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Abstract
In this work, we propose an operator learning framework for accelerating nonlinear adaptive con-
trol. We define three operator mappings in adaptive control-the parameter identifier operator, the
controller gain operator, and the control operator. We introduce neural operators for learning both
the parameter identification mapping and the gain function mapping to produce the control action
at each step. Through the formalization of neural operators, we are able to learn these mappings
for a wide set of different system parameter values without retraining. Empirically, we test our
controller on two experiments ranging from an aircraft system (a nonlinear ODE) to a first-order
hyperbolic PDE system. We demonstrate that the accuracy of both the gain function and parameter
approximation can reach the magnitude of 10−4 with speedups around 98% compared to numer-
ical solvers. Furthermore, we empirically demonstrate that despite error propagation, closed-loop
stability guarantees are maintained when substituting neural operator approximations.
Keywords: Neural Operators, Adaptive Control

1. Introduction

Over the past thirty years, a series of theoretical adaptive controllers have been developed for sta-
bilization of complex dynamical systems. This includes model-based adaptive controllers for non-
linear ODEs Krstic et al. (1995), PDEs Smyshlyaev and Krstić (2018); Anfinsen (2019), and delay
systems Zhu and Krstic (2020). Often, these controllers provide well-defined stability and robust-
ness guarantees from a theoretical perspective. However, in practice, many adaptive controllers
require solving a series of challenging integro-differential equations. Therefore, the computational
cost for complex nonlinear PDE systems can easily become intractable. Thus, a need exists to de-
velop adaptive control techniques that are feasible to compute in real-time without sacrificing the
stability and performance guarantees of the original controller.

In this work, we design an operator learning framework for accelerating adaptive control that
arises in both nonlinear ODE and PDE systems. To guarantee the stabilization of the closed-loop
system, we generate supervised training data from adaptive controllers designed by the backstep-
ping method. To accelerate the computational efficiency, we use neural operators for model learn-
ing. These operator learning techniques have shown superior performance in learning mappings
between infinite-dimensional spaces of functions Lu et al. (2021), Li et al. (2020). Specially, we
learn the functional mapping from the system measurements, control inputs, and initial parameter
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estimates to the parameter estimates and gain function values. Pairing an adaptive controller of non-
linear systems, with neural operator approximations of the parameter identifier and controller gains
enables the user to capitalize on the mathematical rigor of the controller and the computational per-
formance of operator learning. This allows us to achieve the best of both worlds. Our contributions
in this paper are summarized as follows.

Contributions. Theoretically, we formulate the operator learning problem for nonlinear adaptive
control. We define three operator mappings in adaptive control, the parameter identifier operator I,
the controller gain operator G, and the control operator C in Section 3.1. Empirically, we demon-
strate our controller on two experiments including a simulation of a aircraft wing-rock model (a
nonlinear ODE system) and a challenging first-order hyperbolic PDE system. In these experiments,
we show accuracy on the magnitude of 10−4 and a speedup of around 98% compared to numerical
solvers. Furthermore, we showcase that stability guarantees of the closed-loop system are preserved
when inserting the neural operator approximated parameter identifier and gain function.

The proposed operator learning paradigm for parameter identification is intrinsically different
from existing ML methods for system ID Ljung et al. (2020); Pillonetto et al. (2014); Andersson
et al. (2019); Gedon et al. (2021); Dalla Libera and Pillonetto (2022); Raissi et al. (2019). Existing
methods perform system ID with training instances generated from one single system, and require
re-training from scratch when the system parameters change. We conduct training, instead, with
data generated from ground-truth systems with a range of different system parameters and initial
conditions. Thus, once the neural operator is learned, we apply it in real-time without re-training.
Whenever the system parameters change significantly (due to a drift in the environment, aging, and
wear), the neural operator identifier will “automatically” update the parameter estimates, empow-
ered by the adaptive control scheme.

2. Background and Related Works

2.1. A Brief Introduction to Adaptive Control

In general, an adaptive controller consists of two main components: a parameter update law and a
control law. Parameter identification estimates the unknown parameters of a system based on the
measured output. This estimation is then fed into the controller, which injects input signals into the
system (typically at a boundary point) in order to achieve some desired trajectory. As an illustrative
example, consider a first-order hyperbolic PDE system with output recirculation,

ut(x, t) = ux(x, t) + θ(x)u(0, t) , (1a)

Y (t) = u(0, t) , (measured output) (1b)

u(1, t) = U(t) , (control input) (1c)

where θ(x) are unknown, continuous functions, and for all 0 ≤ x ≤ 1, θ(x) is bounded - |θ(x)| ≤
Mθ for constant Mθ > 0. In this example, lets define the goal to regulate u(x, t) to 0 for all
x ∈ [0, 1] using the measurement Y (t) = u(0, t) and the boundary control U(t) = u(1, t). The
following theorem presents a paired adaptive controller and parameter update law from Bernard and
Krstic (2014) that guarantees stabilization of the closed-loop system.
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Theorem 1 (Theorem 5, Bernard and Krstic (2014)) Consider the plant (1) with controller,

U(t) =

∫ t

t−1
κ̂(t− τ, t)U(τ)dτ +

∫ t

t−1

[∫ 1

t−τ
κ̂(µ, t)θ̂(1− µ+ t− τ, t)dµ

]
Y (τ)dτ (2)

the parameter update law for θ̂ is generated by,

θ̂t(x, t) = γ(x)
Y (t− x)

[
Y (t)− U(t− 1)−

∫ t
t−1 θ̂(t− τ, t)Y (τ)dτ

]
1 +

∫ t
t−1 Y

2(τ)dτ
(3)

where γ(x) is the estimation gain. κ̂, the controller gain function, is obtained from θ̂ by real-time
solution of the following equation,

κ̂(x, t) = −θ̂(x, t) +

∫ x

0
κ̂(y, t)θ̂(x− y, t)dy (4)

For any initial condition, θ̂(·, 0) ∈ C1(0, 1), Y (0), U(0), the solution (u, θ̂) and the control input
U are bounded for all x ∈ [0, 1], t ≥ 0 and limt→∞ u(x, t) = 0, ∀x ∈ [0, 1] , limt→∞ U(t) = 0.

Notice that the parameter estimator (3) contains dynamics because it involves delayed input U(t)
and output Y (t). More importantly, the mapping from the measurement Y (t) to the parameter esti-
mator in (3) are highly nonlinear and therefore require significant computational time to calculate.
The task of operator learning will be to capture these nonlinear mappings, thus accelerating the
computation of adaptive control for real-time applications.

2.2. Neural Operators

Recently, machine learning (ML) methods have shown promise in solving complex algebraic and
differential equations. Earlier works on data-driven solvers borrow off-the-shelf ML models de-
signed for computer vision and language processing. Examples include multi-layer perceptions
(MLPs) Levine and Stuart (2021), convolution neural networks (CNNs) Bhatnagar et al. (2019),
and graph neural networks Alet et al. (2019). Another line of work, called Physics-Informed Neural
Networks (PINNs) (see Raissi et al. (2019) and references within), add physics constraint loss to
neural networks. PINNs take advantage of the auto-differentiation of neural networks and can serve
as generic solvers for PDEs. However, PINNs need to be re-trained for new boundary and initial
conditions, thus not fitting our goal of accelerating adaptive control in real-time.

In Lu et al. (2019); Li et al. (2020), neural operators are designed for solving partial differ-
ential equations and dynamical systems. Compared to other ML methods, neural operators pro-
vide two unique advantages. Firstly, from a theoretical perspective, neural operators formalize the
learning problem as a mapping of function spaces. This contrasts standard neural networks that
target learning the map between finite-dimensional vector spaces. Neural operators enable us to
learn mappings for an entire set of system parameters instead of requiring retraining when system
parameters change. Secondly, from an empirical perspective, Lu et al. (2021), Shi et al. (2022)
demonstrated that neural operators achieve superior accuracy in emulating challenging functions
compared to standard deep learning approaches. We provide a short review of two popular neural
operator architectures, DeepONet Lu et al. (2019) and Fourier Neural Operators Li et al. (2020).

3



OPERATOR LEARNING FOR NONLINEAR ADAPTIVE CONTROL

Definition 2 A DeepONet operator is defined as two neural networks in the form,

HN(um) :=

p∑
k=1

gN (um; Θ(k))︸ ︷︷ ︸
branch

fN (y; θ(k))︸ ︷︷ ︸
trunk

(5)

where there exists positive integers p and m, such that k = 1, ..., p, neural networks defined as
fN (·; θ(k)), gN (·; Θ(k)) and measurements um = (u(x1), u(x2), ..., u(xm))⊤ for xj ∈ K1.

From a high-level perspective, one can think of a DeepONet as two concatenated neural networks
where the branch network takes in the system measurements and the trunk network takes in the
system’s domain. In practice, one can choose these neural networks in any form such as MLPs,
CNNs, or even recurrent neural networks (RNNs) depending on the type of data stream.

Definition 3 A Fourier neural operator (FNO) is defined as the composition of linear integral
operator K with pointwise non-linear activation function σ in the following form,

HN(um) := Q ◦ σ(WL +KL) ◦ · · ·σ(W1 +K1) ◦ P (6)

where P , Q and Wl ∈ Rdl+1×dl are matrices, and the integral operator K is implemented with a
Fourier transform,

Fl := F−1
(
Kl · (Ful−1

m )
)
(x) ∀x ∈ D. (7)

where F denotes the Fourier transform and F−1 denotes the inverse Fourier transform, and Kl

denotes the linear transformation matrix applied to function in the Fourier domain.

3. Operator Learning for Adaptive Control

3.1. Operator Learning Formulation

Our goal is to accurately capture the nonlinear mappings in adaptive control. To do this, we construct
simulations with a large set of functional initial conditions u(x, 0) and system functional parameters
θ(x). Both will be unknown in the implementation of the neural observers. In this work, we will
formally introduce three operators in the adaptive control framework. To the authors’ knowledge,
this is the first time these operators are formulated and learned across different parameter functions.
We define the three core operators as:

Parameter identifier operator I:

I :
(
θ̂0(x), x ∈ [0, 1];Y (τ), τ ∈ [t− 1, t];U(τ), τ ∈ [t− 1, t]

)
7→

(
θ̂(x, t), x ∈ [0, 1]

)
(8)

Gain operator G:
G :

(
θ̂(x, t), x ∈ [0, 1]

)
7→ (κ̂(x, t), x ∈ [0, 1]) (9)
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Figure 1: Diagram of the proposed operator learning for adaptive control framework.

Controller operator C:

C :
(
U(τ), τ ∈ [t− 1, t);Y (τ), τ ∈ [t− 1, t]; θ̂(x, t), x ∈ [0, 1]; κ̂(x, t), x ∈ [0, 1]

)
7→ U(t)

(10)
We focus on learning the first two operators: the parameter identifier operator I, and the control
gain operator G, while directly solving for the controller input U(t). To learn the neural operator
approximation of the parameter estimation and gain mappings, we follow the standard supervised
learning setup.

1) Operator Learning for Parameter Identifier I: To learn a neural operator for the parameter
identifier operator, we need first to generate a training dataset containing input-output pairs pro-
duced by solving the parameter update law, e.g., (3) for the hyperbolic PDE system. Consider a
time interval [t − 1, t] with measurement interval ∆t, and contains n intervals: t1 = t − 1, t2 =
t− 1+∆t, ..., tn = t. For the spatial domain [0, 1] with discretization interval ∆x, and contains m
intervals: x1 = 0, x2 = ∆x, ..., xm = 1. Denote ∆t,∆x to be the the temporal and spatial intervals
between two measurements, and n,m to denote the total number of temporal and spatial measure-
ments. For the neural operator design, we learn a mapping Î that maps the initial parameter estimates
[θ̂0(x1), θ̂0(x2), ..., θ̂0(xm)], the boundary measurements [Y (t1), Y (t2), ..., Y (tn)] and the control
inputs [U(t1), U(t2), ..., U(tn)], to the estimates [θ̂(x1, t), ..., θ̂(xm, t)]. Then we train the neural
operator model Î (parameterized as DeepONet or FNO) to minimize the difference between the pa-
rameter estimates produced by neural operators [θ̂Î(x1, t), ..., θ̂Î(xm, t)] and [θ̂(x1, t), ..., θ̂(xm, t)].
In all cases, we minimize the L2 loss between the estimates produced by the neural operators and
that from the original parameter estimator.

2) Operator Learning for Gain Function G: To learn the gain function mapping, we generate the
training dataset containing the input-output pairs produced by solving the control gain equations,
e.g., (4) for the hyperbolic PDE system. For the neural operator design, we learn a mapping Ĝ
that maps the parameter estimates [θ̂(x1, t), ..., θ̂(xm, t)] to the control gains [κ̂(x1, t), ..., κ̂(xm, t)].
Similarly, the learning goal be to minimize the difference between the neural operator approximated
gain function [κ̂Ĝ(x1, t), ..., κ̂Ĝ(xm, t)] and [κ̂(x1, t), ..., κ̂(xm, t)].

An overview of the operator learning for the adaptive control framework and the input and
output information flow is shown in Figure 3.1. The neural operator approximations of the parameter
estimates and gain functions will be fed into the controller operator (10), together with the boundary
measurements and previous control inputs, to produce the final control action U(t). Once such
solution operators are learned, they can directly evaluate any new input queries with different system
parameter θ(x) or initial conditions u(·, 0) without solving the differential and integral equations.
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As a result, the data-driven solver can be orders of magnitude faster compared to conventional
numerical solvers, making it more amenable to real-time applications.

Remark 4 (Alternative operator learning formulation) There are alternative ways of formulat-
ing operator mappings associated with adaptive control, besides the formulations in (8)-(10). For
example, for learning the controller gain operator G, rather than using the intermediate prediction
θ̂(x, t), and then mapping to κ̂(x, t), one can learn a direct composition operator as follows,

G(I) :
(
θ̂0(x), x ∈ [0, 1];Y (τ), τ ∈ [t− 1, t];U(τ), τ ∈ [t− 1, t]

)
7→ (κ̂(x, t), x ∈ [0, 1])

Similarly for the controller operator C, instead of using the intermediate predictions θ̂(x, t) and
κ̂(x, t), one can learn an end-to-end composition control operator,

C(I,G) :
(
θ̂0(x), x ∈ [0, 1];Y (τ), τ ∈ [t− 1, t];U(τ), τ ∈ [t− 1, t]

)
7→ U(t)

Our framework, learning the direct operator mappings (8)-(10), features better explainability and
flexibility as the intermediate parameter estimation θ̂Î(x, t) and gain function κ̂Ĝ(x, t) can be used
for monitoring the model performance. The alternative framework, in learning the composed opera-
tors feature simplicity in directly learning the composition of mappings and can potentially provide
further acceleration. An interesting future work direction would be comparing these two operator
learning frameworks in terms of accuracy, speedup, and closed-loop performance.

3.2. Approximator Error of Neural Operators

In this section, we highlight that the neural operator has a bounded approximation error for a variety
of operators. We present this as an introductory step for formally retaining the rigorous guarantees
of the original parameter estimator and controller with a neural operator approximation. In Lu et al.
(2021), it has been shown that the DeepONet satisfies the universal approximation of continuous op-
erators (below) as long as the branch and trunk neural networks satisfy the universal approximation
theorem of continuous functions on compact sets.

Definition 5 (Universal approximation of continuous operators) Let K1 ⊂ Rd1 ,K2 ⊂ Rd be
two compact sets. Let V be a compact set in C(K1). Assume that H : V 7→ C(K2) is a continuous
operator. If for any ϵ > 0, there exists a neural operator Ĥ belonging to the class of neural
operators such that the following holds:

|H(u)(y)− Ĥ(um)| < ϵ ∀u ∈ V, y ∈ K2 (11)

where um = (u(x1), u(x2), ..., u(xm))⊤ for xj ∈ K1, we say that this class of neural operators
has universal approximation ability.

A similar result has been shown for FNO in Kovachki et al. (2021), proving the universal approx-
imation property of FNO for continuous operators. Besides the universal approximation ability of
neural operators, one can also bound the size of the neural operators to ensure a desired accuracy of
the approximation. See Deng et al. (2021). From a theoretical standpoint, this bound requires bil-
lions of parameters. However, in practice as evidenced by the numerical results, one can see stable
parameter and gain approximations are achieved with a much smaller sized neural operator. This
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result is the basis for the theoretical foundation of neural operators for adaptive control and the key
reason why using infinite dimensions is worthwhile. Since we are able to bound the operator error,
we can then treat the NN as a disturbance effect on the adaptive controller and analyze the resulting
stability properties of the system. We anticipate this theoretical formulation will be a important
direction for our future work.

4. Experiments

In this section, we present and analyze the performance of the proposed operator learning for adap-
tive control framework experimentally. We demonstrate the performance comparisons in two bench-
mark control tasks: (i) a wing-rock model of aircraft (for demonstrating the parameter identifier
operator learning combined with the controller mapping) and (ii) first-order hyperbolic PDE in Sec-
tion 2.1 for demonstrating all parts working together. The code for our experiments is available on
Github. Additionally all experimental details, hyperparameters, model architectures, and a further
experiment with a simple linear ODE system is available in the supplemental.

4.1. General Experimental Details

For all experiments, we follow a similar formulation for generating a dataset. We first solve the
system with the analytical mappings for 1000 instances while randomizing the system parameters
and initial conditions that changes the systems behavior. We chose a spatial and time step size of
∆x = ∆t = 0.01 unless otherwise noted as in the first-order hyperbolic PDE example. We then
split the data into 900/100 training testing sets and train all learning models on the same sets. As
baselines, we consider two common recurrent neural network architectures - the GRU and LSTM.
We chose these due to the temporal nature of our mappings. Additionally, we include two neural
operator structures, DeepONet and FNO, as there are cases where they perform differently from
accuracy and computation speed perspective Lu et al. (2022). We provide network architectures
and example datasets in the supplemental. Lastly, all experiments are run on an Nvidia RTX 3090.

4.2. Wing-Rock Model of an Aircraft

Now, we demonstrate our approach in an adaptive control scheme for a real-world wing rock model.
We consider the model from Monahemi and Krstić (1996) defined as the following:

ϕ̈ = θ1 + θ2ϕ+ θ3ϕ̇+ θ4|ϕ|ϕ̇+ θ5|ϕ̇|ϕ̇ (12)

where ϕ is the angle, ϕ̇ is the angular velocity and θn is a constant parameter of the system. We can
rewrite the above equations in a parametric form and introduce the control variable u ∈ R.

ϕ̇ = p , ṗ = φT(ϕ, p)θ + u (13)

with θ = [θ1, θ2, θ3, θ4, θ5]
T and φ(ϕ, p) = [1, ϕ, p, |ϕ|p, |p|p]T. After rewriting Eqn. (12) in a

parametric form, we can then use the least-squares estimator from Krstic (2009).

θ̂ = α+ Γ

∫ p

0
φ(ϕ, σ)dσ , Γ̇ = −ΓφφTΓ , α̇ = −ΓφφTα− Γp

∫ p

0

∂φ(ϕ, σ)

∂ϕ
dσ − Γφu (14)
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Figure 2: System control results with the replacement of the original parameter estimator with dif-
ferent types of ML estimators. The top row demonstrates system solutions (x-axis: ϕ,
y-axis: p = ϕ̇) with target (0, 0) and the bottom showcases the control input u(t).

Model Parameter Size Training
Time (mins)

Average Relative
Error
Training Data

Average Relative
Error
Testing Data

Average
Calculation
Time
CPU (sec)

Average
Calculation
Time
GPU(sec)

GRU 2194705 87.33 7.20E-4 3.25E-4 1.85E-1 1.36E-2
LSTM 2924855 98.49 6.58E-4 2.94E-4 2.39E-1 1.06E-2
DeepONet 298848 36.78 7.61E-5 5.98E-5 6.0E-2 5.5E-3
FNO 311669 9.41 2.33E-4 1.06E-4 4.3E-3 3.6E-3

Table 1: Summary results for the wing-rock system. Green indicates the best value.

with the control law of the form:

u = ẏr +

(
K − λ

2
eT2 P

)
x̃− φT θ̂ (15)

where xr(t) = [yr(t), ẏr(t)]
T is the vector of the reference trajectory function yr(t) and its deriva-

tive, K is chosen to satisfy a set of Hurwitz criteria (See Krstic (2009), Section 2.2), and e is defined
as [0, 1]. We solve the identifier operator in Eq (8) as we replace the estimation θ̂ in the control
scheme by a neural operator. To build a dataset, we generate 1000 solutions, in which every element
of θ is distributed according to θ ∼ [U(0, 1), U(−24,−28), U(0.5, 1), U(−2,−4), U(−0.01, 0)],
where U(a, b) denotes the uniform distribution between interval (a, b). Additionally, we generate
ϕ0 = U(0, 1), ϕ̇0 = 0 and θ0 = θ ∗ U(0, 2). We then split the dataset into 900 training solutions
and 100 testing solutions to learn the following mapping:

[θ̂0, ϕ(0), ϕ̇(0), ϕ(∆t), ϕ̇(∆t), ϕ(2∆t), ϕ̇(2∆t), ..., ϕ(t = 1)] 7→ [θ̂(0), θ̂(∆t), θ̂(2∆t), ..., θ̂(t = 1)].

We showcase results for training and speedups in Table 1. We can see that the operators perform
the best from an accuracy perspective and the FNO performs the best from a speed perspective. As
seen in Table 1, all the approaches are able to learn the estimator to quite a high degree of accuracy.
Furthermore, we can see the error propagation in 4 examples of the control in Figure 2. In all cases,
the aircraft is able to stabilize to the reference speed and angle. We emphasize this as we are able to
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Model Parameter Size Training
Time (mins)

Average Relative
Error Testing Data
For Solution u

Average Relative
Error Testing Data
For Control U(t)

Average
Calculation
Time
CPU (sec)

Average
Calculation
Time
GPU(sec)

GRU 1608051 12.23 8.96E-4 3.20E-3 0.89 0.057
LSTM 2135551 12.19 8.12E-4 3.19E-3 1.23 0.059
DeepONet 671152 18.83 9.9E-4 3.79E-3 0.875 0.065
FNO 534931 11.55 4.46E-4 1.52E-3 0.242 0.237

Table 2: Summary results for the first-order hyperbolic PDE system. Green indicates the best value.
The original scheme takes a total of 3.23 seconds (CPU time) of calculation for the param-
eter estimator and controller gain function combined.

approximate the estimator mapping in not just an open loop, but closed feedback control with high
success. From a speed perspective, it is worth noting that the FNO does not have any internal state
across time as opposed to the RNNs. Therefore, FNO is able to perform quite well on both the CPU
and GPU. The original control scheme takes 0.038 CPU (sec) for the parameter estimation, and the
FNO-accelerated parameter estimator provides a speedup of 90%. Additionally, we can see that the
other approaches do not perform as well as the original estimator unless they are run on the GPU.
However, this is the most common implementation for neural network applications and therefore it
is reasonable to assume that in practice, these control schemes are computed on the GPU.

4.3. General first-order hyperbolic PDE

Secondly, we utilize the control form for a hyperbolic PDE first introduced in Section 2.1 with
γ(x) = 1. We parameterize θ(x) as the Chebyshev polynomial θ(x) = 3 cos(δ arccos(x)). We
again solve 1000 instances of this problem from t ∈ [0, 15] and x ∈ [0, 1] where we vary δ ∼
U(1, 12), u(x, 0) = U(50, 100). We keep θ0 constant at 0 and emphasize that δ creates a wide
array of different PDE shapes making this problem extraordinary challenging compared to learning
something easier like θ(x) = sin(x) (Example solution shapes in the supplemental). For the dataset,
we subsample at a rate of ∆t = 0.05 and ∆x = 0.02 for our dataset but solve the control loop at
step sizes of ∆t = 0.01 and ∆x = 0.01.

We replace both the gain function G and parameter estimator I with neural operators. We
showcase both the final control errors and the solution errors for the testing set in Table 2. We see
that the FNO approach performs the best in terms of accuracy. In addition, by including the learning
portion of the gain function, we obtain much faster speedups across all methods. Furthermore, Fig 3
shows the parameter estimation and gain function learning results in one text example. The accuracy
across all methods is very strong as there is no distinguishable difference in the first two rows of
Figure 3. We can see that the control errors are much larger than the previous wing-rock systems.
However, in all learning accelerated methods, we can see that the solution u(x, t) stabilizes. Again,
we emphasize that not only can we approximate both the mappings I and G in an open loop, but the
error propagation is small enough for a closed feedback system to stabilize.

5. Conclusion and Future Works

In this work, we have presented a new adaptive control scheme augmented with neural operators.
Effectively, we demonstrate not only the open loop approximation results of learning of two chal-
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Figure 3: One example of the hyperbolic PDE system. The top two rows display the learned esti-
mator and gain mappings respectively. The third row displays the control function (left)
and the residual L2 errors for each method. The bottom row displays the solution (left)
and the solution L2 error (summed over x) for each method in the closed feedback loop.

lenging parameter estimation and controller gain operators, but stabilize the nonlinear systems in
a feedback control loop. We demonstrate a high accuracy around a magnitude of 10−4 on both
nonlinear systems while demonstrating speedups up to 98%. Additionally, by formalizing the prob-
lem as an operator learning problem, we are able to avoid retraining when the system parameters
change significantly. This work serves as an exciting direction to developing learning-augmented
control and there are many future directions to be explored. For example, one important direction is
to explore the approximation error of parameter and gain function operators from a theoretical per-
spective in the closed-loop control systems. For example, Lu et al. (2019); Kovachki et al. (2021)
have developed theoretical operator approximation guarantees for both FNO and DeepONet that
can be used to analyze the stability of both ODE and PDE systems under the neural operator ap-
proximated gain and estimation laws. Additionally, improving the operator architectures to take
advantage of certain control forms such as the convolution-like gain function in the hyperbolic PDE
is certainly worthwhile. Lastly, it is worth exploring whether learning the entire control function
instead of the individual components can provide similar accuracy with improved speedups.
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Carl Andersson, Antônio H. Ribeiro, Koen Tiels, Niklas Wahlström, and Thomas B. Schön. Deep
convolutional networks in system identification. In 2019 IEEE 58th Conference on Decision and
Control (CDC), pages 3670–3676, 2019. doi: 10.1109/CDC40024.2019.9030219.

Henrik Anfinsen. Adaptive control of hyperbolic PDEs. Springer, Cham, Switzerland, 2019. ISBN
978-3-030-05879-1.

Pauline Bernard and Miroslav Krstic. Adaptive output-feedback stabilization of non-local hyper-
bolic pdes. Automatica, 50(10):2692–2699, 2014. ISSN 0005-1098. doi: https://doi.org/10.
1016/j.automatica.2014.09.001. URL https://www.sciencedirect.com/science/
article/pii/S0005109814003550.

Saakaar Bhatnagar, Yaser Afshar, Shaowu Pan, Karthik Duraisamy, and Shailendra Kaushik. Predic-
tion of aerodynamic flow fields using convolutional neural networks. Computational Mechanics,
64(2):525–545, 2019.

Alberto Dalla Libera and Gianluigi Pillonetto. Deep prediction networks. Neurocomputing, 469:
321–329, 2022. ISSN 0925-2312.

Beichuan Deng, Yeonjong Shin, Lu Lu, Zhongqiang Zhang, and George Em Karniadakis. Conver-
gence rate of deeponets for learning operators arising from advection-diffusion equations, 2021.
URL https://arxiv.org/abs/2102.10621.

Daniel Gedon, Niklas Wahlström, Thomas B. Schön, and Lennart Ljung. Deep state space models
for nonlinear system identification. IFAC-PapersOnLine, 54(7):481–486, 2021. ISSN 2405-8963.
19th IFAC Symposium on System Identification SYSID 2021.

Nikola Kovachki, Samuel Lanthaler, and Siddhartha Mishra. On universal approximation and error
bounds for fourier neural operators. Journal of Machine Learning Research, 22:Art–No, 2021.

M. Krstic, I. Kanellakopoulos, and P. V. Kokotovic. Nonlinear and Adaptive Control Design. Wiley,
New York, NY, 1995.

Miroslav Krstic. On using least-squares updates without regressor filtering in identification and
adaptive control of nonlinear systems. Automatica, 45(3):731–735, 2009. ISSN 0005-1098. doi:
https://doi.org/10.1016/j.automatica.2008.09.024. URL https://www.sciencedirect.
com/science/article/pii/S0005109808004949.

11

https://www.sciencedirect.com/science/article/pii/S0005109814003550
https://www.sciencedirect.com/science/article/pii/S0005109814003550
https://arxiv.org/abs/2102.10621
https://www.sciencedirect.com/science/article/pii/S0005109808004949
https://www.sciencedirect.com/science/article/pii/S0005109808004949


OPERATOR LEARNING FOR NONLINEAR ADAPTIVE CONTROL

Matthew E Levine and Andrew M Stuart. A framework for machine learning of model error in
dynamical systems. arXiv:2107.06658, 2021.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential
equations, 2020. URL https://arxiv.org/abs/2010.08895.

Lennart Ljung, Carl Andersson, Koen Tiels, and Thomas B. Schön. Deep learning and system
identification. IFAC-PapersOnLine, 53(2):1175–1181, 2020. ISSN 2405-8963. 21st IFAC World
Congress.

Lu Lu, Pengzhan Jin, and George Em Karniadakis. Deeponet: Learning nonlinear operators for
identifying differential equations based on the universal approximation theorem of operators.
arXiv preprint arXiv:1910.03193, 2019.

Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning
nonlinear operators via DeepONet based on the universal approximation theorem of operators.
Nature Machine Intelligence, 3(3):218–229, mar 2021. doi: 10.1038/s42256-021-00302-5. URL
https://doi.org/10.1038%2Fs42256-021-00302-5.

Lu Lu, Xuhui Meng, Shengze Cai, Zhiping Mao, Somdatta Goswami, Zhongqiang Zhang, and
George Em Karniadakis. A comprehensive and fair comparison of two neural operators (with
practical extensions) based on FAIR data. Computer Methods in Applied Mechanics and Engi-
neering, 393:114778, apr 2022. doi: 10.1016/j.cma.2022.114778. URL https://doi.org/
10.1016%2Fj.cma.2022.114778.
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