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Abstract
One of the long-term objectives of Machine Learning is to endow machines with the capacity
of structuring and interpreting the world as we do. This is particularly challenging in scenes
involving time series, such as video sequences, since seemingly different data can correspond
to the same underlying dynamics. Recent approaches seek to decompose video sequences into
their composing objects, attributes and dynamics in a self-supervised fashion, thus simplifying
the task of learning suitable features that can be used to analyze each component. While existing
methods can successfully disentangle dynamics from other components, there have been relatively
few efforts in learning parsimonious representations of these underlying dynamics. In this paper,
motivated by recent advances in non-linear identification, we propose a method to decompose a
video into moving objects, their attributes and the dynamic modes of their trajectories. We model
video dynamics as the output of a Koopman operator to be learned from the available data. In this
context, the dynamic information contained in the scene is encapsulated in the eigenvalues and
eigenvectors of the Koopman operator, providing an interpretable and parsimonious representation.
We show that such decomposition can be used for instance to perform video analytics, predict future
frames or generate synthetic video. We test our framework in a variety of datasets that encompass
different dynamic scenarios, while illustrating the novel features that emerge from our dynamic
modes decomposition: Video dynamics interpretation and user manipulation at test-time. We
successfully forecast challenging object trajectories from pixels, achieving competitive performance
while drawing useful insights.
Keywords: Koopman operator, Non-linear identification, Dynamics-constrained learning, Represen-
tation learning, Video manipulation

1. Introduction

Unsupervised learning of symbolic representations from high dimensional data poses a great chal-
lenge to current machine intelligence. As humans, our cognitive model of the world is based on
segregation of reality into abstract categories, or symbols. We construct novel behaviours by dynamic
reuse of familiar symbols Greff et al. (2020). In visual scenes, we can think of objects and their
attributes as one valid set of symbolic representations.
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There have been numerous efforts to model images from an object-centric perspective without
supervision Eslami et al. (2016); Greff et al. (2019); Locatello et al. (2020); Burgess et al. (2019);
Lin et al. (2020b). These works use inductive biases encoded in their architecture to decompose a
static scene into its objects and their attributes.

As a natural extension, recent research has tackled unsupervised video decomposition Kosiorek
et al. (2018); Denton and Birodkar (2017); Comas et al. (2020); Hsieh et al. (2018); Kossen et al.
(2020); He et al. (2019); Jiang et al. (2020); Kipf et al. (2020); Jaques et al. (2021); Watter et al.
(2015); Karl et al. (2016). A key challenge here is tracking the decomposed objects across time
while learning to define what these objects are. Many of these works also attempt to model the
intrinsic dynamics of the objects in the scene, and thus how the dynamic scene will look like in
the future. While attempting to decompose the video into symbolic representations, these works
rely on black-box neural architectures to model dynamics. The usual choices are Recurrent Neural
Network (RNN) or Graph Neural Netowrk (GNN) architectures. Interpreting dynamics from RNN
models is almost unfeasable. While GNNs are principled and object-centric, their formulation still
relies on opaque architectures for the dynamical model. Thus, while their frame predictions are often
accurate, the used dynamical models lack a user-interpretable formulation: even though a user can
potentially manipulate objects and their attributes in these models, there is no apparent controllable
way to manipulate their dynamics or to understand their underlying propagation mechanism.

In this work, we advocate for decomposition not only from a visual perspective, but also from a
dynamics perspective. We argue that decomposition leads to user interpretability. We want a user to
be able to manipulate object dynamic behaviour in a controlled manner, directly on the pixel domain.

With this objective, we propose to combine neural network-based architectures with Koopman
operator theory, which is based on the insight that a finite-dimensional nonlinear system can be
transformed into an infinite-dimensional linear dynamical system, with a linear operator K. In this
framework, the dynamical system can be understood as a composition of first and second order
impulse responses, i.e. “Dynamic Modes" (DM), which can be extracted from a linear (Koopman)
operator through spectral decomposition.

We introduce Object-centric Koopman-based Interpretable Decomposition (OKID), which is
posed as a step forward towards dynamics interpretability through decomposition. Our method
is self-supervised and (1) uses an attention-based tracking method to learn video representations,
factorized into moving objects and their attributes; (2) decomposes the discovered trajectories into
linear dynamic modes by finding a mapping to the Koopman space; (3) learns a global Koopman
operator that characterizes the underlying dynamics of the training data; and hence (4) performs
video decomposition, prediction and interpolation. Our main contributions are:

(i) We propose OKID, that jointly discovers object representations and performs attribute
and dynamics decomposition in a self-supervised setting. OKID uses a novel approach to learn
a modular dynamical system from data by means of Koopman theory. While Koopman theory has
been employed before for the dynamics and interaction prediction of multiple object trajectories, we
propose a novel end-to-end method that can do so from pixels.

(ii) We provide simple video manipulation techniques that unveil novel properties for a
video prediction model. We illustrate this in our experiments. The proposed framework allows for
easy video dynamics interpretation and manipulation at test-time. Although we do not improve the
state of the art in the task of video prediction, we remain competitive generating visual results of
good quality and plausible object trajectories, while enabling interpretability.
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Figure 1: Architecture of OKID. Left: an attention-based recurrent tracker decomposes the scene
into its objects. Center: the object representations are disentangled into Confidence,
Appearance and Pose. Right: Pose is modeled and forecasted by using a Koopman
embedding. Latent representations are later used to reconstruct or predict frames.

2. Background

Consider a time-invariant dynamical system of a single object on ℜn of the form st+1 = Φ(st).
where st ∈ ℜn is the state of the system at time t, and Φ : ℜn → ℜn is a, potentially non-linear,
function that defines the temporal transition of the states.

The fundamental insight of Koopman operator theory is that finite-dimensional nonlinear dynam-
ics can be transformed to an infinite-dimensional linear dynamical system by appropriately chosing
a Hilbert space of observables g Koopman (1931); Mezic (2005) and seeking an operator K that
propagates g one step ahead:

gt = fψ (st) , gt+1 = Kgt, (1)

fψ ◦ Φ (st) = Kfψ (st) , (2)

where fψ is the mapping from the state space to the observable space gt and ◦ denotes the composition
operator. While Koopman operator theory applies for an infinite dimensional Hilbert observable
space, here we make a simplified assumption that it holds for some finite dimensional subspace, ℜm
of observables, i.e., gt ∈ ℜm, fψ : ℜn → ℜm, K : ℜm → ℜm.

The eigenfunctions ψj (st) : ℜn → ℜm of the Koopman operator satisfy Kψj (st) = λjψj (st),
where λj ∈ C is the corresponding eigenvalue. Eigenfunctions are hard to find, and some algorithms
have been proposed to tackle the challenge. The most widely used are the dynamic mode decomposi-
tion (DMD) Schmid (2008) and its extension to nonlinear observables, the extended DMD (EDMD)
Williams et al. (2015).

Previous research used hand-crafted functions to model the observable space. Some recent
approaches use deep neural networks to represent the observable space Lusch et al. (2018); Morton
et al. (2019); Li et al. (2020); Xiao et al. (2021); Azencot et al. (2020). Neural networks have the
advantage of being universal approximators, and are effective in finding the Koopman invariant
subspace. Koopman methodology is data-driven, model-free and can discover the underlying
dynamics and control of a given system from data alone Proctor et al. (2018). The operator K is
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usually found by linear regression given historical data or by end-to-end gradient-descent-based
optimization.

In some cases, Koopman is employed in presence of control inputs. There are different approaches
to introducing inputs to Koopman (e.g. Proctor et al. (2018); Li et al. (2020)). In our case, inputs
model forces external to an object, originated from object-environment interactions. Therefore, inputs
will depend both on the state of the object and the environment’s geometry. Thus, the counterpart of
equation 1 is:

gt = fψ (st) , ut = fU (st) , (3)

gt+1 = Kgt +KUut (4)

Here, ut depends on the current state st (closed-loop control). It is expected to be sparse, and
low-dimensional. KU : ℜv → ℜm is the input Koopman operator. We usually define dimension v
such that v << m.

3. Related Work

Video decomposition. DRNET Denton and Birodkar (2017) is an early work that decomposes
video into a static component (content) and a dynamic component (pose). This is a key idea adopted
by several subsequent works, such as DDPAE Hsieh et al. (2018) and SQAIR Kosiorek et al. (2018).
These methods are not designed to be scalable or explicitly model interactions. SCALOR Jiang
et al. (2020) targeted scalability by massive parallelization to handle hundreds of objects in a scene.
STOVE Kossen et al. (2020) adds on by modeling interactions with a graph neural network. By
using a Markov model in the latent space, STOVE applies inference in the series. G-SWM Lin et al.
(2020a) unifies the abilities of previous models, it is scalable and handles interactions. ODDN
Tang et al. (2022), distills object dynamics and models their interactions in an unsupervised way
using a clustering type approach. Our method differs from the previous methods substantially in
the dynamics model. Finally, TBA He et al. (2019) presents a method that tracks by decomposition,
disentanglement and generation of objects, however it does not provide a forecasting mechanism.

Koopman Operator. Koopman Operator theory has been successfully used to disentangle the
dynamic modes in complex dynamical systems using decomposition techniques like DMD Schmid
(2008), and Extended DMD (EDMD)Williams et al. (2015). Leveraging the fact that Koopman
operator based methods require a rich family of functions to generate a mapping, recent works have
used deep neural networks to approximate the eigenvectors associated to the Koopman operator
Lusch et al. (2018); Azencot et al. (2020); Morton et al. (2019); Li et al. (2020); Xiao et al. (2021);
Otto and Rowley (2019). This idea has found applications in fluid dynamics Morton et al. (2018);
Azencot et al. (2020), atomic and molecular scale dynamics Xie et al. (2019); Mardt et al. (2017),
chaotic systems Brunton et al. (2017) and traffic dynamics Xie et al. (2019). However, to the best
of our knowledge, video sequences have not still been targeted. Proctor et al. (2018) generalized
Koopman theory for control inputs, giving rise to other methods, such as Li et al. (2020), that use
Koopman theory to model object dynamics and interactions from inputs and coordinate-based states.
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4. Method

Video often presents multiple objects in motion that generate a complex dynamical scene. In the pixel
space, dynamics are highly complex. But object trajectories are often simpler. For our approach, we
decompose the scene into its moving objects. We track and identify N objects across input frames,
and assign a set of 3 variables to each one of them. Each object representation will be disentangled
into the following categories:

• Pose zt,p ∈ (−1, 1)4: Indicates the parameters for a 2D affine spatial transformation of an object;
x and y centroid coordinates, scale and ratio, scaled to the range (−1, 1) with a Tanh(·) activation.

• Appearance zt,a ∈ ℜA: A vector containing information about an object’s appearance.

• Confidence zt,c ∈ (0, 1): Probability indicating the certainty of an object being correctly modeled.

As shown in Fig.1, the architecture consists of: 1) an object tracking block, 2) a Koopman SysID
block and 3) a rendering block (not illustrated). We first track objects in a video by means of attention.
The tracking block estimates the above attributes from pixels. A state s based on the pose is then
embedded into the observable space with a Koopman mapping. The Koopman operator K is then
used to propagate the trajectory in time. We decode the Koopman predictions back into the attribute
space and render a new scene with the estimated set of object attributes. We reconstruct and predict
video scenes, and use the ground-truth video to train the entire model end-to-end. We assume that
there is no background. Next, we describe in more detail the main modules that form our model.

4.1. Architecture

Tracking. We encode each video frame (y1, · · · ,yT ) with a convolutional encoder, and obtain
a feature map as Ht,y = fenc ([yt, PE]), where PE is a positional encoding. We then track objects
across frames by using an array of trackers. N trackers are initialized, where N is an upper-bound
on the expected number of objects in every scene. In our implementation, we use trackers based on
He et al. (2019), which we modified to allow for forecasting and stochastic appearance modeling.
We define the tracker recurrent updates as:

hit,tr = ftr
(
hit−1,tr,Ht,y

)
,
[
zit,c, z

i
t,p,d

i
t,a

]
= FC

(
hit,tr

)
(5)

zit,a ∼ N (µa, σ
2
a),

[
µa, σ

2
a

]
= FC(dit,a),

where ftr (·) is an attention-based tracking function described in equation 6. We implement the
appearance latent vector zit,a to be the only stochastic variable in this setup, given its inherent
complexity. It is sampled from a Gaussian distribution and trained as in a VAE framework. zit,c is
softly binarized with Sigmoid(·).

Tracker updates. The tracking function, ftr (·) is based on recurrent updates:

hit,tr = GRUtr
(
hit−1,tr,u

i
t

)
,uit = Ai

tVt, Ai
t = Softmax

(
βitQ

i
tK

T
t

)
(6)

where a GRU cell is used to update the hidden state of each tracker hit,tr and uit is obtained by
soft-attention mechanism, relying on the Query, Key, Value triad, where value and key are set as
Vi
t = Ki

t = Ht,y, and the Query is obtained from hit−1,tr using a fully connected layer.
We need a mechanism to provide information across trackers, while preserving the identity of

each object through time. Trackers interact through external memory by using interface variables.
We describe the tracker in more detail in the technical report Comas et al. (2023).
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Koopman Embedding. We employ Koopman theory to model the dynamics. We argue that finding
dynamic modes will introduce benefits to our model, as we discuss in Section 5.
We define the state as a concatenation of TS delayed instances (from now on referred to as delayed
coordinates) of the pose vector zip for the ith object:

sit =
[
zit,p, z

i
t−1,p, . . . , z

i
t−TS+1,p

]
(7)

Therefore, sit ∈ R4Ts . Ts indicates our prior belief on the number of time-steps needed to model
dynamics with an Auto-Regressive (AR) approach.

The observables git are obtained through the Koopman mapping fM : ℜ4×Ts → ℜM (equivalent
to equation 1). M and U make reference to the spaces of observables and inputs, respectively. We
recover the original state by approximating the inverse function fM−1 ≈ f−1

M with a deterministic
Auto-Encoder (AE) architecture. We use an MLP to map states to observables in the Koopman space,
and vice-versa. If external forces are present, we also model inputs ut as a non-linear mapping
fU : ℜ4Ts → (−1, 1)U from the state space. Note that we set fU : ℜ4Ts → {0}U if we assume that
the objects’ dynamics are not affected by the environment:

ŝit+1 = fM−1 ◦
(
K ◦ fM

(
sit
)
+KU ◦ fU

(
sit
))

= fM−1

(
Kgit +KUu

i
t

)
. (8)

We refer to the estimated states as ŝiT . We define the Koopman operators K : ℜM → ℜM

and KU : ℜU → ℜM as parameter matrices. We provide a discussion of the role of ut in the
technical report Comas et al. (2023). The pose vector ẑit+1,p is recovered by keeping the first
stacked coordinates of the estimated state ŝit+1, and limited to the range (−1, 1). Once trained,
the eigendecomposition of the Koopman operator K provides us with useful insights of the scene
dynamics.

4.2. Training

Given the video sequence (y1, · · · ,yT ), its generative distribution is given by:

p(y1:T |z1:T ) =
N∏
i=1

prec(y
i
1:T |zi1:T )

N∏
i=1

ppred(y
i
1:T |zi1:K), (9)

where zit =
[
zit,c, z

i
t,p, z

i
t,a

]
. Note that we both reconstruct the whole sequence with length T and

predict it from K initial frames (K < T ). For our experiments, K will coincide with the number of
delayed coordinates Ts. Given the inferred latent variables, we reconstruct and predict yti for each
object sequentially. We first generate the object in the center with resolution R = C × h× w, given
the appearance zit,a. The decoder fdec : ℜA → ℜR is a CNN. We then apply a spatial transformer
T to rescale and place the object according to the pose zit,p. For each object, the generative model
is: p(yit|zit,a) = T (fdec(z

i
t,a); z

i
t,p) ◦ zit,c. Similarly to the VAE framework, we train the model by

maximizing the evidence lower bound (ELBO).
We use self-supervision for reconstructing the input y1:T and predicting that same input from

few initial conditions (1 : K). While the ELBO is enough to perform prediction, we find that adding
regularizers helps achieving some of the desired features. Thus, our objective Jω with respect to the
trainable weights ω is:

Jω = min
ω

[−ELBO+λLReg] (10)
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Figure 2: (a) right: Illustration of the eigenvalue behaviors of matrix K Phillips and Nagle (2007)
visualized on the complex-plane, left: Learned Koopman matrix eigenvalues for 3D to 2D
projection experiment. In green we highlight the eigenvalue pair that we will modify in (c)
to visualize the effect of manipulations. (b): Predictions: Ground Truth; our main baseline
DDPAE; OKID with the object decomposition bounding boxes; (c) by rows: 2 variations
to the radius of the highlighted eigenvalue, 3 variations to the angle. Blue line shows the
effect of changing the radius and red line shows that of changing the angle.

In order to achieve the desired properties in the Koopman space, we regularize the objective with
LReg, as described next. We enforce the observables g and states s to be consistent before and after
the Koopman embedding. This is done through an autoencoding loss. We might also expect the
presence of sparse inputs u, as in the Collision case of Moving MNIST experiments. In that case, we
enforce sparsity with its convex surrogate, the ℓ1 norm. Hence, the full regularization term is given
by:

Lreg = λfitLfit + λAELAE + λULU (11)

LAE =
∥∥∥s1:N2:T − ŝ1:N2:T |1:T−1

∥∥∥
1
, Lfit =

∥∥∥g1:N
2:T − ĝ1:N

2:T |1:T−1

∥∥∥2
2
, LU =

∥∥û1:N
1:T

∥∥
1
,

Here, ∥·∥1 and ∥·∥22 indicate the ℓ1 and ℓ2 losses respectively. ∥·∥1 is used to enforce sparsity in
û1:N
1:T . Finally, the λs are the weights applied to each one of the loss terms. Details about the ELBO

objective and the frame generation can be found in the technical report Comas et al. (2023).

5. Experiments

We ran a set of experiments to evaluate the ability of our framework to model dynamic scenarios
and illustrate its interpretability and manipulation capabilities. For this purpose, we tested OKID on
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variations of the Moving-MNIST dataset, which allows us to test our model in dynamic scenarios
that range from simple to complex.

Our baselines are established state-of-the-art methods for decomposed self-supervised video
generation: DDPAE Hsieh et al. (2018) (selected as the closest to OKID in terms of architecture),
DRNET Denton and Birodkar (2017) and SCALOR Jiang et al. (2020). All baselines model dynamics
with LSTM-like modules.
Evaluation Metrics. Our quantitative results will be measured in terms of per frame Mean Square
Error (MSE), Mean Absolute Error (MAE), Structural Similarity (SSIM) and the Perceptual Similarity
Metric (LPIPS) Zhang et al. (2018).

5.1. Moving MNIST Experiments

Moving MNIST Srivastava et al. (2015) is a synthetic dataset consisting of two digits with size
28× 28 moving independently in a 64× 64 frame. Each training sequence is generated on-the-fly by
sampling MNIST digits and synthesizing trajectories according to a definition of the motion. Our
model uses 10k samples for training, 1k for validation and 2k for testing. We simulate 4 scenarios:

• Circular motion: We generate a fairly simple dataset, for which we know the expected results. We
sample randomly initial coordinates (x0, y0), radius R and the angular step length. We generate
the motion with equation: x = R cos (t) + x0, y = R sin (t) + y0, where t increases linearly with
a slope given by the angular step length. Finally, we constrain the motion to the dimensions of the
frame. From T = 3 input frames, we predict 17 frames.

• Cropped circular motion: We mask the 29 top rows of the circular motion case, simulating a
partially cropped frame. Note that an object of size 28× 28 can be completely occluded.

• Inelastic/Super-elastic collisions: We sample initial coordinates (x0, y0) and angle θ and let the
object collide against the frame boundaries with fixed velocity. We increase the complexity of the
case by simulating an inelastic response from the left and top boundaries (×0.8) and a super-elastic
response from the right and bottom boundaries (×1.25). We generate chunks of T = 13 frames as
input. From the first 3 frames, we predict 10 frames.

• 3D to 2D motion projection: Finally, we generate trajectories that lay withing the cube [−1, 1]3.
Those are generated randomly following the steps described in the technical report. We project the
trajectory to the xy− axis, and simulate depth with the relative sizes of the objects. From 6 input
frames, we predict 10.

Quantitative Results. A quantitative general overview of the experiments is given in Table 1.
Looking at the perceptual metrics, OKID often outperforms all baselines in terms of LPIPS, and
is on par with DDPAE’s SSIM. DDPAE is the closest to ours in terms of decomposition and frame
generation. The key difference is the dynamics modeling. DDPAE uses a concatenation of LSTMs for
reconstructing and predicting the pose. On the absolute MSE and MAE metrics, OKID performance
remains competitive while providing a novel set of useful features:

Model Reduction. We propose to test our architecture after removing all but n eigenvalues of K. n
was chosen to ensure we do not discard eigenvalues with module higher than 0.5. As we see in Table
1, the results are close to the prediction with the full matrix K. This indicates that our model was able
to capture the motion of the digits with 3 to 4 conjugate pairs of eigenvalues for the studied cases.
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Table 1: Quantitative comparison of all methods for the four scenarios. We evaluate reconstruction,
prediction, and prediction with model reduction (ne denotes that we keep only the top n
eigenvalues). Top to bottom shows results of different methods on several datasets. Our
method performs similarly to the best RNN-based baseline and outperforms the rest of
baselines in prediction.

Model MSE ↓ MAE ↓ SSIM ↑ LPIPS ↓

Circular Rec Pred Pred(6e) Rec Pred Pred(6e) Rec Pred Pred(6e) Rec Pred Pred(6e)

DDPAE 40.13 71.96 / 123.94 162.64 / 0.87 0.82 / 0.19 0.21 /
OKID 59.97 84.23 84.64 139.92 168.83 169.96 0.86 0.82 0.82 0.15 0.17 0.17

Cropped circular Rec Pred Pred(6e) Rec Pred Pred(6e) Rec Pred Pred(6e) Rec Pred Pred(6e)

DDPAE 35.04 54.95 / 98.48 118.90 / 0.88 0.85 / 0.21 0.23 /
OKID 47.80 59.26 59.32 108.28 120.04 120.15 0.88 0.86 0.86 0.17 0.19 0.19

Collision Rec Pred Pred(6e) Rec Pred Pred(6e) Rec Pred Pred(6e) Rec Pred Pred(6e)

DRNET 109.01 214.49 / 218.14 339.58 / 0.75 0.60 / 0.30 0.40 /
SCALOR 13.24 329.63 / 50.02 494.41 / 0.95 0.28 / 0.02 0.48 /
DDPAE 49.53 93.52 / 146.65 199.57 / 0.84 0.76 / 0.23 0.25 /
OKID 59.53 103.63 110 155.07 205.31 212.38 0.83 0.77 0.76 0.19 0.21 0.22

3D to 2D proj Rec Pred Pred(8e) Rec Pred Pred(8e) Rec Pred Pred(8e) Rec Pred Pred(8e)

DRNET 80.31 136.06 / 172.43 248.11 / 0.77 0.66 / 0.32 0.41 /
SCALOR 7.58 233.18 / 32.05 377.34 / 0.96 0.32 / 0.02 0.45 /
DDPAE 20.99 43.72 / 57.08 86.87 / 0.94 0.89 / 0.11 0.14 /
OKID 36.32 45.63 49.48 78.27 93.57 101.10 0.89 0.87 0.86 0.17 0.17 0.20

Figure 3: Eigenvalues of the learned matrix K
in the complex plane for both circu-
lar experiments. Left: Complete im-
age, right: Cropped image. The learned
eigenvalues are very similar, while one
of them has been trained with corrupted
data. Yellow points in real axis are
associated to non-oscillating dynamic
modes. In red, eigenvalues close to 0
have very weak effect on the dynamics.

Interpreting K: Circular Motion Experi-
ments. Figure 3 depicts the eigendecomposi-
tion of the learned K for the Circular Motion Ex-
periments. We know that the motion is expected
to be sinusoidal in both x and y. Therefore, a
correct Koopman mapping would not need to
be non-linear to capture the dynamics in this
case. A sinusoid can be modelled by a linear
operator with a complex pair of eigenvectors in
the unit circle. We can see that pair, together
with real eigenvalues that present no oscillation.
We observe also that the learned model is stable
as no eigenvalue has greater magnitude than 1.
The model has learned a very similar operator K
for both the cropped and the complete version.
This indicates that OKID is learning consistent
dynamics across datasets when they share the
same motion. It also suggests that the model
is able to impute a trajectory when the data is
missing. Qualitative results can be seen in the
technical report Comas et al. (2023).
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Interpreting K: 3D to 2D Projection Experiments. Figure 2 shows the qualitative performance
in terms of prediction of OKID and the result of several interventions. It illustrates how single or
conjugated pairs of eigenvalues impact on the dynamics, for the 3D to 2D Projection Experiments.
This dataset is challenging because it entangles linear motion across dimensions by means of
projection. It also encompasses digit size variations. We can see that the predictions are accurate and
sharp and the learned dynamics are correct. The model correctly disentangles the two objects that
appear in the scene, and models their dynamics.

We manipulate the eigenvalues of K highlighted in green (Fig. 3(a)) by changing their module r
or their angle θ. Shadowed in red, we see that this particular eigenvalue pair has higher effect in the
latter part of the trajectory. If we increase its module above 1, we observe an increase on the intensity
of the variations, leading to strong oscillation at the end of the sequence (see size of the object). This
happens because the system is now unstable. If we vary the angle of the eigenvalue pair with respect
to the real axis, we see variations in terms of frequency. When we subtract 20 degrees to the angle, it
becomes almost 0 resulting into an almost flat trajectory. When we increase that angle, we see digits
oscillating with higher frequency.

Inputs: Collision Experiments. For the Collision Experiments scenario, the challenge is the use
of inputs ut. Every collision against the frame boundaries applies a force to the object, that modifies
its dynamics. Therefore, we model the effect of the environment as in Equation 8, allowing the inputs
to be non-zero, and forcing them to be sparse and low-dimensional (ut ∈ ℜ4) to avoid overfitting.
This generates sharp objects and captures correctly the dynamics.

Additional experiments, including more qualitative samples, single object manipulation and the
effect of having more trackers than objects in the scene, can be found in Comas et al. (2023).

6. Conclusion

We propose a self-supervised method for video prediction by means of scene decomposition into
objects, their attributes and scene dynamic modes. We embed the dynamic object-centric attributes
into a space where dynamics behave linearly, by means of a Koopman embedding. This enables
the use of linear algebra techniques to interpret and manipulate the scene dynamics. Through
careful experiments we show that decomposition into dynamic modes is indeed possible and carries
predictive power. We include examples with inputs and object interactions. We also provide insights
into the dynamics of objects (interpretability) through the analysis of eigenvalues of the learned
Koopman operator. Finally, we show how to manipulate the model to obtain arbitrarily higher
temporal resolution, backward prediction, model reduction and alter the dynamic behavior of a
targeted object.

Our model has room for improvement. OKID’s current implementation does not support back-
ground modeling and an upper-bound of objects (number of trackers) N must be defined a priori.
This is detrimental to the performance, as the number of trackers used has a considerable effect on
the iteration time and memory requirements. We intend to address these limitations in the future.

The Technical Report can be found in Comas et al. (2023).
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