
Proceedings of Machine Learning Research vol 211:1–14, 2023 5th Annual Conference on Learning for Dynamics and Control

Certified Invertibility in Neural Networks via
Mixed-Integer Programming

Tianqi Cui TCUI3@JHU.EDU
Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA

Thomas Bertalan TOM@TOMBERTALAN.COM
Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA

George Pappas PAPPASG@SEAS.UPENN.EDU
Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, USA

Manfred Morari MORARI@SEAS.UPENN.EDU
Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, USA

Yannis Kevrekidis YANNISK@JHU.EDU
Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA

Mahyar Fazlyab MAHYARFAZLYAB@JHU.EDU

Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA

Editors: N. Matni, M. Morari, G. J. Pappas

Abstract
Neural networks are known to be vulnerable to adversarial attacks, which are small, imperceptible
perturbations that can significantly alter the network’s output. Conversely, there may exist large,
meaningful perturbations that do not affect the network’s decision (excessive invariance). In our re-
search, we investigate this latter phenomenon in two contexts: (a) discrete-time dynamical system
identification, and (b) the calibration of a neural network’s output to that of another network. We
examine noninvertibility through the lens of mathematical optimization, where the global solution
measures the “safety” of the network predictions by their distance from the non-invertibility bound-
ary. We formulate mixed-integer programs (MIPs) for ReLU networks and Lp norms (p = 1, 2,∞)
that apply to neural network approximators of dynamical systems. We also discuss how our find-
ings can be useful for invertibility certification in transformations between neural networks, e.g.
between different levels of network pruning.

1. Introduction

Despite achieving high performance in various classification and regression tasks, neural networks
do not always guarantee certain desired properties after training. Adversarial robustness is a well-
known example, as neural networks can be overly sensitive to carefully designed input perturbations
(Szegedy et al. (2013)). This intriguing property also holds in the reverse direction, where neural
networks can be excessively insensitive to large perturbations in classification problems. This can
cause two semantically different inputs (such as images) to be classified in the same category (Ja-
cobsen et al. (2018)). Indeed, a fundamental trade-off exists between adversarial robustness and
excessive invariance (Tramèr et al. (2020)), which is mathematically related to the noninvertibility
of the input-output map defined by the neural network.

© 2023 T. Cui, T. Bertalan, G. Pappas, M. Morari, Y. Kevrekidis & M. Fazlyab.

CERTIFIED INVERTIBILITY IN NEURAL NETWORKS VIA MIXED-INTEGER PROGRAMMING

To address the issue of noninvertibility and excessive invariance, one can consider invertible-
by-design architectures. Invertible neural networks (INNs) have been used to design generative
models (Donahue and Simonyan (2019)), implement memory-saving gradient computation (Gomez
et al. (2017)), and solve inverse problems (Ardizzone et al. (2018)). However, commonly used
INN architectures suffer from exploding inverses. In this paper, we focus on certifying the (pos-
sible) non-invertibility of conventional neural networks after training. We specifically study two
relevant invertibility problems: (i) local invertibility of neural networks, where we verify whether a
dynamical system parameterized by a neural network is locally invertible around a certain input (or
trajectory), and compute the largest region of local invertibility; and (ii) local invertibility of trans-
formations between neural networks, where we certify whether two “equivalent” neural networks
(e.g. resulting from different levels of pruning) can be transformed (or calibrated) to each other lo-
cally via an invertible map. We develop mathematical tools based on mixed-integer linear/quadratic
programming for characterizing non-invertibility, which can be applied to neural network approxi-
mators of dynamical systems, as well as transformations between different neural networks.

Related Work Noninvertibility in neural networks was first studied in the 1990s (Gicquel et al.
(1998); Rico-Martinez et al. (1993)). More recently, several papers have focused on the global in-
vertibility property in neural networks, including works such as Chang et al. (2018); Teshima et al.
(2020); Chen et al. (2018); MacKay et al. (2018); Jaeger (2014). The invertibility of neural networks
has been analyzed (Behrmann et al. (2018)), and invertible architectures have been developed for
applications such as generative modeling (Chen et al. (2019)), inverse problems (Ardizzone et al.
(2019)), and probabilistic inference (Radev et al. (2020)). Some of these networks, such as RevNet
(Gomez et al. (2017)), NICE (Dinh et al. (2015)), and real NVP (Dinh et al. (2017)), partition the
input domains and use affine or coupling transformations as the forward pass, resulting in nonzero
determinants and keeping the Jacobians (block-)triangular with nonzero diagonal elements. Others,
like i-ResNet (Behrmann et al. (2019)), have no analytical forms for the inverse dynamics, yet their
finite bi-Lipschitz constants can be derived. Both methods can guarantee global invertibility. A
comprehensive analysis of these architectures can be found in Behrmann et al. (2021); Song et al.
(2019). However, a theoretical understanding of the expressiveness of these architectures, as well
as their universal approximation properties, is still incomplete. Compared to standard networks like
multi-layer perceptrons (MLPs) or convolutional neural networks (CNNs), invertible neural net-
works (INNs) are computationally demanding. Neural ODE (Chen et al. (2018)) uses an alternative
method to compute gradients for backward propagation, while i-ResNet (Behrmann et al. (2019))
has restrictions on the norm of every weight matrix to be enforced during the training process. In
most cases, the input domain of interest is a small subset of the whole space. For example, the
grey-scale image domain in computer vision problems is [0, 1]H×W , where H and W are the height
and width of the images; it is unnecessary to consider the entireRH×W . We thus focus on local
invertibility: how do we determine if our network is invertible on a given domain, and if not, how
do we quantify noninvertibility?

2. Invertibility Certification of Neural Networks and of Transformations between
them

Here we pose the verification of local invertibility of continuous functions as optimization problems.
We then show that for ReLU networks, this leads to a mixed-integer linear/quadratic program. For

2

CERTIFIED INVERTIBILITY IN NEURAL NETWORKS VIA MIXED-INTEGER PROGRAMMING

an integer q ≥ 1, we denote the Lq-ball centered at xc by Bq(xc, r) = {x ∈ Rn | ‖x − xc‖q ≤ r}
(the notation also holds when q → +∞).

2.1. Invertibility Certification of ReLU Networks via Mixed-Integer Programming

Problem 1 (Local Invertibility of NNs) Given a neural network f : Rm 7→ Rm and a point
xc ∈ Rm in the input space, we want to find the largest radius r > 0 such that f is invertible on
Bq(xc, r), i.e., f(x) 6= f(y) for all x, y ∈ Bq(xc, r), x 6= y. 1

Figure 1: Illustration of prob-
lems 1 and 2 in one dimension.

Another relevant problem is to verify whether, for a particular
point, a nearby point exists with the same forward image. We for-
mally state the problem as follows.

Problem 2 (Pseudo Local Invertibility of NNs) Given a neural
network f : Rm 7→ Rm and a point xc ∈ Rm in the input space, we
want to find the largest radius R > 0 such that f(x) 6= f(xc) for
all x ∈ Bq(xc, R), x 6= xc.

If r and R are the optimal radii in Problems 1 and 2 respec-
tively, we must have r ≤ R. For Problem 1, the ball Bq(xc, r) just
“touches” the J0 set (i.e. the set of points where f ′ = 0); for Prob-
lem 2, the ball Bq(xc, R) extends to the “other” closest preimage
of f(xc). Figure 1 illustrates both concepts in the one-dimensional
case. For the scalar function y = f(x) and around a particular input
xc, we show regions with local invertibility and pseudo invertibility.
The pointsQ1 = (xQ1 , yQ1) andQ2 = (xQ2 , yQ2) are two closest turning points (elements of the J0
set) to the pointC = (xc, yc); f is uniquely invertible (bi-Lipschitz) on the open interval (xQ1 , xQ2),
so that the optimal solution to Problem 1 is: r = min{|xQ1−xc|, |xQ2−xc|} = |xQ1−xc|. Noting
thatM1 = (xM1 , yM1) andM2 = (xM2 , yM2) are two closest points that have the same y-coordinate
as the point C = (xc, yc), the optimal solution to Problem 2 isR = min{|xM1−xc|, |xM2−xc|} =
|xM1 − xc|.

We now state our first result, posing the local invertibility of a function (such as a neural net-
work) as a constrained optimization problem.

Theorem 1 (Local Invertibility of Continuous Functions) Let f : Rm → Rm be a continuous
function and B ⊂ Rm be a compact set. Consider the following optimization problem,

p? ←max ‖x− y‖ subject to x, y ∈ B, f(x) = f(y). (1)

Then f is invertible on B if and only if p? = 0.

Theorem 2 (Pseudo Local Invertibility) Let f : Rm → Rm be a continuous function and B ⊂
Rm be a compact set. Suppose xc ∈ B. Consider the following optimization problem,

P ? ← max ‖x− xc‖ subject to x ∈ B, f(x) = f(xc). (2)

Then we have f(x) 6= f(xc) for all x ∈ B \ {xc} if and only if P ? = 0.

Note that by adding the equality constraint y = xc to Problem (1), we obtain Problem (2). Hence,
we will only focus on Problem (1) in the sequel.

1. Heref has the same domain/co-domain dimension. Our mixed-integer formulation does not require this assumption.

3

CERTIFIED INVERTIBILITY IN NEURAL NETWORKS VIA MIXED-INTEGER PROGRAMMING

Mixed-Integer Formulation of Problem (1) We now show that for a given ball B∞(xc, r) in the
input space, and piecewise linear networks with ReLU activations, the optimization problem in (1)
can be cast as an MILP. We start by noting that a single ReLU constraint y = max(0, x) with pre-
activation bounds x ≤ x ≤ x̄ can be equivalently described by the following mixed-integer linear
constraints (Tjeng et al. (2017)),

y = max(0, x), x ≤ x ≤ x̄ ⇐⇒ {y ≥ 0, y ≥ x, y ≤ x− x(1− t), y ≤ x̄t, t ∈ {0, 1}}, (3)

where the binary variable t ∈ {0, 1} is an indicator of the activation function being active (y = x)
or inactive (y = 0). Now consider an `-layer feed-forward fully-connected ReLU network,

x(k+1) = max(W (k)x(k) + b(k), 0) for k = 0, · · · , `− 1; f(x(0)) = W (`)x(`) + b(`), (4)

where x(k) ∈ Rnk (n0 = m), W (k) ∈ Rnk+1×nk , b(k) ∈ Rnk+1 are the weight matrices and bias
vectors of the affine layers. We denote n =

∑`
k=1 nk the total number of neurons. Suppose l(k) and

u(k) are known elementwise lower and upper bounds on the input to the (`+ 1)-th activation layer,
i.e., l(k) ≤ W (k)x(k) + b(k) ≤ u(k). Then the neural network equations are equivalent to a set of
mixed-integer constraints as follows,

x(k+1)=max(W (k)x(k) + b(k), 0)⇔

x(k+1) ≥W (k)x(k) + b(k)

x(k+1) ≤W (k)x(k) + b(k) − l(k) � (1nk+1
− t(k))

x(k+1) ≥ 0, x(k+1) ≤ u(k) � t(k),
(5)

where t(k) ∈ {0, 1}nk+1 is a vector of binary variables for the (k + 1)-th activation layer and 1nk+1

denotes vector of all 1’s in Rnk+1 . We note that the element-wise pre-activation bounds {l(k), u(k)}
can be precomputed by, for example, interval bound propagation or linear programming, assuming
known bounds on the input of the neural network (Weng et al. (2018); Zhang et al. (2018); Hein and
Andriushchenko (2017); Wang et al. (2018); Wong and Kolter (2018)). Since the state-of-the-art
solvers for mixed-integer programming are based on branch & bound algorithms (Land and Doig
(1960); Beasley (1996)), tight pre-activation bounds will allow the algorithm to prune branches
more efficiently and reduce the total running time.

p? ← max w subject to ‖x(0) − xc‖∞ ≤ r, ‖y(0) − xc‖∞ ≤ r

(I) :

(x(0) − y(0)) ≤ w1n0 ≤ (x(0) − y(0)) + 4r(1n0 − F)

−(x(0) − y(0)) ≤ w1n0 ≤ −(x(0) − y(0)) + 4r(1n0 − F ′)
F + F ′ ≤ 1n0 , 1

>
n0

(F + F ′) = 1, F, F ′ ∈ {0, 1}n0

(II) : W (`)x(`) = W (`)y(`) (6)

for k = 0, · · · , `− 1 :

(III) :

x(k+1) ≥W (k)x(k) + b(k), y(k+1) ≥W (k)y(k) + b(k)

x(k+1) ≤W (k)x(k) + b(k) − l(k) � (1− t(k)), y(k+1) ≤W (k)y(k) + b(k) − l(k) � (1− t(k))
x(k+1) ≥ 0, y(k+1) ≥ 0, x(k+1) ≤ u(k) � t(k), y(k+1) ≤ u(k) � t(k); t(k), s(k) ∈ {0, 1}nk+1,

Having represented the neural network equations by mixed-integer constraints, it remains to encode
the objective function ‖x(0) − y(0)‖ as well as the set B. We assume that B is an L∞ ball around

4

CERTIFIED INVERTIBILITY IN NEURAL NETWORKS VIA MIXED-INTEGER PROGRAMMING

a given point xc, i.e., B = B∞(xc, r). Furthermore, for the sake of space, we only consider L∞
norms for the objective function. Specifically, consider the equality w = ‖x(0) − y(0)‖∞. This
equality can be encoded as mixed-integer linear constraints by introducing 2n0 mutually exclusive
indicator vectors(F and F ′ each with n0 coordinates). This would lead to the MILP in (6), where
the set of constraints in (I) model the objective function ‖x(0) − y(0)‖∞, and the set of constraints
(III) encodes x(k+1) = max(W (k)x(k) + b(k), 0) and y(k+1) = max(W (k)y(k) + b(k), 0) which
is exactly (5). The constraint (II) enforces f(x(0)) = f(y(0)) which can be inferred from (4). To
see the correctness of (I), suppose Fj = 1 for some j = 1, · · · , n0. Then, we must have F ′i = 0

for ∀i = 1, · · · , n0 and Fi = 0 for ∀i 6= j. This implies w = (x
(0)
j − y

(0)
j) ≥ (x

(0)
i − y

(0)
i) for

∀i 6= j, and w ≥ −(x
(0)
i − y

(0)
i) for ∀i. A similar argument can be made when F ′j = 1 for some

j = 1, · · · , n0. The optimization problem (6) has a total of 2(n0 + n) integer variables.

Remark 3 Using the `2 norm for both the objective function and the ball B2(xc, r), leads to a
mixed-integer quadratic program (MIQP). However, (6) remains an MILP in the `1 norm case.

Largest Region of Invertibility (Problem 1) For a fixed radius r ≥ 0, the optimization problem
(6) either verifies whether f is invertible on B∞(xc, r) or it finds counter examples x(0) 6= y(0) such
that f(x(0)) = f(y(0)). Thus, we can find the maximal r by performing a bisection search on r.

To close this section, we consider the problem of invertibility certification in transformations
between two functions (and in particular neural networks).

2.2. Invertibility Certification of Transformations between Neural Networks

Training two neural networks for the same regression or classification task practically never gives
identical networks. Numerous criteria exist for comparing the performance of different models (e.g.
accuracy in classification, or mean-squared loss in regression). Here we explore whether two dif-
ferent models can be calibrated to each other (leading to a de facto implicit function problem).
Extending our analysis provides invertibility guarantees for the transformation from output of net-
work 1 to output of network 2.

Problem 3 (Transformation Invertibility) Given two functions f1, f2 : Rm → Rm (e.g. two neu-
ral networks) and a particular point xc ∈ Rm in the input space, we would like to find the largest
ball Bq(xc, r) over which f2 is a function of f1.

Theorem 4 Let f1 : Rm → Rn, f2 : Rm → Rn be two continuous functions and B ⊂ Rm be a
compact set. Then f2 is a function of f1 on B if and only if p?12 = 0, where

p?12 ← max ‖f2(x(1))− f2(x(2))‖ subject to x(1), x(2) ∈ B, f1(x
(1)) = f1(x

(2)). (7)

Similar to Problem 1, we can pose Problem 3 as a mixed-integer program. Furthermore, we can
also define p?21, whose zero value verifies whether f1 is a function of f2 over B. It is straightforward
that p?12 = p?21 = 0 if and only if f2 is an invertible function of f1.

3. Local Invertibility of Dynamical Systems and Neural Networks

Noninvertibility can lead to catastrophic consequences not only in classification but also in regres-
sion, particularly in dynamical systems prediction. The flow of smooth differential equations is

5

CERTIFIED INVERTIBILITY IN NEURAL NETWORKS VIA MIXED-INTEGER PROGRAMMING

invertible when it exists, yet traditional numerical integrators used to approximate them can be non-
invertible. Neural network approximations of the corresponding map also suffer from this potential
pathology. Here, we study non-invertibility in the context of dynamical systems predictions.

Continuous-time dynamical systems, in particular autonomous ordinary differential equations
(ODEs) have the form dX(t)/dt = f(X(t)), X(t = t0) = X0, where X(t) ∈ Rm are the state
variables of interest; f : Rm 7→ Rm relates the states to their time derivatives; X0 ∈ Rm is the
initial condition at t0. If f is uniformly Lipschitz continuous in X and continuous in t, the Cauchy-
Lipschitz theorem provides the existence and uniqueness of the solution.

In practice, we observe the states X(t) at discrete points in time, starting at t0 = 0. For a fixed
timestep τ ∈ R+, and ∀n ∈ N, tn = nτ denotes the n-th time stamp, and Xn = X(t = tn) the
corresponding state values. Now we will have:

Xn+1 := F (Xn) = Xn +

∫ tn+1

tn

f(X(t))dt; Xn = F−1(Xn+1). (8)

This equation also works as the starting point of many numerical ODE solvers.
For the time-one map in (8), the inverse function theorem provides a sufficient condition for

its invertibility: If F is a continuously differentiable function from an open set B of Rm into Rm,
and the Jacobian determinant of F at p is nonzero, then F is invertible near p. Thus, if we define
the noninvertibility locus as the set J0(F) = {p ∈ B : det(JF (p)) = 0}; then the condition
J0(F) = ∅ guarantees global invertibility of F (notice that this condition is not necessary: the scalar
function F (X) = X3 provides a counterexample). If F is continuous over B but not everywhere
differentiable, then the definition of J0 set should be altered to:

J0(F) = {p ∈ B : ∀N0(p),∃ p1, p2 ∈ N0(p), p1 6= p2, s.t. det(JF (p1)) det(JF (p2)) ≤ 0} . (9)

Numerical Integrators are (often) Noninvertible Numerically approximating the integral in (8)
can introduce noninvertibility in the transformation. A simple one-dimensional illustrative ODE
example is f(X) = X2 + bX + c, X(t = 0) = X0, where b, c ∈ R are two fixed parameters.
Although the analytical solution (8) is invertible, a forward-Euler discretization with step τ gives

Xn+1 = F (Xn) = Xn + τ(X2
n + bXn + c)⇒ τX2

n + (τb+ 1)Xn + (τc−Xn+1) = 0. (10)

Given a fixed Xn+1, Equation (10) is quadratic w.r.t. Xn; this determines the local invertibility of
F based on ∆ = (τb+ 1)2− 4τ(τc−Xn+1): no real root if ∆ < 0; one real root with multiplicity
2 if ∆ = 0; and two distinct real roots if ∆ > 0. In practice, one uses small timesteps τ � 1
for accuracy/stability, leading to the last case: there will always exist a solution Xn close to Xn+1,
and a second preimage, far away from the region of our interest, and arguably physically irrelevant
(to Xn → −∞ as τ → 0). On the other hand, as τ grows, the two roots move closer to each
other, J0(F) moves close to the regime of our simulations, and noninvertibility can have visible
implications on the predicted dynamics. Thus, choosing a small timestep in explicit integrators
guarantees desirable accuracy, and simultaneously practically mitigates noninvertibility pathologies
in the dynamics.

4. Numerical Experiments

We now present experiments with ReLU multi-layer perceptrons (MLPs) in regression problems,
and also transformations between two ReLU networks. To solve the Mixed-integer programs we

6

CERTIFIED INVERTIBILITY IN NEURAL NETWORKS VIA MIXED-INTEGER PROGRAMMING

use Gurobi Optimization, LLC (2023). To find the pre-activation bounds, we use interval bound
propagation.

1D Example We use a 1-10-10-1 randomly generated fully-connected neural network f with
ReLU activations. We find the largest interval around the points x = −1.8,−1,−0.3 on which f is
invertible (Problem 1), and the largest interval around the point x = −1 on which any other points
inside the region will not map to f(−1) (Problem 2). The results are plotted in the inset of Figure
2, where intervals in red and blue respectively represent the optimal solutions for the two problems.
The computed largest certified radii are 0.157, 0.322, 0.214, and 0.553.

Figure 2: Solutions to Problem 1 (left, red) and Problem 2 (right, blue) for the MLP corresponding to a
randomly-generated ReLU network (see text).

2D Example: the Brusselator Model The Brusselator (Tyson (1973)) is a two-variable (x, y)
ODE system depending on parameters (a, b), that describes oscillatory dynamics in a theoretical
chemical reaction scheme. We use its forward-Euler discretization

xn+1 = xn + τ(a+ x2nyn − (b+ 1)xn), yn+1 = yn + τ(bxn − x2nyn). (11)

Rearranging the equation of yn+1 to solve for yn in (11) and substituting it into the one of xn+1 we
obtain:

τ(1− τ)x3n + τ(τa− xn+1 − yn+1)x
2
n + (τb+ τ − 1)xn + (xn+1 − τa) = 0. (12)

Equation (12) is a cubic for xn given (xn+1, yn+1) when τ 6= 1. By varying the parameters a, b and
τ , we see the past states (xn, yn)T (also called “inverses” or “preimages”) may be multi-valued, so
that this discrete-time system is, in general, noninvertible. We fix a = 1 and consider how inverses
will be changing (a) with b for fixed τ = 0.15; and (b) with τ , for fixed b = 2.

In general, the neural network we are interested in is a mapping from 3D to 2D: (xn+1, yn+1)
T ≈

N (xn, yn; p)T , where p ∈ R is the parameter. The network dynamics will be parameter-dependent
if we set p ≡ b, or timestep-dependent if p ≡ τ . Considering the first layer of a MLP:

W (0)

xnyn
p

+ b(0) = (W (0)(e1 + e2))

[
xn
yn

]
+ (pW (0)e3 + b(0)), (13)

where e1,2,3 ∈ R3 are indicator vectors. For fixed p our network N can be thought of as an MLP
mapping from R2 to R2, by slightly modifying the weights and biases in the first linear layer. Here,
we trained two separate MLPs, with b and τ dependence respectively.

7

CERTIFIED INVERTIBILITY IN NEURAL NETWORKS VIA MIXED-INTEGER PROGRAMMING

Figure 3: Attractors and their multiple inverses for several parameter values of the Brusselator model. Notice
the relation of the J0 curves and the “extra” preimages. When the attractor starts interacting with the J0 and
these extra preimages, the dynamic behavior degenerates quantitatively and qualitatively.

Figure 4: Left: illustration of our solution to Prob-
lems 1 and 2 for the Brusselator network. For a random
reference point on the attractor, we show the neigh-
borhoods found by our algorithms. They clearly find
the closest point on the J0 curve / the closest “ex-
tra preimage” of the point of interest. Right: plots
of J0 curves at different τ , for both the Euler inte-
grator (Top) and our Brusselator ReLU network (Bot-
tom). Small timesteps lead to progressively remote J0
curves. Notice also the piecewise linear nature of the
J0 curve for the ReLU network; its accurate computa-
tion is an interesting problem by itself.

Parameter-Dependent Inverses We start with
a brief discussion of the dynamics and nonin-
vertibility in the ground-truth system (see Fig-
ure 3). Consider an initial state located on the
Brusselator attracting invariant circle (IC, in or-
ange); we know this has at least one preimage
also on this IC. In Figure 3 we see that every
point on the IC has three preimages: one still
on the IC, and two additional inverses (in green
and purple); after one iteration, all three loops
map to the orange one, and then remain forward
invariant. The phase space folds along the two
branches of the J0 curve (shown in red). For
lower values of b (left), these three closed loops
do not intersect each other. As b increases the
(orange) attractor will become tangent to (cen-
ter), and subsequently intersect J0 (right), lead-
ing to mixing of the preimages. At this point the
predicted dynamics become nonphysical (be-
yond just inaccurate).

After convergence of training, we employ
our algorithm to obtain noninvertibility certifi-
cates for the resulting MLP, and plot results of
b = 2.1 in the left subfigure of Figure 4. In Fig-
ure 4, we arbitrarily select one representative point, marked by a triangle (4), on the attractor (the
orange invariant circle); a nearby inverse also on the attractor, the primal inverse, is marked by a
cross (+). Our algorithm will produce two regions for this point, one for each of our problems
(squares of constant L∞ distance in 2D). As a sanity check, we also compute the J0 sets (the red
point), as well as a few additional inverses, beyond the primal ones with the help of numerical root
solver and automatic differentiation (Baydin et al. (2017)). Clearly, the smaller square neighbor-
hood “just hits” the J0 curve, while the larger one extends to the closest nonprimal inverse of the
attractor.

Timestep-Dependent Inverses In the right two subfigures of Figure 4, we explore the effect of
varying the time horizon τ . We compare a single Euler step of the ground truth ODE to the MLP

8

CERTIFIED INVERTIBILITY IN NEURAL NETWORKS VIA MIXED-INTEGER PROGRAMMING

approximating the same flowmap, and find that, in both, smaller time horizons lead to larger regions
of invertibility.

2 0 2
x1

3

2

1

0

1

2

3
x 2

ode solution
NN A (original)
NN B (pruned)

5 0 5
x1

4

2

0

2

4

x 2

rAB = 3.0820 (white), rBA = 3.6484 (black)

det(JA) < 0, det(JB) < 0

det(JA) < 0, det(JB) > 0

det(JA) > 0, det(JB) < 0

det(JA) > 0, det(JB) > 0

Figure 5: Left: Trajectories of the ODE solution for the Van der Pol system (red), and their discrete-time
neural network approximations (blue and green). All three trajectories begin at the same initial state; the ODE
solution is smooth (continuous-time), the other two use straight lines between consecutive states (discrete-
time). However, it is clear all three systems have nearby attractors, indicating good performance of the
network and its pruned version. Right: visualization of MILP computation results, along with the sign of
the Jacobian values of the networks on the grid points of the input domain. Here, the center of the region
is marked red, while the white and black boundaries quantify the region of mappability between outputs of
network A and network B.

Network Transformation Example: Learning the Van der Pol Equation Here, to test our
algorithm on network transformation problem 3, we trained two networks on the same regression
task. Our data comes from the 2D Van der Pol equation dx1/dt = x2, dx2/dt = µ(1−x21)x2−x1,
where the input and output are the initial and final states of 1000 solution trajectories with time
duration 0.2 for µ = 1, when a stable limit cycle exists. The initial states are uniformly sampled
in the region [−3, 3] × [−3, 3]. The neural network A used to learn the time series is a 2-32-32-2
MLP, while the neural network B is a sparse version of A, where half of the weight entries are
pruned (set to zero) based on Zhu and Gupta (2018). To visualize the performances of the networks,
two trajectories generated by respectively iterating the network functions for fixed times from a
given initial state have been plotted in the left subplot of Figure 5. The ODE solution trajectory
starting at the same initial state with same time duration is also shown. We see that both network
functions A and B exhibit long-term oscillations, though the shapes of the attractors have small
visual differences from the true ODE solution (the red curve).

These two network functions were then used to test the correctness of the algorithm for the
problem 3. Here we chose the center points xc = (0, 0)T , computed and plotted the mappable
regions for two subcases (see right subfigure of Figure 5): the output of network B is a function of
the output of networkA (the square with white bounds centered at the red point, radius 3.0820), and
vice versa (the square with black bounds centered at the red point, radius 3.6484). For validation
we also computed the Jacobian values of network A and network B on every grid point of the input
domain, and shown that the white square touches the J0 curve of network A, while the black square
touches the J0 curve of network B. Inside the black square the Jacobian of network B remains

9

CERTIFIED INVERTIBILITY IN NEURAL NETWORKS VIA MIXED-INTEGER PROGRAMMING

positive, so that network B is invertible (i.e. the existence of the mapping from fB(x) to x, or
equivalently, f−1B (x)); therefore we can find the mapping from fB(x) to fA(x) by composing the
mapping from fB(x) to x and the mapping from x to fA(x) (the function fA(x) itself). The size of
the white square can be similarly rationalized, validating our computation.

Sparsity 40 % 50 % 60 %

Network B B1 B2 B3 B4 B5 B6 B7 B8 B9

rAB 3.0820 3.0820 3.0820 3.0820 3.0820 3.0820 3.0820 3.0820 3.0820

rBA 3.4609 3.1055 3.8555 3.6484 2.6523 3.8203 3.6328 3.9727 4.5547

Table 1: The radii of the mappable regions between the original network A and its pruned versions B.

As a sanity check, we consructed eight more pruned networks; two of them have 50% sparsity
(networks B5 and B6), three have 40% sparsity (networks B1, B2 and B3) and the others have 60%
sparsity (networks B7, B8 and B9). Above, we discussed network B4. For each pruned network,
we computed the radii of the regions of interest (aka rAB and rBA). The results are listed in Table
1. All pruned networks {Bi} share the same radii rAB , consistent with the invertibility of A itself.
Since rA = 3.0820, A is invertible in the ball we computed, and the existence of the mapping
yA 7→ yB by composition of yA 7→ x and x 7→ yB . In our work the input and output dimensions
are the same (e.g. m = n in Problem 3); this condition is not restrictive, and our algorithm can be
possibly extended to classification problems, where in general m� n.

5. Conclusions

In this paper, we addressed the issue of noninvertibility that arises in discrete-time dynamical sys-
tems and neural networks performing time-series related tasks. We highlighted the potential patho-
logical consequences of such noninvertibility, which extend beyond prediction inaccuracies and af-
fect the predicted dynamics of the networks. Moreover, we extended our analysis to transformations
between different neural networks and formulated three problems that provide a quantifiable assess-
ment of local invertibility for any arbitrarily selected input. For functions such as MLPs with ReLU
activations, we formulated these problems as mixed-integer programs and performed experiments
on regression tasks; we also extended our algorithm to Resnets.

In future work, we aim to develop structure-exploiting methods that can globally solve these
mixed-integer programs more efficiently for larger networks. Additionally, given the linearity of
convolution and average pooling operations and the piecewise linearity of max pooling, we plan to
adapt our algorithm to convolutional neural networks like AlexNet (Krizhevsky et al. (2017)) and
VGG (Simonyan and Zisserman (2015)). Our successful application of the algorithm to ResNet
architectures (He et al. (2016)) holds promise for applicability to recursive architectures (Lu et al.
(2018); E (2017)) such as fractal networks (Larsson et al. (2017)), poly-inception networks (Zhang
et al. (2016)), and RevNet (Gomez et al. (2017)). Furthermore, we are working on making the algo-
rithm practical for continuous differentiable activations such as tanh or Swish (Ramachandran et al.
(2017)), and other piecewise activations such as Gaussian Error Linear Units (GELUs, Hendrycks
and Gimpel (2016)). Finally, we are particularly interested in exploring the case where the input
and output domains have different dimensions, such as in classifiers.

10

CERTIFIED INVERTIBILITY IN NEURAL NETWORKS VIA MIXED-INTEGER PROGRAMMING

References

Lynton Ardizzone, Jakob Kruse, Sebastian Wirkert, Daniel Rahner, Eric W Pellegrini, Ralf S
Klessen, Lena Maier-Hein, Carsten Rother, and Ullrich Köthe. Analyzing inverse problems with
invertible neural networks. arXiv preprint arXiv:1808.04730, 2018.

Lynton Ardizzone, Jakob Kruse, Sebastian J. Wirkert, D. Rahner, Eric W. Pellegrini, R. Klessen,
L. Maier-Hein, C. Rother, and U. Köthe. Analyzing inverse problems with invertible neural
networks. ArXiv, abs/1808.04730, 2019.

Atılım Günes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul, and Jeffrey Mark Siskind.
Automatic differentiation in machine learning: A survey. J. Mach. Learn. Res., 18(1):5595–5637,
January 2017. ISSN 1532-4435.

J. E. Beasley, editor. Advances in Linear and Integer Programming. Oxford University Press, Inc.,
USA, 1996. ISBN 0198538561.

Jens Behrmann, Sören Dittmer, Pascal Fernsel, and P. Maass. Analysis of invariance and robustness
via invertibility of relu-networks. ArXiv, abs/1806.09730, 2018.

Jens Behrmann, Will Grathwohl, Ricky T. Q. Chen, David Duvenaud, and Joern-Henrik Jacob-
sen. Invertible residual networks. In Kamalika Chaudhuri and Ruslan Salakhutdinov, edi-
tors, Proceedings of the 36th International Conference on Machine Learning, volume 97 of
Proceedings of Machine Learning Research, pages 573–582. PMLR, 09–15 Jun 2019. URL
http://proceedings.mlr.press/v97/behrmann19a.html.

Jens Behrmann, Paul Vicol, Kuan-Chieh Wang, Roger Grosse, and Joern-Henrik Jacobsen. Under-
standing and mitigating exploding inverses in invertible neural networks. In Arindam Banerjee
and Kenji Fukumizu, editors, Proceedings of The 24th International Conference on Artificial
Intelligence and Statistics, volume 130 of Proceedings of Machine Learning Research, pages
1792–1800. PMLR, 13–15 Apr 2021. URL http://proceedings.mlr.press/v130/
behrmann21a.html.

Bo Chang, Lili Meng, Eldad Haber, Lars Ruthotto, David Begert, and Elliot Holtham. Reversible
architectures for arbitrarily deep residual neural networks. In Sheila A. McIlraith and Kil-
ian Q. Weinberger, editors, Proceedings of the Thirty-Second AAAI Conference on Artificial In-
telligence, (AAAI-18), the 30th innovative Applications of Artificial Intelligence (IAAI-18), and
the 8th AAAI Symposium on Educational Advances in Artificial Intelligence (EAAI-18), New
Orleans, Louisiana, USA, February 2-7, 2018, pages 2811–2818. AAAI Press, 2018. URL
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16517.

Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. Neural ordinary dif-
ferential equations. In Proceedings of the 32nd International Conference on Neural Information
Processing Systems, NIPS’18, page 6572–6583, Red Hook, NY, USA, 2018. Curran Associates
Inc.

. Full text is available at: https://arxiv.org/abs/2301.11783.

11

http://proceedings.mlr.press/v97/behrmann19a.html
http://proceedings.mlr.press/v130/behrmann21a.html
http://proceedings.mlr.press/v130/behrmann21a.html
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16517
https://arxiv.org/abs/2301.11783

CERTIFIED INVERTIBILITY IN NEURAL NETWORKS VIA MIXED-INTEGER PROGRAMMING

Ricky TQ Chen, Jens Behrmann, David Duvenaud, and Jörn-Henrik Jacobsen. Residual flows for
invertible generative modeling. In Neural Information Processing Systems, 2019. URL https:
//arxiv.org/abs/1906.02735.

Laurent Dinh, David Krueger, and Yoshua Bengio. NICE: non-linear independent components es-
timation. In Yoshua Bengio and Yann LeCun, editors, 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Workshop Track Proceedings,
2015. URL http://arxiv.org/abs/1410.8516.

Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using real NVP. In 5th
International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26,
2017, Conference Track Proceedings. OpenReview.net, 2017. URL https://openreview.
net/forum?id=HkpbnH9lx.

Jeff Donahue and Karen Simonyan. Large scale adversarial representation learning. Advances in
neural information processing systems, 32, 2019.

Weinan E. A proposal on machine learning via dynamical systems. Communications in Mathemat-
ics and Statistics, 5(1):1–11, 3 2017. doi: 10.1007/s40304-017-0103-z. Dedicated to Professor
Chi-Wang Shu on the occasion of his 60th birthday.

N. Gicquel, J.S. Anderson, and I.G. Kevrekidis. Noninvertibility and resonance in discrete-time
neural networks for time-series processing. Physics Letters A, 238(1):8–18, 1998. ISSN
0375-9601. doi: https://doi.org/10.1016/S0375-9601(97)00753-6. URL https://www.
sciencedirect.com/science/article/pii/S0375960197007536.

Aidan N Gomez, Mengye Ren, Raquel Urtasun, and Roger B Grosse. The reversible residual net-
work: Backpropagation without storing activations. Advances in neural information processing
systems, 30, 2017.

Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2023. URL https://www.
gurobi.com.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages
770–778, 2016. doi: 10.1109/CVPR.2016.90.

Matthias Hein and Maksym Andriushchenko. Formal guarantees on the robustness of a classifier
against adversarial manipulation. In Advances in Neural Information Processing Systems, pages
2266–2276, 2017.

Dan Hendrycks and Kevin Gimpel. Bridging nonlinearities and stochastic regularizers with gaussian
error linear units. CoRR, abs/1606.08415, 2016. URL http://arxiv.org/abs/1606.
08415.

Jörn-Henrik Jacobsen, Jens Behrmann, Richard Zemel, and Matthias Bethge. Excessive invariance
causes adversarial vulnerability. arXiv preprint arXiv:1811.00401, 2018.

H. Jaeger. Controlling recurrent neural networks by conceptors. ArXiv, abs/1403.3369, 2014.

12

https://arxiv.org/abs/1906.02735
https://arxiv.org/abs/1906.02735
http://arxiv.org/abs/1410.8516
https://openreview.net/forum?id=HkpbnH9lx
https://openreview.net/forum?id=HkpbnH9lx
https://www.sciencedirect.com/science/article/pii/S0375960197007536
https://www.sciencedirect.com/science/article/pii/S0375960197007536
https://www.gurobi.com
https://www.gurobi.com
http://arxiv.org/abs/1606.08415
http://arxiv.org/abs/1606.08415

CERTIFIED INVERTIBILITY IN NEURAL NETWORKS VIA MIXED-INTEGER PROGRAMMING

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep con-
volutional neural networks. Commun. ACM, 60(6):84–90, May 2017. ISSN 0001-0782. doi:
10.1145/3065386. URL https://doi.org/10.1145/3065386.

A. H. Land and A. G. Doig. An automatic method of solving discrete programming prob-
lems. Econometrica, 28(3):497–520, 1960. ISSN 00129682, 14680262. URL http://www.
jstor.org/stable/1910129.

Gustav Larsson, Michael Maire, and Gregory Shakhnarovich. Fractalnet: Ultra-deep neural net-
works without residuals. In ICLR, 2017.

Yiping Lu, Aoxiao Zhong, Quanzheng Li, and Bin Dong. Beyond finite layer neural networks:
Bridging deep architectures and numerical differential equations. In Jennifer Dy and Andreas
Krause, editors, Proceedings of the 35th International Conference on Machine Learning, vol-
ume 80 of Proceedings of Machine Learning Research, pages 3282–3291, Stockholm, Stock-
holm Sweden, 10–15 Jul 2018. PMLR. URL http://proceedings.mlr.press/v80/
lu18d.html.

Matthew MacKay, Paul Vicol, Jimmy Ba, and Roger Grosse. Reversible recurrent neural networks.
In Proceedings of the 32nd International Conference on Neural Information Processing Systems,
NIPS’18, page 9043–9054, Red Hook, NY, USA, 2018. Curran Associates Inc.

Stefan T. Radev, Ulf K. Mertens, Andreas Voss, Lynton Ardizzone, and Ullrich Köthe. Bayesflow:
Learning complex stochastic models with invertible neural networks. IEEE Transactions on Neu-
ral Networks and Learning Systems, pages 1–15, 2020. doi: 10.1109/TNNLS.2020.3042395.

Prajit Ramachandran, Barret Zoph, and Quoc V. Le. Swish: a self-gated activation function. CoRR,
2017. URL http://arxiv.org/abs/1710.05941v1.

R. Rico-Martinez, I.G. Kevrekidis, and R.A. Adomaitis. Noninvertibility in neural networks. In
IEEE International Conference on Neural Networks, pages 382–386 vol.1, 1993. doi: 10.1109/
ICNN.1993.298587.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale im-
age recognition. In Yoshua Bengio and Yann LeCun, editors, 3rd International Conference on
Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings, 2015. URL http://arxiv.org/abs/1409.1556.

Yang Song, Chenlin Meng, and Stefano Ermon. Mintnet: Building invertible neural networks with
masked convolutions. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett, editors, Advances in Neural Information Processing Systems, volume 32. Curran As-
sociates, Inc., 2019. URL https://proceedings.neurips.cc/paper/2019/file/
70a32110fff0f26d301e58ebbca9cb9f-Paper.pdf.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
and Rob Fergus. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199, 2013.

Takeshi Teshima, Isao Ishikawa, Koichi Tojo, Kenta Oono, Masahiro Ikeda, and Masashi Sugiyama.
Coupling-based invertible neural networks are universal diffeomorphism approximators, 2020.

13

https://doi.org/10.1145/3065386
http://www.jstor.org/stable/1910129
http://www.jstor.org/stable/1910129
http://proceedings.mlr.press/v80/lu18d.html
http://proceedings.mlr.press/v80/lu18d.html
http://arxiv.org/abs/1710.05941v1
http://arxiv.org/abs/1409.1556
https://proceedings.neurips.cc/paper/2019/file/70a32110fff0f26d301e58ebbca9cb9f-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/70a32110fff0f26d301e58ebbca9cb9f-Paper.pdf

CERTIFIED INVERTIBILITY IN NEURAL NETWORKS VIA MIXED-INTEGER PROGRAMMING

Vincent Tjeng, Kai Xiao, and Russ Tedrake. Evaluating robustness of neural networks with mixed
integer programming. arXiv preprint arXiv:1711.07356, 2017.

Florian Tramèr, Jens Behrmann, Nicholas Carlini, Nicolas Papernot, and Jörn-Henrik Jacobsen.
Fundamental tradeoffs between invariance and sensitivity to adversarial perturbations. In Inter-
national Conference on Machine Learning, pages 9561–9571. PMLR, 2020.

John J. Tyson. Some further studies of nonlinear oscillations in chemical systems. The Journal
of Chemical Physics, 58(9):3919–3930, 1973. doi: 10.1063/1.1679748. URL https://doi.
org/10.1063/1.1679748.

Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang, and Suman Jana. Efficient formal safety
analysis of neural networks. In Advances in Neural Information Processing Systems, pages 6367–
6377, 2018.

Tsui-Wei Weng, Huan Zhang, Hongge Chen, Zhao Song, Cho-Jui Hsieh, Duane Boning, Inderjit S
Dhillon, and Luca Daniel. Towards fast computation of certified robustness for relu networks.
arXiv preprint arXiv:1804.09699, 2018.

Eric Wong and Zico Kolter. Provable defenses against adversarial examples via the convex outer
adversarial polytope. In International Conference on Machine Learning, pages 5286–5295, 2018.

Huan Zhang, Tsui-Wei Weng, Pin-Yu Chen, Cho-Jui Hsieh, and Luca Daniel. Efficient neural
network robustness certification with general activation functions. In Advances in Neural Infor-
mation Processing Systems, pages 4939–4948, 2018.

Xingcheng Zhang, Zhizhong Li, Chen Change Loy, and Dahua Lin. Polynet: A pursuit of structural
diversity in very deep networks. arXiv preprint arXiv:1611.05725, 2016.

Michael Zhu and Suyog Gupta. To prune, or not to prune: Exploring the efficacy of pruning for
model compression. In 6th International Conference on Learning Representations, ICLR 2018,
Vancouver, BC, Canada, April 30 - May 3, 2018, Workshop Track Proceedings. OpenReview.net,
2018. URL https://openreview.net/forum?id=Sy1iIDkPM.

14

https://doi.org/10.1063/1.1679748
https://doi.org/10.1063/1.1679748
https://openreview.net/forum?id=Sy1iIDkPM

	Introduction
	Invertibility Certification of Neural Networks and of Transformations between them
	Invertibility Certification of ReLU Networks via Mixed-Integer Programming
	Invertibility Certification of Transformations between Neural Networks

	Local Invertibility of Dynamical Systems and Neural Networks
	Numerical Experiments
	Conclusions

