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Abstract
In this paper, we propose and analyse a new method for online linear quadratic regulator (LQR)
control with a priori unknown time-varying cost matrices. The cost matrices are revealed sequen-
tially with the potential for future values to be previewed over a short window. Our novel method
involves using the available cost matrices to predict the optimal trajectory, and a tracking controller
to drive the system towards it. We adopted the notion of dynamic regret to measure the performance
of this proposed online LQR control method, with our main result being that the (dynamic) regret
of our method is upper bounded by a constant. Moreover, the regret upper bound decays exponen-
tially with the preview window length, and is extendable to systems with disturbances. We show in
simulations that our proposed method offers improved performance compared to other previously
proposed online LQR methods.
Keywords: Online LQR, Dynamic Regret, Trajectory tracking.

1. Introduction

Optimal control problems arise in many fields such as econometrics (Björk et al., 2021; Radneantu,
2009), robotics (Hampsey et al., 2023; Renganathan et al., 2020), physics (Liu et al., 2021) and
machine learning (Westenbroek et al., 2020). The Linear Quadratic Regulator (LQR) problem is the
archetypal optimal control problem with vector-valued states and controls, and is reviewed in the
following. Consider a controllable linear time-invariant system

xt+1 = Axt +But + wt, (1)

where t is a nonegative integer, m and n are positive integers, A ∈ Rn×n, B ∈ Rn×m, xt, wt ∈ Rn,
and x0 = x̄0 for some x̄0 ∈ Rn, and ut ∈ Rm. For a given finite time horizon T ≥ 2 and initial
condition x̄0, the control decisions {ut}T−2

t=0 are computed to minimise the quadratic cost function

JT ({xt}T−1
t=0 , {ut}

T−2
t=0 ) :=

T−2∑
t=0

xTt Qtxt + uTt Rtut + xTT−1QT−1xT−1, (2)

where Qt ∈ Sn+ and Rt ∈ Sm++ are time-varying cost matrices and Sn+ and Sn++ denote the sets of
positive semi-definite symmetric and positive definite symmetric matrices, respectively. The states
xt and controls ut minimising (2) must satisfy (1). When the cost matrices {Qt}T−1

t=0 and {Rt}T−2
t=0
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are known a priori, the controls minimising (2) subject to (1) can be found in closed form, cf.
(Anderson and Moore, 2007, Chapter 2). However, in many real-world applications, such as power
systems (Kouro et al., 2009), chemistry (Chen et al., 2012) and mechatronics (Vukov et al., 2015),
full information about the cost matrices over the whole time horizon is unavailable to the decision
maker (in advance).

In our work, for a given time horizon T and preview window length 0 ≤ W ≤ T − 2, we
suppose that at any time t where 0 ≤ t < T − 2 − W , only the initial condition of the system
(1) and the (partial) sequences of cost matrices {Qi}t+W

i=0 and {Ri}t+W
i=0 are known. Let the cost-

function information available to the decision maker at time t be

Ht := {{Qi}t+W
i=0 , {Ri}t+W

i=0 , x̄0}, (3)

where Ht contains the full temporal information about the cost matrices for t ≥ T − 2 −W . The
main focus of our work is to propose a novel control policy that generates ut using the information
available at time t, and investigate its performance. We specifically consider a feedback control
policy π(·, ·) of the form

ut = π(xt,Ht), (4)

and adopt the notion of regret to measure its performance. Several different notions of regret have
been well studied and explored in the online optimization problem, including static regret (Zinke-
vich, 2003; Shalev-Shwartz, 2012), dynamic regret (Jadbabaie et al., 2015). In our work, perfor-
mance is measured by dynamic regret. For any control sequence {ut}T−2

t=0 and associated state
sequence {xt}T−1

t=0 , the dynamic regret is defined as

RegretT ({ut}T−2
t=0 ) := JT ({xt}T−1

t=0 , {ut}
T−2
t=0 )− JT ({x∗t }T−1

t=0 , {u
∗
t }T−2

t=0 ), (5)

where
{u∗t }T−2

t=0 := argmin
{υi}T−2

i=0

JT ({ξi}T−2
i=0 , {υi}T−2

i=0 ), (6)

and {x∗t }T−1
t=0 satisfy the system dynamics (1) for input sequence {u∗t }T−2

t=0 .

1.1. Related Works

Similar investigations of regret in online LQR problems have recently been conducted in Cohen et al.
(2018), Zhang et al. (2021), and Akbari et al. (2022), with additional studies focusing on properties
of the Riccati operator in such problems conducted in (Sun and Cantoni, 2023a,b). Cohen et al.
(2018) and Akbari et al. (2022) considered a different notion of regret involving comparison with
controls ũt = −Kx̃t (instead of u∗t ) generated by a fixed gain K from the set of (κ̄, γ̄)-strongly
stable gains denoted by K. More precisely, K is the set of all gains where for any K ∈ K, there
exist matrices L and H such that A+ BK = HLH−1, with ∥L∥ ≤ 1− γ̄ and ∥H∥ ,

∥∥H−1
∥∥ ≤ κ̄

for prescribed scalars κ̄ and γ̄1. For a sequence of controls {ut}T−1
t=0 , the notion of regret for time

horizon T and controls {ut}T−1
t=0 from these works is

StablisingRegretT ({ut}T−2
t=0 ) := JT ({xt}T−1

t=0 , {ut}
T−2
t=0 )− JT ({x̃t}T−1

t=0 , {K̃x̃t}T−2
t=0 ), (7)

where K̃ ∈ argminK∈K JT ({x̃t}T−1
t=0 , {Kx̃t}T−2

t=0 ) and {x̃t}T−1
t=0 satisfies (1).

1. We use ∥ · ∥ to denote either the 2-norm of a vector or the spectral norm of a matrix, depending on its argument.
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Cohen et al. (2018) proposed an online LQR algorithm that yields controls with a theoretical
regret upper bound of StablisingRegretT ({ut}T−1

t=0 ) ≤ O(
√
T ). However, the algorithm involves a

computationally expensive projection step at each time t, and the projection set can become empty
for some controllable systems when the covariance of the system disturbances wt is positive defi-
nite2. Thus, this method is not applicable to all controllable linear time-invariant systems. Moreover,
the theoretical stabilising regret upper bound is proportional to the inverse of the cube of the lower
bound of covariance of system disturbances, i.e., StablisingRegretT ({ut}T−1

t=0 ) = O( 1
σ3 ), where the

covariance of disturbances from (1) is lower bounded by σ2I . If σ = 0, the theoretical regret upper
bound is undefined. Akbari et al. (2022) proposed an Online Riccati Update algorithm that obtains
StablisingRegretT ({ut}T−1

t=0 ) = O(σ2 log(T )). The result avoids the undefined regret upper bound
of Cohen et al. (2018) when the covariance matrix is not lower bounded by a positive σ. However,
like Cohen et al. (2018), the performance of the algorithm proposed in Akbari et al. (2022) is only
guaranteed to achieve sublinear stabilising regret (7) against the best fixed control gain K from the
set K. This notion of regret is not suitable for dynamic non-stationary environments. For example,
a self-driving car may operate in different environments such as high-wind areas, or high and low-
friction road surfaces. For the best performance in such environments, we need to use time-varying
control gains. A suitable notion of regret captures the discrepancy between the performance of the
aforementioned gains and the best time-varying policies chosen in hindsight.

Zhang et al. (2021) investigated the dynamic regret (5) offered by an online LQR approach
inspired by model predictive control. Future cost matrices and predicted disturbances are assumed
to be available over a short future preview window of length W ≥ 0, and the following assumption
is made.

Assumption 1 There exist symmetric positive definite matrices Qmin, Qmax, Rmin, Rmax such
that for time 0 ≤ t ≤ T − 2,

0 ≺ Qmin ⪯ Qt ⪯ Qmax,

0 ≺ Rmin ⪯ Rt ⪯ Rmax,
(8)

where F ≺ G denotes G− F being positive definite for symmetric matrices F and G.

Under Assumption 1, Zhang et al. (2021) proposed an online LQR algorithm for selecting con-
trols ut at time t by solving

min
{uk}t+W

k=t

t+W∑
k=t

xTkQkxk + uTkRkuk + xTt+W+1Pmaxxt+W+1

subject to (1) where Pmax is the solution of the algebraic Riccati equation for the infinite-horizon
LQR problem with cost matrices Qmax and Rmax. The dynamic regret (5) of control sequences
generated by this method is shown to be upper bounded by a quantity that shrinks exponentially as
the preview window length increases. However, the estimate of the tail cost at each time step (i.e.,
xTt+W+1Pmaxxt+W+1) can be too pessimistic due to its reliance on Pmax and the matrices Qmax

and Rmax from the bounds given in Assumption 1.

2. For example, the set is empty if A =

(
1 2
6 9

)
, B =

(
9
6

)
, and the disturbances are distributed according to a

multivariate Gaussian with mean zero and covariance matrix I2.
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1.2. Contributions

The key contributions of this paper are:

• The proposal of a method for solving the online LQR problem that is independent of the given
upper or lower bounds on the cost matrices;

• Development of a regret bound for the disturbance-free case and proof that our proposed
control policy yields sublinear regret;

• Provision of sufficient conditions under which our regret bound is less than that of the state-
of-the-art methodology; and

• Analysis of our regret bound in the presence of disturbances.

Outline. The rest of the paper is organised as follows. In Section 2, we state the online LQR
problem that we consider. In Section 3, we introduce our proposed online LQR algorithm and
bound its dynamic regret. In Section 4, we provide numerical results for the simulation of our
proposed algorithm. Concluding remarks are presented in the last section.

2. Problem Formulation

In this paper, we consider the following problem.

Problem 1 (Online LQR) Consider the controllable system (1). Let the cost matrices in (5) satisfy
Assumption 1 for any given T ≥ 2 and W < T − 2. At time 0 ≤ t ≤ T − W − 2, the available
information to the decision maker is given by Ht as defined in (3) and the current state xt. It is
desired to design a control policy π(·, ·) of the form (4) that yields a regret, as defined by (5), that is
independent of the bounds given in Assumption 1. Moreover, we seek to establish appropriate regret
bounds for the following cases:

a) The case where wt = 0 for 0 ≤ t ≤ T − 1;

b) The case where the disturbances wt for 0 ≤ t ≤ T − 1 are independent and identically
distributed (i.i.d.) random variables such that E(wt) = 0 and E(wtw

T
t ) = Wd with E(·)

being the expectation operator and Wd ∈ Sn+.

Specifically, for part a) of Problem 1 we show that the regret (as defined in (5)) associated with our
proposed control policy is sublinear with respect to the time horizon T for the case where wt = 0
for 0 ≤ t ≤ T − 1, i.e.,

RegretT ({ut}T−2
t=0 ) ≤ o(T ). (9)

For part b), we define the notion of “expected regret” as

ExpectedRegretT ({ut}T−2
t=0 ) := E(JT ({xt}T−1

t=0 , {ut}
T−2
t=0 )− JT ({x∗t }T−1

t=0 , {u
∗
t }T−2

t=0 )), (10)

and show that our proposed control policy yields control that satisfy

ExpectedRegretT ({ut}T−2
t=0 ) ≤ CERTγ

2W

for positive scalars CER and γ3. In what follows we address this problem.

3. The exact definition of γ will be presented in Theorem 1.
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3. Approach and Regret Analysis

Our proposed online LQR approach involves first using the available information Ht at each time
t to predict the optimal state x∗t+1 solving the full information LQR problem described in (6). We
then select controls to track this prediction. At time 0 ≤ t ≤ T − 1, we only know the information
in Ht. Let xt+1|t+W denote the estimate of the optimal state at time t + 1 based on Ht and the
current state xt. We aim to track to the state xt+1|t+W at time t+ 1.

Prediction. At each time t, we plan an optimal trajectory starting from the initial state x̄0 using
the known cost matrices up to time t + W and setting all the future matrices to be equal to their
known values for time t+W . Specifically, at time t where 0 ≤ t < T −W , define Jt+W (·, ·) as

Jt+W ({ξi}T−1
i=0 , {υi}T−2

i=0 ) :=
t+W∑
k=0

[ξTk Qkξk + υTkRkυk]

+

T−2∑
k=t+1+W

[ξTk Qt+W ξk + υTkRt+Wυk] + ξTT−1Qt+W ξT−1, (11)

and

Jt+W ({ξi}T−1
i=0 , {υi}T−2

i=0 ) := JT ({ξi}T−1
i=0 , {υi}T−2

i=0 ) (12)

for T −W ≤ t ≤ T − 1.
Then, we find the predicted optimal control sequence for all 0 ≤ j ≤ T − 2 by solving(
{xj|t+W }T−1

j=0 , {uj|t+W }T−2
j=0

)
= argmin

({ξi}T−1
i=0 ,{υi}T−2

i=0 )
Jt+W ({ξi}T−1

i=0 , {υi}T−2
i=0 )

subject to ξi+1 = Aξi +Bυi, ξ0 = x̄0.

(13)

Prediction Tracking. We propose the following feedback control policy

π(xt,Ht) = K(xt − xt|t+W ) + ut|t+W , (14)

where K ∈ Rm×n is a control matrix such that ρ(A + BK) < 1, and ρ(·) denotes the matrix
spectral radius. Intuitively, such control matrix K leads to contraction of the distance between xt+1

and xt+1|t+W , respectively given by (1) and (13).

3.1. Regret Analysis for the Disturbance-free Case

In the following theorem, we present the result for the case of Problem 1a) that the control sequence
generated by (14) incurs a sublinear upper bound regret with respect to time horizon T . Here,
with a slight abuse of notation, for a sequence of matrices {Σi}Ni=0, we define max0≤t≤N Σt :=
{Στ | 0 ≤ τ ≤ N,Στ ⪰ Σk for all 0 ≤ k ≤ N} and min0≤t≤N Σt := {Στ | 0 ≤ τ ≤
N,Στ ⪯ Σk for all 0 ≤ k ≤ N}. This enables us to define cost matrix sequence extrema as
R̄max := max0≤t≤T−2Rt, Q̄max := max0≤t≤T−1Qt, R̄min := min0≤t≤T−2Rt, and Q̄min :=
min0≤t≤T−1Qt. For any matrix Γ, we further define λmin(Γ) as the minimum eigenvalue of Γ and
λmax(Γ) as the maximum eigenvalue of Γ.
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Theorem 1 (Main Result) Consider the linear system defined by (1). For a given time horizon
T ≥ 2 and preview window length 0 ≤ W ≤ T −2. Suppose that at time 0 ≤ t ≤ T −2 the control
input ut is generated by policy π(·, ·) as given by (14). Under Assumption 1, the regret defined by
(5) satisfies

RegretT ({ut}T−2
t=0 ) ≤

10Dγ2W ∥x̄0∥2

3

[
(α1 + α2)(

C2CKγ

(γ − 1)
)2
(
γ2ST (η

2γ2)− 2γST (η
2γ)

+ ST (η
2)) +

10C2
f

3
((

ηγ

q(q − ηγ)
− η

q(q − η)
)2ST (q

2)

+
(ηγ)2ST (η

2γ2)

q2(q − ηγ)2
+

η2ST (η
2)

q2(q − η)2
)

)
+ (CKC2)2ST (η

2)

]
,

(15)

where P̄max satisfies

P̄max = Q̄max +ATP̄maxA−ATP̄maxB(R̄max +BTP̄maxB)−1BTP̄maxA,

D =
∥∥R̄max +BTP̄maxB

∥∥, CK =
∥∥(R̄min +BTQ̄minB)−1

∥∥2 ∥∥R̄maxB
T
∥∥ λ2

max(P̄max)
λmin(Q̄min)

, C =

λmax(P̄max)
λmin(Q̄min)

, η =
√

1− λmin(Q̄min)
λmax(P̄max)

, α = max 0≤i≤t−1
0≤t≤T−2

{λmax(A
TP ∗

i+1A), λmax(A
TPi+1|tA)},

β = min0≤t≤T−2 λmin(Qt), γ = α
α+β , ST (z) =

∑T−1
t=0 zt, α1 = maxt

∥∥Kt|t+W −K
∥∥2, α2 =

maxt 2 ∥K∗
t −K∥2, Cf = maxn≥0

∥(A+BK)n∥
(q+ε)n , q = ρ(A+BK)+ε, and 0 ≤ ε < 1−ρ(A+BK).

Proof See (Chen et al., 2022, Appendix A).

Remark 2 For any z ∈ [0, 1) there exists a Λ ∈ R, such that limT→∞ ST (z) = Λ. Consequently,

limT→∞
RegretT ({ut}T−2

t=0 )
T = 0, which implies that the control sequence described by (14) yields

sublinear regret.

Remark 3 Let F (x̄0, A,B, T, R̄max, R̄min, Q̄max, Q̄min,K) denote the right hand side (RHS) of
(15). By stating almost identical lemmas to (Chen et al., 2022, Lemmas 8 and 9) using the bounds
given in Assumption 1 instead of the cost matrices sequence extrema values, one can arrive at a
regret bound in terms of these bounds analogous to (15):

RegretT ({ut}T−2
t=0 ) ≤ F (x̄0, A,B, T,Rmax, Rmin, Qmax, Qmin,K).

In the following proposition, we state a condition in terms of the bounds given in Assumption 1 and
the cost matrices sequence extrema where it is guaranteed that the bound given in the above theorem
is smaller than that of (Zhang et al., 2021, Theorem 1, Equation (15)). Obviously, there might be
other conditions, the exploration of which is left to future work.

Proposition 4 Adopt the hypothesis of Theorem 1. If

λ10
max(Qmax) ≥

5

[
(1 + α1+α2

(1−γ)2
)( 1

1−η2
) +

10C2
f

q2(q−ηγ)2(q−η)2(1−η2)(1−η2γ2)(1−q2)

]
6(C2

Kλ2
min(R̄min)λ4

min(Q̄min))−1∥A∥2∥B∥2∥BR̄−1
minB

T∥2
, (16)

where Qmax is given in Assumption 1, then the RHS of inequality in (Zhang et al., 2021, Theorem
1, Equation (15)) is greater than the RHS of inequality (5) in Theorem 1.
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Proof See (Chen et al., 2022, Appendix B).

The RHS of (16) is independent of the matrices Qmin, Qmax, Rmin, Rmax given in Assumption
1. On the other hand, the upper bound of regret for control decisions generated by (Zhang et al.,
2021, Algorithm 1) does depend on these values and even if the actual sequence of the cost matrices
remains bounded away from these bounds, the method still explicitly uses the bounds and this is a
potential source of conservatism.

3.2. Regret Analysis in the Presence of Disturbances

The result presented in the following theorem address Problem 1 case b). Note that at time t,
{wk}tk=0 is the available sequence of disturbances to the decision maker. In this case, we still
consider a policy π(·, ·) as given by (14) with the only difference that xt|t+W is obtained by solving
the following optimisation problem:(

{xj|t+W }T−1
j=0 , {uj|t+W }T−2

j=0

)
= argmin

({ξi}T−1
i=0 ,{υi}T−2

i=0 )
Jt+W ({ξi}T−1

i=0 , {υi}T−2
i=0 )

subject to ξi+1 = Aξi +Bυi + wi for 0 ≤ i ≤ t,

ξi+1 = Aξi +Bυi for i > t, ξ0 = x̄0.

(17)

Theorem 5 Consider the system defined by (1). For a given time horizon T ≥ 2 and preview
window length 0 ≤ W ≤ T − 2. Suppose that at time 0 ≤ t ≤ T − 2 the control input ut is
generated by policy π(·, ·) as given by (14). Under Assumption 1, the expected regret defined by
(10) satisfies

ExpectedRegretT ({ut}T−2
t=0 ) ≤ CERTγ

2W (18)

where CER is a positive scalar and γ is given in Theorem 1.

Proof See (Chen et al., 2022, Appendix C).

In the next section, we investigate the performance of the proposed algorithm for different scenarios.

4. Numerical Simulations

In this section, we numerically demonstrate the performance of the proposed algorithm.4 To this
end, define ΦT,W := RegretT ({u

′
t}T−2

t=0 ) − RegretT ({ut}T−2
t=0 ), where {u′

t}T−2
t=0 is generated from

(Zhang et al., 2021, Algorithm 1) and {ut}T−2
t=0 is generated by the policy described in (14), under

preview window length of W .

4.1. Linearised Inverted Pendulum

Consider the following linearised inverted pendulum system (Franklin et al., 2020, Chapter 2.13):

xt+1 =


0 1 0 0
0 −0.1818 2.6727 0
0 0 0 1
0 −18.1818 31.1818 0

xt +


0

1.8182
0

4.5455

ut. (19)

4. Code can be found at https://gitlab.anu.edu.au/u7361886/l4dcsimulation.git.
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(a) ΦT,W for disturbance-free linearised in-
verted pendulum system

(b) ΦT,W for disturbance-free random con-
trollable systems

(c) ΦT,W for linearised inverted pendulum
system with disturbances

(d) ΦT,W for random controllable system with
disturbances

Figure 1: Performance measure ΦT,W for simulated systems.

In the following experiments, the preview horizon W ranges from 0 to 19 and the time horizon T
ranges from 19 to 500. The cost matrices are chosen uniformly satisfying by Assumption 1 with
Qmin = 8× 103I4×4, Qmax = 3.2× 104I4×4, Rmin = 2× 103, and Rmax = 9.8× 104. The fixed
controller from (14) is chosen by placing the poles at the location of (1, 6, 4, 3)×10−3. We repeat the
experiment in 200 trials. Figure 1(a)subfigure demonstrates ΦT,W , under preview window length
from 0 to 19 and time horizon from 19 to 500. As the preview window length is greater than 2, our
method outperforms (Zhang et al., 2021, Algorithm 1).

4.2. Random Linear Systems

In this experiment, the linear system is randomly chosen where all elements of A and B are drawn
uniformly within the range of (0, 10) and ensure the pairs of (A,B) are controllable. The setting
of preview window length, time horizon, cost matrices and the pole location for the control matrix
K from (14) are identical to what we have chosen in Section 4.1. The plot in Figure 1(b)subfigure
demonstrates the subtraction between the regret of control decision generated by (Zhang et al., 2021,
Algorithm 1) and the regret of control decision generated by our proposed method, by averaging the

8
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regret over 200 trials. As the preview window length exceeds 4, our method outperforms (Zhang
et al., 2021, Algorithm 1).

The plots from Figure 1(a)subfigure and 1(b)subfigure demonstrate that, as the preview window
length exceeds the rank of the system, which is the least number of steps required to steer the state
of the system to a designated state, the proposed method outperforms the method from Zhang et al.
(2021).

4.3. Linear Systems with disturbances

The following experiments repeat the ones considered in Section 4.1 and 4.2, using the system
defined in (19) and in the presence of disturbance wt ∼ N (0, 25I4×4). The setting of the preview
window length, time horizon, cost matrices and the pole location for the control matrix K is identical
to what we have chosen from the experiment in Section 4.1. The method of finding xt|t+W and
ut|t+W can be referred to Remark 3.2. The plots in Figures 1(c)subfigure and 1(d)subfigure depicts
the average value of ΦT,W after 200 random trials.

5. Conclusions and Future Work

This paper proposes a new online LQR control policy that achieves sublinear dynamic regret for
the disturbance-free case where the cost matrices are sequentially revealed as time progresses. The
proposed method and consequently its regret has been demonstrated to be, contrary to the state-of-
the-art, independent of the ex-ante upper and lower bound of the cost matrices. To exhibit the effect
of such independence, a sufficient condition is provided under which the regret upper bound of the
proposed method is guaranteed to be smaller than that of (Zhang et al., 2021, Theorem 1). This
paper leads to many interesting research directions which are briefly discussed below. It would be
interesting to devise a methodology for selecting a time-varying feedback gain matrix in (14) instead
of a fixed K in order to further minimise the regret. Moreover, one can extend the algorithm to the
case of time-varying At and Bt for the system matrices and via differential dynamic programming
for nonlinear dynamics with control constraints, and establish new dynamic regret bounds.
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