C are assumed to be known except
for a finite number nφ of unknown parameters bundled in a vector φ ∈ Rnφ . We consider the
existence of nv video clips in which each clip consists of nf black-white frames described by
v(i) = [0, 1]d

2
, i ∈ {1, . . . , nf} with d ∈ N pixels in width and height. The frame v(i) is recorded

at time ti ∈ R+ with equidistant t1, . . . , tnf
. The goal is to find a latent time series [y(1), . . . ,y(nf )]

that describes the evolution of the object over time based on the nv video clips. The evolution of y
shall be consistent with the prior knowledge expressed by the linear system (1). In the remainder of
the paper, we will refer to y as latent state that should not be confused with the state x in (1). Note
that we do not consider the existence of a ground truth for the latent state y.

1.2. Related work

Finding interpretable low-dimensional dynamics from pixels has been considered by exploiting
state-space models, e.g., in Fraccaro et al. (2017); Lin et al. (2018); Pearce et al. (2018), which
assume an underlying Markov structure to enforce interpretability on latent representations. One of
the first papers where GPs are connected with variational autoencoders has been published by Casale
et al. (2018). The proposed method is based on a fully factorized approximate posterior that, how-
ever, performs poorly in time series and spatial settings (Barber et al., 2011). Fortuin et al. (2020)
consider the use of a Gaussian approximate posterior with a tridiagonal precision matrix parame-
terized by an inference network. Whilst this permits computational efficiency, the parameterization
neglects a rigorous treatment of long-term dependencies. Campbell and Liò (2020) has extended
this framework to handle more general spatio-temporal data. Finally, Pearce (2020) propose a GP
based VAE approach with structured approximate posterior allowing long-term dependencies, and
Ashman et al. (2020) generalized this framework to handle missing data. However, these works do
not consider using physical prior knowledge in the latent dynamics. Using physics as a prior knowl-
edge in VAEs has been mainly addressed by using neural networks (Luchnikov et al., 2019; Farina
et al., 2020; Erichson et al., 2019) which inherently lack information on the uncertainty of the model.
Although GPs are highly suitable for the integration of prior knowledge, e.g., in robotics (Geist and
Trimpe, 2020; Rath et al., 2021) or more general physical systems (De Bézenac et al., 2019; Hanuka
et al., 2020; Wang et al., 2020), the connection of variational autoencoders with physics-enhanced
GP priors on the latent time series is still open.
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2. Background

2.1. Gaussian Process Models

Let (Ω,F , P ) be a probability space with the sample space Ω, the corresponding σ-algebra F
and the probability measure P . Consider a vector-valued, unknown time series f : R+ → Rp. The
measurement ỹ ∈ Rp of the series is corrupted by Gaussian noise η ∈ Rp, i.e., ỹ = f(t)+η, η ∼
N (0,Σn) with the positive definite matrix Σn = diag(σ2

1, . . . , σ
2
p). The function is measured at nf

input values {t{j}}nf

j=1. Together with the resulting measurements {ỹ{j}}nf

j=1, the whole training
data set is described by D = {T, Y } with the input training matrix T = [t{1}, t{2}, . . . , t{nf}] ∈
R1×nf and the output training matrix Y = [ỹ{1}, ỹ{2}, . . . , ỹ{nf}]⊤ ∈ Rnf×p. Now, the objective
is to predict the output of the function f(t∗) at a test input t∗ ∈ R+. The underlying assumption of
GP modeling is that the data can be represented as a sample of a multivariate Gaussian distribution
using a kernel function k. The joint distribution of the i-th component of f(t∗) is1[

Y:,i
fi(t

∗)

]
∼ N

(
0,

[
K(T, T ) + σ2

i I k(t∗, T )

k(t∗, X)
⊤

k(t∗, t∗)

])
(2)

with the kernel k : R+ × R+ → R as a measure of the correlation of two points (t, t′). The func-
tion K : R1×nf × R1×nf → Rnf×nf is called the Gram matrix Kj,l = k(T1,l, T1,j) with j, l ∈
{1, . . . , nf}. Each element of the matrix represents the covariance between two elements of the
training data T . The vector-valued function k : R+ × R1×nf → Rnf calculates the covariance be-
tween the test input t∗ and the input training data T where kj = k(t∗, T1,j) for all j ∈ {1, . . . , nf}.
A comparison of the characteristics of the different covariance functions can be found in Bishop
and Nasrabadi (2006). The prediction of each component of f(t∗) is derived from the joint distri-
bution (2) and is therefore a Gaussian distributed variable. The conditional probability distribution
for the i-th element of the output is defined by the mean and the variance

µi(f |t∗,D) =k(t∗, T )
⊤
(K + σ2

i I)
−1

Y:,i

vari(f |t∗,D) =k(t∗, t∗)− k(t∗, T )⊤(K + σ2
i I)

−1
k(t∗, T ).

(3)

Finally, the q normally distributed components of f |t∗,D can be combined into a multi-variable
Gaussian distribution f |t∗,D ∼ N (µ(·),Σ(·)) with µ(f |t∗,D) = [µ(f1|t∗,D), . . . , µ(fp|t∗,D)]

⊤

and Σ(f |t∗,D) = diag(var(f1|t∗,D), . . . , var(fp|t∗,D)).

2.2. Latent Force Models

In real-world dynamics, physics knowledge, expressed as differential equations, provides useful
insight into the mechanism of the system and can be beneficial for understanding and prediction.
Alvarez et al. (2013) introduced the latent force model (LFM) that allows incorporating physical
prior knowledge into GP models. We consider a LFM with p output functions y1, . . . , yp : R+ → R
and latent forces u1, . . . , um : R+ → R to define the differential equation

Ly(t) = u(t), (4)

where L is a linear differential operator (Courant and Hilbert, 2008). Using the latent force model (4),
a GP prior is placed on the unknown latent forces ui ∼ GP(0, kui). As GPs are closed under linear
operators (Rasmussen and Williams, 2006) and L is linear, each function yi also defines a GP.

1. For notational convenience, we simplify K(T, T ) to K
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3. PEGP-VAE

In this section, we propose the physics-enhanced Gaussian process variational auto-encoder, which
allows us to integrate physical prior knowledge into the latent dynamics. The goal is to find a lower-
dimensional physical representation for the movement of the object in the video clips. As we do not
have a ground truth for the latent state, it is an unsupervised learning problem with respect to the la-
tent time series. In the following, we use the notation y(1:nf ) for [y(1)1 , . . . , y

(nf )
1 , . . . , y

(1)
p , . . . , y

(nf )
p ]

⊤

to describe the state of the object, where y(i) ∈ Rp is the latent state at time ti. In addition,
T = [t1, . . . , tnf

] denotes the vector of the recorded time stamps. For example, the latent state
could describe the position of a ball in the video frame as illustrated in Fig. 2. Then, the goal
is to find the unknown latent input u such that the evolution of the latent state is consistent with
the latent dynamics (1). Thus, we place GP priors on the unknown latent input (excitation) u by
ui ∼ GP(0, kui(T, T )) for all i ∈ {1, . . . ,m}. For simplicity, the priors are independent, but exten-
sions to multi-output GPs to model correlations between latent inputs are possible. Then, we model
the joint probability distribution P (v(1:nf ),y(1:nf )) between the video frames v(1:nf ) ∈ Rnfd

2
and

the latent states y(1:nf ) ∈ Rnfp by

P (v(1:nf ),y(1:nf )) =

nf∏
i=1

P (v(i)|,y(i))P (y(1:nf )) (5)

=

nf∏
i=1

B
(
v(i)|, pθ(y(i))

)︸ ︷︷ ︸
Pixel model

N

y(1:nf )
∣∣∣0,

 K11(T, T ) . . . K1p(T, T )
...

...
K1p(T, T )

⊤ . . . Kpp(T, T )




︸ ︷︷ ︸
Latent dynamics

where B(v(i)|, pθ(y(i))) is a product of d2 independent Bernoulli distributions over the pixels of
the frame v(i) parameterized by a neural network pθ(y

(i)) with parameter vector θ ∈ Rnθ similar
to Pearce (2020). The latent dynamics is described by a multivariate normal distribution N (·|µ,Σ)
with mean µ and variance Σ as it contains a finite subset of the GP. Next, we show how to include
prior knowledge in (5) via a physics-enhanced kernel for Gram matrices K11, . . . ,Kpp ∈ Rnf×nf .

3.1. Physical Prior Knowledge

Our goal is to encode the latent dynamics (1) in a kernel function. In this way, we use a physics-
enhanced GP prior on the latent model of the VAE. Following the idea of Latent force models (Al-
varez et al., 2013), we need to find a linear differential operator that describes the time evolution of
the latent dynamics (1). In this regard, let G : R+ × R+ → Rp×m be the Green’s function of the
latent dynamics. The Green’s function is known to be the impulse response for linear dynamical
systems which can be determined by

G(t, t′) = CeA(t−t′)B (6)

with the matrix exponential e, input matrix B, output matrix C and system matrix A given by (1).
The impulse response allows us to compute the solution of the initial-value problem with x0 = 0
via convolution

(G ∗ u)(t) =
∫ t

0
G(t, t′)u(t′)dt′, (7)
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where ∗ denotes the convolution operator. Now, we can build a linear operator as in Section 2.2
using the Green’s function and the convolution (7) to create a physics-enhanced kernel. As result,
the enhanced kernel kij : R+ × R+ → R, that describes the covariance between the i-th and j-th
dimension of the latent state y, is computed by

kij(t, t
′) =

∫ t

0

∫ t′

0
Gi,:(t, τ)

ku1(τ, τ
′) 0

. . .
0 kum(τ, τ

′)

Gj,:(t
′, τ ′)⊤dτdτ ′ (8)

for all i, j ∈ {1, . . . , p}. Then, the Gram matrices Kij ∈ Rnf×nf are constructed as stated in Sec-
tion 2.1.

Remark 1 For some kernels that are used in the GP prior on the independent, unknown inputs
u1, . . . , um, there exists an analytic solution for (7). For example, the commonly used squared
exponential kernel leads to a closed-form solution (Alvarez et al., 2013).

Remark 2 We only need to consider x0 = 0 as initial value as the encoder network can always
perform a linear transformation in the case of x0 ̸= 0.

For more detailed information on convolution for kernel functions and the analytical solution for
the squared exponential kernel, we refer to Van der Wilk et al. (2017).

3.2. Prediction

Equipped with the physics-enhanced kernel, the goal is to compute the conditional distribution
P (y(1:nf )|v(1:nf )) given the latent states based on a video sequence. For simplicity of notation,
we assume that the latent states and the video sequence have the same number of time steps that,
however, can be easily adapted.

Due to the Bernoulli distribution term B
(
v(i)|, pθ(y(i))

)
, there exists no analytic solution for

the posterior. Inspired by Pearce (2020), we propose the following variational approximation

q(y(1:nf )|v(1:nf )) =
1

L(v(1:nf ))

nf∏
i=1

q∗Φ(y
(i)|v(i))P (y(1:nf )) (9)

=

nf∏
i=1

N

y(i)
∣∣∣
µ

∗
1Φ(v

(i))
...

µ∗
pΦ(v

(i))

 , diag

σ
∗
1Φ(v

(i))
...

σ∗
pΦ(v

(i))




︸ ︷︷ ︸
approximating B

(
v(i)|,pθ(y(i))

)
N

(
y(1:nf )

∣∣∣0,K)

with K =

 K11(T, T ) . . . K1p(T, T )
...

...
K1p(T, T )

⊤ . . . Kpp(T, T )

 (10)

that is based on the model (5) but with a Gaussian approximation q∗Φ(y
(i)|v(i)) of the Bernoulli

term B in (5) that represents the pixel model. Since the Gaussian distribution is conjugate to it-
self, the approximation allows us to obtain the exact posterior distribution. The y(1:nf ) are la-
tent function values, and {(ti, µ∗

jΦ(v
(i)))}nf

i=1 are a set of pseudo-inputs µ∗
jΦ(v

(i)) ∈ R each with

6



PEGP-VAE

noise σ∗
jΦ(v

(i)) ∈ R+ for j ∈ {1, . . . , p} provided by the encoder network. Conditioning the GP
prior on these points leads to an analytically tractable posterior that approximates the true posterior
p(y(1:nf )|v(1:nf )). The function L(v(1:nf )) is the standard marginal likelihood of the GP, see Ras-
mussen and Williams (2006), given by

logL(v(1:nf )) = −1

2

(
[µ∗]⊤(K +Σ∗)−1µ∗ − log |K +Σ∗| − nf log 2π

)
(11)

with µ∗ =

µ
∗
1(v

(1:nf ))
...

µ∗
p(v

(1:nf ))

 ,Σ∗ = diag

σ
∗
1Φ(v

(1:nf ))
...

σ∗
pΦ(v

(1:nf ))

 ,

which is typically used to optimized the kernel’s hyperparameters. In the next section, we present
the training of the PEGP-VAE.

3.3. Training

Learning and inference for the PEGP-VAE are concerned with determining the parameters of the
encoder Φ, the parameters of the decoder θ, and the unknown parameters in the latent dynamics φ.
For this purpose, we are maximizing the evidence lower bound (ELBO) given by

LELBO(θ,Φ,φ,v(1:nf )) = E

[ nf∑
i=1

logB
(
v(i)|pθ(y(i))− log q∗Φ(y

(i)|v(i))

]
+ logL(v(1:nf )).

The first term is the reconstruction term, evaluated with the reparameterization trick (Kingma and
Welling, 2013), which must be evaluated by Monte-Carlo sampling. The middle and the right
term compose the analytically tractable Kullback-Leibler divergence between the GP prior and the
inference model. Alternatively, the first two terms together may be viewed as the error between
the true posterior and approximate posterior, since the Bernoulli likelihoods are approximated by a
Gaussian distribution. Finally, the last term is the log marginal likelihood (11) of the GP. For more
information on the ELBO function see Pearce (2020).

4. Simulation

Setting: To highlight the benefits of the proposed PEGP-VAE, we consider observing a micro-
particle in a 2-dimensional space. The particle is excited by an unknown, time-dependent electro-
magnetic field. We assume that we know the resonance frequency and damping factor of the particle
such that we assume an harmonic oscillator as prior knowledge on the latent dynamics given by

ẋ(t) =


0 0 1 0
0 0 0 1

−c1 0 −d1 0
0 −c2 0 −d2


︸ ︷︷ ︸

A

x(t) +


0 0
0 0
1 0
0 1


︸ ︷︷ ︸

B

u(t), y(t) =

[
1 0 0 0
0 1 0 0

]
︸ ︷︷ ︸

C

x(t) (12)

with the electromagnetic field input u ∈ R2. Here, the latent state y1 describes the horizontal
position, while y2 is the vertical position, i.e., the dimension of the latent space is q = 2. The
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constants c1, c2, d1, d2 are selected such that the particle has a resonance frequency of 47.7 kHz /
63.6 kHz and a damping factor of 0.02 / 0.01 for the horizontal and vertical direction, respectively.
100 video sequences of particles with a resolution of 40 × 40 pixels are artificially generated as
training data using samples from a GP prior with squared exponential kernel for the input u1, u2
of (12). Each video sequence has a duration of 30 µs with one frame per µs. In Figure 2, four
examples of generated particle movements are shown.

Figure 2: Four examples of particle movement sequences out of the training set as heatmaps (in-
creasing brightness from start to end).

Configuration: The GP prior on the latent state is equipped with the physics-enhanced ker-
nel (8) with a squared exponential kernel as prior for the inputs u1, u2 and the Green’s function
of (12) given by G(t, t′) = CeA(t−t′)B ∈ R2×2. In Figure 3, the correlation between two points in
time for the squared exponential kernel (left) and the physics-enhanced kernel (right) is shown. The
periodicity and damping of the oscillator manifest themselves as a repetitive, decreasing correlation
over time.

For the input encoder, we use a fully connected network that takes a frame v(i) ∈ {0, 1}40·40
of the video sequence as input. The input layer is followed by a fully connected hidden layer of
500 nodes with a tanh-activation function, and the output layer consisting of four nodes returning
the pseudo-inputs µ∗

1Φ(v
(i)), µ∗

2Φ(v
(i)) and noise log σ∗

1Φ(v
(i)), log σ∗

2Φ(v
(i)). Thus, the network

is parametrized by two weight matrices W 1
Φ,W

2
Φ and two bias vectors B1

Φ, B
2
Φ such that Φ =

{W 1
Φ, B

1
Φ,W

2
Φ, B

2
Φ}. Analogously, the decoder consists of an input layer with p = 2 inputs, a fully

connected hidden layer of 500 nodes with the tanh-activation and 40 · 40 = 1600 nodes with the
sigmoid-activation function to achieve a Bernoulli probability between zero and one for each pixel.

Squared exponential

Time t [µs]

Physics-enhanced

Time t [µs]

Ti
m

e
t′

[µ
s]

Figure 3: Correlation of two points in time for the squared exponential kernel and the physics-
enhanced kernel that represents a damped oscillator.
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The decoder network is parameterized by θ = {W 1
θ , B

1
θ ,W

2
θ , B

2
θ}. The training (maximization of

the ELBO) is implemented in Python using PyTorch and the Adam optimizer with a learning rate
of 1e− 3. Each method is trained for 30000 iterations.

Results: Figure 4 show the reconstructed video sequences for two samples of the test set. On
the left side, the original video sequences are visualized. The videos are used as input for the trained
encoder network, and the resulting GP posterior for the latent state over time is shown in the second
column. The crosses mark the unknown ground truth. The GP with a physics-enhanced kernel is
able to reconstruct the unknown trajectory of the latent state. Furthermore, all samples of the GP are
respecting the latent dynamics (12). On the right side of Figure 4, the reconstructed videos using
the latent state trajectory as input for the trained decoder network are depicted. We assume that the
quality of the decoder can be even further improved by more hidden nodes in the neural network
and/or more training data.
In Figure 5, we compare the reconstruction quality of the latent state for a GP with squared expo-
nential kernel (left) against the physics-enhanced kernel (right) for the two samples shown in Fig. 4
(top and bottom, respectively). In this case, the input video sequence has a duration of 30 µs (black
line), and we aim to predict a video sequence for 50 µs. Both VAE are trained for the same num-
ber of iterations. The unknown ground truth is marked by crosses. The physics-enhanced kernel
clearly outperforms the squared exponential kernel in terms of reconstruction accuracy and gener-
alization quality. Although the uncertainty (shaded area) for both approaches increases after 30 µs,

0 5 10 15 20 25

Time [us]

-1

0

1

2

3

4

L
a

te
n

t 
s
ta

te

Ground truth y
1

Prediction y
1

Ground truth y
2

Prediction y
2

0 5 10 15 20 25

Time [us]

-1

0

1

2

3

4

L
a

te
n

t 
s
ta

te

Ground truth y
1

Prediction y
1

Ground truth y
2

Prediction y
2

Original ReconstructionLatent state

Figure 4: Left: Original videos. Middle: Horizontal y1 (blue) and vertical position y2 (red) of the
particle. The mean prediction of the latent state (solid line) and 2σ-uncertainty (shaded
area) of the GP with a physics-enhanced kernel. The crosses are the unknown ground
truth. Right: Reconstructed videos.
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Figure 5: Comparison of GP based VAE with squared exponential kernel against physics-enhanced
kernel for two samples (top/bottom row) over a horizon of 50 µs. The horizontal line at
30 µs marks the end of the training sequences. The physics-enhanced kernel is superior
in terms of accuracy and generalization of the latent state.

the PEGP-VAE benefits from the encoded prior knowledge, whereas the squared exponential kernel
performs poorly on the previously unseen time interval. Due to the reduced uncertainty using the
physics-enhanced kernel, we also observe a significant improvement in the reconstruction of the
trajectory.

Conclusion

We propose a physics-enhanced Gaussian process variational autoencoder (PEGP-VAE) for learning
physically correct latent dynamics from pixels. For this purpose, we place a GP prior on the latent
time series, where the GP is based on a physics-enhanced kernel. This kernel is derived using latent
force models and the Green’s function of the physical model expressed by linear dynamics. The
proposed approach improves the reconstruction quality of the latent state as the space of potential
latent dynamics is reduced and respects physical prior knowledge. For future work, we plan to use
convolutional NN for the encoder/decoder due to the spatio-temporal nature of the data.
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