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Tamer Başar BASAR1@ILLINOIS.EDU
Coordinated Science Laboratory, University of Illinois Urbana-Champaign, Urbana, IL 61801.

Zhong-Ping Jiang ZJIANG@NYU.EDU

Department of Electrical and Computer Engineering, New York University, New York, NY 11201.

Editors: N. Matni, M. Morari, G. J. Pappas

Abstract
In this paper, we propose a robust reinforcement learning method for a class of linear discrete-time
systems to handle model mismatches that may be induced by sim-to-real gap. Under the formula-
tion of risk-sensitive linear quadratic Gaussian control, a dual-loop policy optimization algorithm is
proposed to iteratively approximate the robust and optimal controller. The convergence and robust-
ness of the dual-loop policy optimization algorithm are rigorously analyzed. It is shown that the
dual-loop policy optimization algorithm uniformly converges to the optimal solution. In addition,
by invoking the concept of small-disturbance input-to-state stability, it is guaranteed that the dual-
loop policy optimization algorithm still converges to a neighborhood of the optimal solution when
the algorithm is subject to a sufficiently small disturbance at each step. When the system matrices
are unknown, a learning-based off-policy policy optimization algorithm is proposed for the same
class of linear systems with additive Gaussian noise. The numerical simulation is implemented to
demonstrate the efficacy of the proposed algorithm.
Keywords: Robust reinforcement learning, policy optimization (PO), input-to-state stability (ISS).

1. Introduction

By interacting continuously with an unknown environment, reinforcement learning (RL) is a branch
of machine learning to iteratively learn optimal decisions from data without knowing the system
dynamics. Policy optimization (PO) is a fundamental technique for RL algorithm development as
introduced in Sutton and Barto (2018). The key strategy of PO is to parameterize the policy and then
iteratively update the policy parameters along the gradient direction of the specified performance
index. When the system model is unknown, the gradient of the performance index is approximated
by learning-based methods through sampling and experimentation. As a result, accurate policy
gradient is hard to compute in reality due to measurement noise, immeasurable disturbance of the
system, and function approximation errors. Therefore, convergence and robustness of PO are two
important properties for practical implementation of RL algorithms.

The linear quadratic regulator (LQR) problem provides a tractable and insightful benchmark
for the theoretical study of RL algorithms. For the PO of LQR, the control policy is parameterized
as a linear function of the state, and the performance index is a quadratic function of the state as
well as of the control. Since the performance index is differentiable with respect to the policy
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parameters, several policy gradient descent algorithms, including vanilla gradient descent, natural
policy gradient descent, and Gauss-Newton gradient descent algorithms, have been developed in
Fazel et al. (2018); Bu et al. (2020); Gravell et al. (2021); Mohammadi et al. (2022); Li et al.
(2021); Hu et al. (2022) and Cassel and Koren (2021). It has been shown that the control policy
generated at each iteration of PO is stabilizing, and it globally converges to the optimal control
policy. The developed PO algorithms for LQR pave a natural pathway to model-free analysis, where
the RL techniques come into play. For example, based on zeroth-order methods, the gradient of the
performance index can be approximated in the absence of precise model knowledge, and several
model-free PO algorithms have been proposed in Fazel et al. (2018); Mohammadi et al. (2022) and
Li et al. (2021). Since the gradient of the performance index cannot be estimated accurately, it is
important to study the robustness of the PO algorithms subject to errors at each step. In Pang and
Jiang (2021); Pang et al. (2022a), by viewing the PO algorithm as a discrete-time nonlinear system,
and invoking the concept of input-to-state stability (ISS), the authors have shown that the control
policies generated by Kleinman’s policy iteration in Kleinman (1968); Hewer (1971) (same as the
Gauss-Newton algorithm with a step size of 1

2 ) can still converge to a neighborhood of the optimal
control policy, even in the presence of sufficiently small disturbance. A similar robustness property
was demonstrated in Sontag (2022) for the steepest gradient descent algorithm.

Since the robustness of the closed-loop system is ignored in the aforementioned PO algorithms
for LQR, the control policy obtained may fail to stabilize the system in the presence of model
mismatches and disturbances, that may be caused by sim-to-real gap and parameter variations of
the system, e.g. Cui et al. (2021b). Robust and optimal control theory, particularly the mixed
H2/H∞ control, is a key strategy to handle model mismatches and disturbances Zhou et al. (1996);
Doyle et al. (1989); Mustafa and Bernstein (1991); Apkarian et al. (2008). In Zhang et al. (2021a),
utilizing the concept of implicit regularization, the authors have proposed PO algorithms for the
mixed H2/H∞ control such that the stability and constraint on the H∞-norm of the closed-loop
system are maintained at each iteration. By the fundamental connection between mixed H2/H∞
control, the risk-sensitive linear-quadratic-Gaussian optimal control (with exponentiated loss), and
linear-quadratic zero-sum dynamic games (LQ ZSDGs), the PO algorithms can be transformed into
the dual-loop PO algorithms for LQ ZSDGs in Zhang et al. (2020, 2021a,b); Bu et al. (2019). The
outer loop is to generate a protagonist under the worst-case adversary while the inner loop is to
generate the worst-case adversary. However, issues related to uniform convergence and robustness
of the dual-loop algorithm are to be explored.

In this paper, we propose a dual-loop PO algorithm for solving the risk-sensitive linear quadratic
Gaussian control to handle model mismatches and disturbances. It is demonstrated that the dual-
loop PO algorithm uniformly converges to the optimal solution with robustness guarantee. Specifi-
cally, by showing the linear convergence of the inner-loop iteration and computing the upperbound
of the convergence rate, we demonstrate uniform convergence of the dual-loop algorithm. Further-
more, by invoking the concept of ISS Sontag (2008) and its latest variant “small-disturbance ISS”
Pang and Jiang (2021), it is demonstrated that the PO algorithm still converges to a small neigh-
borhood of the optimal solution, when the noise is sufficiently small. Based on these results, a
learning-based off-policy PO algorithm is proposed when the system is disturbed by an immeasur-
able Gaussian noise and the system matrices are unknown. Several numerical examples are given
to validate the efficacy of our theoretical results.

To sum up, our main contributions are three-fold: 1) the convergence, especially uniform con-
vergence, of the dual-loop PO algorithm has been theoretically analyzed; 2) under the concept of the
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small-disturbance ISS, the robustness of the outer and inner loops has been theoretically analyzed;
3) a novel learning-based off-policy PO algorithm has been proposed.

Notations: For a matrix X ∈ Rm×n, vec(X) := [xT1 , · · · , xTn ]T , where xi is the ith column
of X . For a real symmetric matrix P , vecs(P ) := [p1,1, 2p1,2, · · · , 2p1,n, p2,2, 2p2,3, · · · , pn,n]T ,
where pi,j is the element at the ith row and jth column. [X]i,j denotes the submatrix of the matrix
X that is comprised of the rows between the ith and jth rows of X . For a vector a ∈ Rn, vecv(a) :=
[a21, a1a2, · · · , a1an, a22, a2a3, · · · , a2n]T . Tr(·) denotes the trace of a matrix.

2. Preliminaries

In this section, we begin with the formulation of linear exponential quadratic Guassian (LEQG)
control problem, followed by the robustness analysis of the closed-loop system.

2.1. Linear Exponential Quadratic Guassian Control

Consider the discrete-time linear time-invariant system

xt+1 = Axt +But +Dwt, yt = Cxt + Eut, (1)

where xt ∈ Rn is the state of the system, ut ∈ Rm is the control input, wt ∈ Rq ∼ N (0, Iq)
is independent and identically distributed Gaussian noise, and yt ∈ Rp is the controlled output.
A, B, C, D, E are constant matrices with compatible dimensions. The LEQG control aims to find
an input sequence u := {ut = µt(xt)}∞t=0, where µt : Rn → Rm is an appropriately defined mea-
surable control policy, such that the following risk-averse exponential quadratic cost is minimized

JLEQG(x0, u) := lim
τ→∞

2γ2

τ
log

[
E exp

(
1

2γ2

τ∑
t=0

yTt yt

)]
, (2)

where γ is a positive constant characterizing the magnitude of the risk sensitivity.

Assumption 1 (A,B) is stabilizable, CTC = Q ≻ 0, and γ > γ∞, where γ∞ > 0 is the minimal
value of γ such that for all γ > γ∞, there exists a control under which (2) is finite.

Assumption 2 The matrices in (1) satisfy ETE = R ≻ 0, and CTE = 0.

Under Assumptions 1 and 2, as investigated by Jacobson (1973); Başar and Bernhard (1995),
the optimal controller of the LEQG problem is u∗t = −K∗xt, where

K∗ = (R+BTU∗B)−1BTU∗A. (3)

with P ∗ = (P ∗)T the unique positive definite solution to the generalized algebraic Riccati equation
(GARE)

(A−BK∗)TU∗(A−BK∗)− P ∗ +Q+ (K∗)TRK∗ = 0, (4a)

U∗ = P ∗ + P ∗D(γ2Iq −DTP ∗D)−1DTP ∗. (4b)

2.2. Robustness Analysis
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Figure 1: Robust control design with model mis-
match ∆.

By considering w as a disturbance input in
(1) and taking any stabilizing feedback control
ut = −Kxt, the discrete-time transfer function
from w to y becomes

T (K) := (C − EK)[zIn − (A−BK)]−1D.
(5)

where z ∈ C is the z-transform variable. As
shown in Fig. 1, ∆ denotes the model mis-
match induced by the sim-to-real gap, and its
H∞-norm satisfies ∥∆∥H∞ ≤ 1

γ . Thanks to the
small-gain theorem Zhou et al. (1996); Jiang
and Liu (2018); Zames (1966), in the pres-
ence of model mismatch, the system is stable if
∥T (K)∥H∞ < γ. Consequently, the controller
ut = −Kxt is robust to the model mismatch ∆ if K lies within the admissible setW defined as

W := {K ∈ Rm×n|(A−BK) is stable, ∥T (K)∥H∞ < γ}. (6)

As investigated in Theorem 3.8 of Başar and Bernhard (1995), the LEQG control in (3) satisfies
K∗ ∈ W , and therefore, it is optimal with respect to (2) and robust to the model mismatch. Given
the aforementioned preliminaries, in this paper, we investigate the following learning-based PO
problem.

Problem 1 Given an initial admissible controller K1 ∈ W , design a learning-based PO algorithm
such that near-optimal control gains, i.e. approximate values of K∗, can be learned from input-state
data collected along the trajectories of system (1).

We will first introduce the model-based PO algorithm whose convergence and robustness prop-
erties are instrumental for the development of our learning-based algorithm.

3. Model-Based Policy Optimization

In this section, a model-based dual-loop PO algorithm is proposed to solve the LEQG problem (2).

3.1. Introduction of the Outer Loop

The outer-loop iteration is developed based on the results of equation (3.5) in Zhang et al. (2019),
and it aims to update the control policy ut = −Kixt under the worst-case disturbance. Let i denote
the iteration index for the outer loop and introduce the following variables:

Ai := A−BKi, Qi := Q+KT
i RKi. (7)

Then, the outer-loop iteration is

AT
i UiAi − Pi +Qi = 0, (8a)

Ki+1 = (R+BTUiB)−1BTUiA, (8b)
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where Ui is

Ui := Pi + PiD(γ2Iq −DTPiD)−1DTPi. (9)

The following theorem now says that Pi is monotonically decreasing (Pi+1 ⪰ Pi) and converges to
P ∗ with a linear convergence rate. The proof of the theorem can be found in Appendix B of Cui
and Jiang (2022).

Theorem 1 Given K1 ∈ W , for any i ≥ 1, there exists α(K1) ∈ [0, 1), such that

Tr(Pi+1 − P ∗) ≤ α(K1) Tr(Pi − P ∗). (10)

Since ∥Pi − P ∗∥F ≤ Tr(Pi − P ∗) ≤
√
n∥Pi − P ∗∥F , it follows from Theorem 1 that ∥Pi+1 −

P ∗∥F ≤ αi(K1)
√
n∥P1 − P ∗∥F .

3.2. Introduction of the Inner Loop

Let j denote the iteration index of the inner loop. The following variable is introduced to simplify
the notation

Ai,j := A−BKi +DLi,j . (11)

Given the control gain of the minimizer, Ki, the inner loop iteratively finds the optimal control gain
for the maximizer w, that is

AT
i,jPi,jAi,j − Pi,j +Qi − γ2LT

i,jLi,j = 0, (12a)

Li,j+1 = (γ2Iq −DTPi,jD)−1DTPi,jAi. (12b)

The inner-loop PO possesses the monotonicity property and preserves stability, that is the sequence
{Pi,j}∞j=1 is monotonically increasing and upper bounded by Pi, and A − BKi +DLi,j is stable.
The following theorem says that the inner loop globally converges to Pi with a linear convergence
rate, whose proof can be found in Appendix C of Cui and Jiang (2022).

Theorem 2 Given Li,1 = 0, for any j ≥ 1, there exists β(Ki) ∈ [0, 1), such that

Tr(Pi − Pi,j+1) ≤ β(Ki) Tr(Pi − Pi,j). (13)

It follows from Theorem 2 that ∥Pi − Pi,j+1∥F ≤ βj(Ki)
√
n∥Pi − Pi,1∥F .

3.3. Uniform Convergence of the Dual-Loop Algorithm

For the dual-loop algorithm, the inner-loop iteration linearly converges to the optimal solution Pi

with the rate dependent on Ki. Since Ki is updated iteratively, it is required that the inner loop enters
the given neighborhood of Pi within a constant number of steps, independent of Ki. The uniform
convergence guarantees that the required number of inner-loop iterations do not grow explosively
as the outer-loop iteration increases to infinity. The uniform convergence is given in the following
theorem, whose proof is given in Appendix D of Cui and Jiang (2022).

Theorem 3 For any i ≥ 1 and ϵ > 0, there exists j̄ independent of i, such that for all j ≥ j̄,
∥Pi,j − Pi∥F ≤ ϵ.
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Algorithm 1: Model-Based PO Algorithm

1 Initialize K1 ∈ W;
2 for i ≤ ī do
3 Initialize j = 1 and Li,1 = 0;
4 Qi = CTC +KT

i RKi;
5 repeat
6 Ai,j = A−BKi +DLi,j ;
7 Get Pi,j by solving (12a);
8 Update Li,j+1 by (12b);
9 j ← j + 1 ;

10 until ∥Pi,j − Pi,j−1∥F ≤ ϵ;
11 Ui,j̄ = Pi,j̄ + Pi,j̄D(γ2In −DTPi,j̄D)−1DTPi,j̄ ;
12 Update Ki+1 by (8b) ;
13 end

4. Robustness Analysis for the Dual-Loop Algorithm

In the previous section, the exact PO algorithm was introduced in the sense that the accurate knowl-
edge of system matrices (A,B) is required to implement the algorithm. In practice, however, we
cannot access such an accurate model, and for the outer and inner loops, the updates of the con-
trollers in (8b) and (12b) are subjected to noise. Such noise may be induced by noisy input-state
data Pang and Jiang (2021) and/or modeling errors Åström and Wittenmark (1997); Tu and Recht
(2019). In this section, using the well-known concept of ISS in nonlinear control, we will analyze
the robustness of the dual-loop PO algorithm in the presence of disturbance.

4.1. Robustness Analysis for the Outer Loop

The exact outer loop iteration is shown in (8), and in the presence of disturbance it is modified as

ÂT
i ÛiÂi − P̂i + Q̂i = 0, (14a)

K̂i+1 = (R+BT ÛiB)−1BT ÛiA+∆Ki+1, (14b)

where

Âi = A−BK̂i, Q̂i = Q+ K̂T
i RK̂i, (15)

∆Ki is the disturbance at the ith iteration, and the “hat” is used to distinguish the sequences gener-
ated by the exact (8) and inexact (14) outer-loop iterations. By considering (14) as a discrete-time
nonlinear system with the state P̂i and input ∆Ki, the following theorem says that (14) is inherently
robust to ∆Ki in the sense of small-disturbance ISS Pang and Jiang (2021); Pang et al. (2022a). See
Appendix E in Cui and Jiang (2022) for the proof.

Theorem 4 For any K̂1 ∈ W , there exists d(K̂1) > 0, such that if ∥∆K∥∞ < d(K̂1), system (14)
is ISS.
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4.2. Robustness Analysis for the Inner Loop
As a counterpart of inexact outer-loop iteration, the inexact inner-loop iteration can be developed as

ÂT
i,jP̂i,jÂi,j − P̂i,j + Q̂i − γ2L̂T

i,jL̂i,j = 0, (16a)

L̂i,j+1 = (γ2Iq −DT P̂i,jD)−1DT P̂i,jÂi +∆Li,j+1. (16b)

Here, Âi,j = A−BK̂i+DL̂i,j , ∆Li,j+1 denotes the disturbance to the inner loop iteration, and the
“hat” emphasizes that the corresponding sequences are generated by the inexact iteration. With the
inexact inner loop at hand, the following theorem shows that the inner loop iteration (16) is robust
to disturbance ∆Li,j in the sense of small-disturbance ISS. See Appendix F of Cui and Jiang (2022)
for the proof.

Theorem 5 There exists e(K̂i) > 0, such that if ∥∆Li∥∞ < e(K̂i), system (16) is ISS.

5. Learning-Based Policy Optimization

For system (1) with additive Gaussian noise, we will now develop a learning-based algorithm to
learn from data a robust suboptimal controller (i.e., an approximation of K∗) without requiring the
accurate knowledge of (A,B). Suppose that the exploratory control policy is

ut = −K̂1xt + σuηt, ηt ∼ N (0, Im). (17)

where K̂1 ∈ W is the initial admissible controller, and σu > 0 is the standard deviation of the
exploratory noise.

For any n-dimensional real symmetric matrix X , along the trajectories of system (1), we have

xTt+1Xxt+1 = xTt A
TXAxt + uTt B

TXBut + wT
t D

TXDwt

+ 2uTt B
TXAxt + 2wT

t D
TXAxt + 2uTt B

TXDwt, (18a)

Xxt+1 = XAxt +XBut +XDwt. (18b)

By vectorizing, one can rewrite (18) as

vecvT (xt+1) vecs(X) = vecvT (xt) vecs(A
TXA) + vecvT (ut) vecs(B

TXB)

+ 2(xTt ⊗ uTt ) vec(B
TXA) + wT

t D
TXDwt + 2wT

t D
TXAxt + 2uTt B

TXDwt, (19a)

(xTt+1 ⊗ In) vec(X) = (xTt ⊗ In) vec(XA) + (uTt ⊗ In) vec(XB) +XDwt. (19b)

Define ϕt, ϕ′
t, Γ, and Γ′ as

ϕt :=
[
vecvT (xt), vecv

T (ut), 2(x
T
t ⊗ uTt ), 1

]T
, ϕ′

t :=
[
xTt , u

T
t

]T
, (20a)

Γ(X) := [vecsT (ATXA), vecsT (BTXB), vecT (BTXA),Tr(DTXD)]T , (20b)

Γ′(X) :=
[
vecT (XA), vecT (XB)

]T
. (20c)

Multiplying (19a) with ϕt and (19b) with ϕ′
t ⊗ In, and taking the expectation of both sides yield

E
[
ϕtϕ

T
t Γ(X)− ϕt vecv

T (xt+1) vecs(X)|xt, ut
]
= 0, (21a)

E
[
(ϕ′

tϕ
′T
t ⊗ In)Γ

′(X)− (ϕ′
tx

T
t+1 ⊗ In) vec(X)|xt, ut

]
= 0. (21b)

We now need the following assumption:
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Assumption 3 Eπ

[
ϕtϕ

T
t

]
and Eπ

[
ϕ′
tϕ

′T
t

]
are invertible.

Remark 1 Assumption 3 is reminiscent of the persistent excitation (PE) condition in adaptive con-
trol Jiang et al. (2021); Åström and Wittenmark (1997). Similar PE conditions can be found in
the literature on learning-based control Jiang and Jiang (2017); Lewis and Liu (2013); Liu et al.
(2021); Pang et al. (2022b); Cui et al. (2021a).

Taking the expectation of (21) with respect to the invariant probability measure π and using
Assumption 3, we have

Γ(X) = Φ†Ξvecs(X), Γ′(X) = (Φ′)†Ξ′ vec(X). (22)

where

Φ = Eπ

[
ϕtϕ

T
t

]
, Ξ = Eπ

[
ϕt vecv

T (xt+1)
]
,Φ′ = Eπ

[
ϕ′
tϕ

′T
t ⊗ In

]
, Ξ′ = Eπ

[
ϕ′
tx

T
t+1 ⊗ In

]
. (23)

In addition, we use a finite number of trajectory data to approximate Φ, Ξ, Φ′, and Ξ′, that is

Φ̂T =
1

T

T∑
t=1

ϕtϕ
T
t , Ξ̂T =

1

T

T∑
t=1

ϕt vecv
T (xt+1), Φ̂

′
T =

1

T

T∑
t=1

ϕ′
tϕ

′T
t ⊗ In, Ξ̂

′
T =

1

T

T∑
t=1

ϕ′
tx

T
t+1 ⊗ In.

(24)

Since (A − BK̂1) is Schur, by Birkhoff ergodic Theorem in Koralov and G. Sinai (2007), the
following relations hold almost surely

lim
T→∞

Φ̂′
T = Φ′, lim

T→∞
Ξ̂′
T = Ξ′, lim

T→∞
Φ̂T = Φ, lim

T→∞
Ξ̂T = Ξ. (25)

Then, by (22), Γ′(X) and Γ(X) are approximated as follows:

Γ̂(X) = Φ̂†
T Ξ̂T vecs(X), Γ̂′(X) = (Φ̂′

T )
†Ξ̂′

T vec(X). (26)

According to the definitions of Γ and Γ′ in (20), and their relations to X in (22), the components
of Γ and Γ′ can be recovered as

vecs(ATXA) = [(Φ)†]1,n1Ξvecs(X), vecs(BTXB) = [(Φ)†]n1+1,n2Ξvecs(X) (27a)

vec(BTXA) = [(Φ)†]n2+1,n3Ξvecs(X), (27b)

vec(XA) = [(Φ′)†]1,n4Ξ
′Dn vecs(X), vec(XB) = [(Φ′)†]n4+1,n5Ξ

′Dn vecs(X) (27c)

where nl(l = 1, · · · , 5) can be determined by the dimensions of the matrices A and B, and Dn is
the duplication matrix (vec(X) = Dn vecs(X)) in (Magnus and Neudecker, 2007, pp. 56).

Replacing X in (27) by Pi,j and substituting it into the vectorization of (12a) yield a linear
equation for Pi,j{

[(Φ)†]1,n1Ξ−D†
n[(K

T
i ⊗ In)Tmn + In ⊗KT

i ][(Φ)
†]n2+1,n3Ξ

+D†
n[(L

T
i,jD

T ⊗ In)Tnn + In ⊗ LT
i,jD

T ][(Φ′)†]1,n4Ξ
′Dn

−D†
n

[
(LT

i,jD
T ⊗KT

i )Tnm +KT
i ⊗ LT

i,jD
T
]
[(Φ′)†]n4+1,n5Ξ

′Dn

+D†
n(K

T
i ⊗KT

i )Dm[(Φ)†]n1+1,n2Ξ

+D†
n(L

T
i,jD

T ⊗ LT
i,jD

T )Dn − I(1+n)n/2

}
vecs(Pi,j) + vecs(Qi − γ2LT

i,jLi,j) = 0,

(28)
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Algorithm 2: Learning-Based PO Algorithm

1 Initialize K̂1 ∈ W , the length of the sampled trajectory T , and the exploration variance σ2
u ;

2 Collect data from (1) with exploratory input (17) ;
3 Construct Φ̂′

T , Φ̂T , Ξ̂′
T , and Ξ̂T defined in (24) ;

4 for i ≤ ī do
5 Set Li,j = 0;
6 Q̂i = CTC + K̂T

i RK̂i;
7 for j ≤ j̄ do
8 Get P̂i,j by solving (28);

9 Get P̂i,jA and P̂i,jB by (27c). ;
10 Update L̂i,j+1 = (γ2Iq −DT P̂i,jD)−1DT (P̂i,jA− P̂i,jBKi);
11 end
12 Ûi,j̄ = P̂i,j̄ + P̂i,j̄D(γ2Iq −DT P̂i,j̄D)−1DT P̂i,j̄ ;

13 Get ̂BTUi,j̄B and ̂BTUi,j̄A by (27a) and (27b) ;

14 K̂i+1 = (R+ ̂BTUi,j̄B)−1 ̂BTUi,j̄A ;
15 end

where Tmn, Tnn, and Tnm are commutation matrices defined in (Magnus and Neudecker, 2007,
pp. 54). Consequently, Pi,j can be approximated by solving the linear equation (28). The details
are shown in Algorithm 2. Since the data matrices Φ̂′

T , Ξ̂′
T , Φ̂T , and Ξ̂T are reused throughout the

policy iteration, the proposed algorithm is off-policy.

6. Simulation

We apply Algorithms 1 and 2 to the system studied in Zhang et al. (2021b). The system matrices
are

A =

 1 0 −5
−1 1 0
0 0 1

 , B =

 1 −10 0
0 3 1
−1 0 2

 , D =

0.5 0 0
0 0.2 0
0 0 0.2

 (29)

The matrices related to the controlled output are C = [I3, 03×3]
T and E = [03×3, I3]

T . The H∞-
norm threshold is γ = 5. The simulation is implemented on a desktop computer with a CPU Intel
i7-9700K CPU @ 3.60GHz. The computer has two 16GB 3200MHz DDR4 RAMs and the numeric
computing platform is MATLAB 2020b. ī = 20 and j̄ = 20.

The robustness of Algorithm 1 in the presence of disturbance at each iteration is validated first.
For each outer and inner loop iteration, the entries of the disturbances ∆Ki and ∆Li,j are samples
from a standard Gaussian distribution and then their Frobenius norms are normalized to 0.1. In Fig.
2, it is seen that with the disturbance at each outer and inner loop iteration, the generated controller
and the corresponding cost matrix approach the optimal solution and finally enters a neighborhood
of the optimal controller K∗ and cost matrix P ∗. The H∞-norm of the closed-loop system is
smaller than the threshold throughout the PO process. These numerical results are consistent with
the developed theoretical results in Theorems 4 and 5.
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Figure 2: Robustness of Algorithm 1 when ∥∆K∥∞ = 0.1 and ∥∆Li∥∞ = 0.1.
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Figure 3: Using Algorithm 2, the solutions of each iteration approach the optimal solution, and the
H∞-norm is smaller than the threshold.

Algorithm 2 is implemented to learn a robust suboptimal controller for system (1). The length
of the sampled trajectory is T = 1000, i.e. 1000 data are collected in total to train the robust
optimal controller. The standard deviation of the exploratory noise is σu = 5. In Fig. 3 the
algorithm converges at the 3rd iteration. At the 20th iteration, ∥K̂20 − K∗∥F /∥K∗∥F = 7.37%
and ∥P̂i − P ∗∥F /∥P ∗∥F = 4.29%. Therefore, the proposed off-policy PO algorithm can still
approximate the optimal solution when the system is disturbed by additive Gaussian noise.

7. Conclusion

In this paper, we have proposed a novel robust dual-loop PO algorithm for a class of linear discrete-
time systems to handle model mismatches and disturbances arising from sim-to-real gap. It is
demonstrated that the dual-loop algorithm uniformly converges to the optimal solution. When the
algorithm is subject to disturbances, it is proved that the algorithm possesses the property of small-
disturbance ISS. Specifically, given an initial admissible control policy, the control policies gener-
ated by the proposed PO algorithm ultimately enter a small neighborhood of the optimal solution,
given that the disturbance is sufficiently small. Based on these model-based theoretical results, and
without knowing the accurate system matrices, we have also proposed a novel learning-based PO al-
gorithm to learn the optimal controllers directly from data. Numerical examples have been provided
and the efficacy of the proposed methods is demonstrated.
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