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Abstract
Complex-valued Gaussian processes are used in Bayesian frequency-domain system identification
as prior models for regression. If each realization of such a process were an H∞ function with
probability one, then the same model could be used for probabilistic robust control, allowing for
robustly safe learning. We investigate sufficient conditions for a general complex-domain Gaussian
process to have this property. For the special case of processes whose Hermitian covariance is sta-
tionary, we provide an explicit parameterization of the covariance structure in terms of a summable
sequence of nonnegative numbers.
Keywords: Gaussian processes; system identification.

1. Introduction

With the general popularity of Gaussian process models in machine learning and in particular their
growing adoption in data-driven control, there have been recent advances in using Gaussian process
models as nonparametric Bayesian estimators in system identification. Initially this was done in
the time domain, with works like Pillonetto and De Nicolao (2010) and Chen et al. (2012) using
Gaussian processes to identify the impulse response of a linear time-invariant (LTI) stable system.
Subsequent works consider frequency-domain regression, such as Lataire and Chen (2016) which
uses a modified complex Gaussian process regression model to estimate transfer functions from
discrete Fourier transform (DFT) data, and Stoddard et al. (2019) which considers a similar regres-
sion approach to estimate the generalized frequency response of nonlinear systems. These methods
also have close ties to some non-probabilistic estimation methods, such as analytic interpolation
(Singh and Sznaier (2020); Takyar and Georgiou (2010)) and kernel-based interpolation (Khosravi
and Smith (2021, 2019)). At the heart of these Bayesian techniques is the prior model, a probabilis-
tic dynamical model of an uncertain system that represents one’s knowledge of the system prior to
collecting any data.

Probabilistic dynamical models for uncertain systems are also used extensively in probabilistic
robust control, such as probabilistic µ analysis (Khatri and Parrilo (1998); Balas et al. (2012); Bian-
nic et al. (2021)), disk margins (Somers et al. (2022)), and the methods reviewed in Calafiore and
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Dabbene (2007). In probabilistic robust control, each possible realization of the probabilistic uncer-
tainty must be interpretable as a system of the type being modeled; otherwise, robustness guarantees
involving ensembles of uncertainties would not be meaningful. This is a strong interpretability re-
quirement compared to Bayesian system identification, where typically only the regression mean
needs to be interpretable.

Since both Bayesian system identification and probabilistic robust control use probabilistic un-
certainty models, applying both techniques to the same model is a promising strategy for safely
learning an unknown or uncertain control system, since the Bayesian uncertainty of the learned
model could be used to construct a probabilistic robustness guarantee for a suitably chosen con-
troller. However, this is only possible if the nonparametric uncertainty model used for system
identification satisfies the stronger interpretability requirement of probabilistic robust control. The
contribution of this paper is to provide conditions under which a Gaussian process model satisfies
this stronger requirement. These conditions are expressed in terms of the covariance of the pro-
cess; as such, This represents a development in the frequency domain of similar efforts to establish
almost-sure stability of time-domain Gaussian process models, such as Proposition 5.4 in Pillonetto
and De Nicolao (2010) and the notion of stable kernels in Pillonetto et al. (2022). Specifically,
we provide conditions under which realizations of a complex Gaussian process of a complex vari-
able correspond to the z-transform of an LTI, causal, BIBO stable, and real system with probability
one. Since an LTI, causal, and BIBO stable system is characterized by a z-transform that resides
in the Hardy space H∞, we refer to such processes as H∞ Gaussian processes. Having conditions
expressed in terms of the frequency-domain covariance functions allows one to design frequency-
domain covariance functions directly, as opposed to the approach used by prior works in Bayesian
system identification, where frequency-domain covariances must be derived from the z-transform
(or Laplace transform) of a time-domain stochastic impulse response. In cases where prior knowl-
edge is given in frequency-domain terms, being able to construct the frequency-domain covariance
is more practical.

In addition to the general conditions, we provide a complete characterization (Theorem 10) of
the covariance structure of a special class of H∞ Gaussian process, namely those whose Hermitian
covariance is stationary. Each Hermitian stationary H∞ process is parameterized by a summable
sequence of nonnegative reals, which lead to computationally tractable closed forms for certain
choices of sequences. Since stationary processes are a popular choice for GP regression priors,
this characterization makes it possible to construct useful and computationally convenient priors for
Bayesian system identification that are also fully interpretable as probabilistic dynamical models.

To verify the utility of H∞ GP models for Bayesian transfer function estimation, we apply the
technique to two second-order systems using a mixture of a Hermitian stationary H∞ processes
constructed with Theorem 10 and an H∞ process designed to model resonance peaks. Contrary to
other recent work in Bayesian system identification, we choose to use the strictly linear estimator
for our Gaussian process models instead of the widely linear estimator. Although the widely linear
estimate is superior for general processes, we find that for H∞ Gaussian process models the strictly
linear estimator works nearly as well while being simpler and more stable to compute than the
widely linear estimator.

The rest of the paper is organized as follows. Section 3 introduces the system setup, reviews
background information on complex-valued random variables and stochastic processes, and intro-
duces the classes of complex Gaussian processes that we study in this paper. Section 4 provides the
conditions and characterizations described in the last paragraph, and represents the main technical
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contribution of this work. Section 5 reviews widely linear and strictly linear complex estimators for
complex Gaussian process regression and presents numerical examples of Bayesian system iden-
tification. We omit the full proofs of of Theorem 5, Proposition 8, and Theorem 10 in this paper
in favor of “proof sketches” for brevity. The full proofs are in an extended paper (Devonport et al.
(2022)) available online.

2. Notation

For a complex vector or matrixX ,X∗ denotes the complex conjugate andXH denotes the conjugate
transpose. We denote the exterior of the unit disk asE = {Z ∈ C : |z| > 1}, and its closure as Ē =
{Z ∈ C : |z| ≥ 1}. L2 is the Hilbert space of functions f : C→ C such that

∫ π
−π |f(RejΩ)|2dΩ <

∞, equipped with the inner product 〈f, g〉2 =
∫ π
−π f(ejΩ)g∗(ejΩ)dΩ. H2 is the Hilbert space of

functions f : C → C that are bounded and analytic for all z ∈ E and
∫ π
−π |f(RejΩ)|2dΩ < ∞,

equipped with the inner product 〈f, g〉2 =
∫ π
−π f(ejΩ)g∗(ejΩ)dΩ. It is a vector subspace of L2.

H∞ is the Banach space of functions f : Ē → C that are bounded and analytic for all z ∈ E
and supΩ∈[−π,π] |f(ejΩ)| < ∞, equipped with the norm ‖f‖∞ = supΩ∈[−π,π] |f(ejΩ)|. `1 is the
space of absolutely summable sequences, that is sequences {an}∞n=0 such that

∑∞
n=0 |an| < ∞.

N (µ,Σ) denotes a Gaussian distribution with mean µ and covariance Σ; likewise, CN
(
µ,Σ, Σ̃

)
denotes a complex Gaussian distribution with mean µ, Hermitian covariance Σ, and complementary
covariance Σ̃.

3. Preliminaries

The object of this paper is to construct nonparametric statistical models for causal, LTI, BIBO
stable systems in the frequency domain. Since our main focus will be the probabilistic aspects of
the model, we restrict our attention to the simplest dynamical case: a single-input single-output
system in discrete time. Thus, our dynamical systems are frequency-domain multiplier operators
Hf : L2 → L2 whose output is defined pointwise as (Hfu)(ω) = f(ω)u(ω), where f : C → C is
the system’s transfer function. Thanks to the bijection Hf ↔ f , we generally mean the function f
when we refer to “the system”.

Since our aim is to construct a probabilistic model for the system that is not restricted to a
finite number of parameters, we must work directly with random complex functions of a complex
variable: this is a special type of complex stochastic process that we call a z-domain process.

Definition 1 Let (Ξ, F,P) denote a probability space. A z-domain stochastic process with domain
D ⊆ C is a function f : Ξ×D → C.

Note that each value of ξ ∈ Ξ yields a function fξ = f(ξ, ·) : D → C, which is called either
a “realization” or a “sample path” of f . If we take ξ to be selected at random according to the
probability law P, then fξ represents a “random function” in the frequentist sense. Alternatively, if
we have a prior belief about the likelihood of some fξ over others, we may encode this belief in a
Bayesian sense using the measure P. We drop the dependence of f on ξ from the notation outside
of definitions, as it will be clear when f(z) refers to the random variable f(·, z) or when f stands
for a realization fξ.
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Definition 2 A Gaussian z-domain process is a z-domain process f such that, for any n > 0, the
random vector (f(z1), . . . , f(zn)) is complex multivariate Gaussian for all (z1, . . . , zn) ∈ Dn.

A complex Gaussian process is more than two real-valued Gaussian processes added together, as
the real and imaginary parts may depend on each other. Unlike a real Gaussian process, which
is characterized by its mean m(t) = E [x(t)] and covariance k(t, s) = E [x(t)x(s)], a complex
Gaussian process f is characterized by three functions: its mean m(z) = E [f(z)], its Hermitian
covariance k(z, w) = E [f(z)f∗(w)] and its complementary covariance k̃(z, w) = E [f(z)f(w)].

3.1. H∞ Gaussian Processes

Consider a deterministic input-output operator Hg with transfer function function g : D → C. The
condition that Hg belong to the operator space H∞ of LTI, causal, and BIBO stable systems is that
g belong to the function space H∞. Now suppose we wish to construct a random operator Hf using
the realizations of a z-domain process f as its transfer function: the analogous condition is that the
realizations of f lie in H∞ with probability one.

Definition 3 A z-domain process is called an H∞ process when the set {ξ ∈ Ξ : fξ ∈ H∞} has
measure one under P.

Less formally, an H∞ process is a z-domain process f such that P(f ∈ H∞) = 1. Having
fξ ∈ H∞ implies that Ē ⊆ D: we usually take D = Ē. If we also require that Hg give real outputs
to real inputs in the time domain, g must satisfy the conjugate symmetry relation g(z∗) = g∗(z) for
all z ∈ D. The analogous condition for Hf is to require that f satisfy the condition with probability
one.

Definition 4 A z-domain process f is called conjugate symmetric when the set {ξ ∈ Ξ : fξ(z
∗) =

f∗ξ (z), ∀z ∈ D} has measure one under P.

Combining definitions 2, 3, and 4, we arrive at our main object of study: conjugate-symmetric
H∞ Gaussian processes.

Example 1 (“Cozine” process) The random transfer function

f(z) =
X − a(X cos(ω0)− Y sin(ω0))z−1

1− 2a cos(ω0)z−1 + a2z−2
, (1)

where X,Y i.i.d.∼ N (0, 1), a ∈ (0, 1), ω0 ∈ [0, π], is a z-domain Gaussian process. From the form
of the transfer function, we see that H is bounded on the unit circle, analytic on E, and conjugate
symmetric with probability one, from which it follows that f is a conjugate symmetric H∞ process.
Since f corresponds to the z-transform of an exponentially decaying discrete cosine with random
magnitude and phase, we call it a “cozine” process. Its Hermitian and complementary covariances
are

k(z, w) =
1− a cos(ω0)(z−1 + (w∗)−1) + a2(zw∗)−1

(1− 2a cos(ω0)z−1 + a2z−2)(1− 2a cos(ω0)(w∗)−1 + a2(w∗)−2)
,

k̃(z, w) =
1− a cos(ω0)(z−1 + w−1) + a2(zw)−1

(1− 2a cos(ω0)z−1 + a2z−2)(1− 2a cos(ω0)w−1 + a2w−2)
.

(2)

4



FREQUENCY DOMAIN GAUSSIAN PROCESS MODELS FOR H∞ UNCERTAINTIES

As a Bayesian prior for an H∞ system, this process represents a belief that the transfer function
exhibits a resonance peak (of unknown magnitude) at ω0. Knowing ω0 in advance is a strong belief,
but it can be relaxed by taking a hierarchical model where ω0 enters as a hyperparameter. When
used as a prior, the hierarchical model represents the less determinate belief that there is a resonance
peak somewhere, whose magnitude can be made arbitrarily small if no peak is evident in the data.

The construction in Example 1, where properties of conjugate symmetry and BIBO stability can
be checked directly, may be extended to random transfer functions of any finite order. However, the
technique does not carry to the infinite-order H∞ processes required for nonparametric Bayesian
system identification, or more generally for applications that do not place an a priori restriction
on the order of the system. We are therefore motivated to find conditions under which a z-domain
process is a conjugate-symmetric H∞ Gaussian process expressed directly in terms of k and k̃.

4. Constructing H∞ Gaussian Processes

The following result provides the general test to determine if f is an H∞ Gaussian process, by
establishing with probability one that fξ ∈ H2 and ‖fξ‖∞ <∞.

Theorem 5 Let f be a z-domain Gaussian process with mean zero and continuous Hermitian
covariance k and complementary covariance k̃. Let kr = 1

2 Re[k+ k̃], ki = 1
2 Re[k− k̃] denote the

covariance functions of the real and imaginary parts of f respectively. Then f is an H∞ process
under the following conditions:

1. There exist positive, finite constants Cr, Ci, αr, αi, δr, δi, such that kr and ki, restricted to
the unit circle, satisfy the following continuity conditions:

kr(e
jθ, ejθ) + kr(e

jφ, ejφ)− 2kr(e
jθ, ejφ) ≤ Cr

| log |θ − φ||1+αr
∀|θ − φ| < δr

ki(e
jθ, ejθ) + ki(e

jφ, ejφ)− 2ki(e
jθ, ejφ) ≤ Ci

| log |θ − φ||1+αi
∀|θ − φ| < δi.

(3)

2. Let {zn}∞n=1 be a countable dense sequence of points in E. For n ∈ N, define the Gramian
matrices Kn

r ,K
n
i , R

n ∈ Rn×n as (Kn
r )jl = kr(zj , zl), (Kn

i )jl = ki(zj , zl), and (Rn)jl =
r(zj , zl), where r(zj , zl) = ziz

∗
j /(ziz

∗
j − 1). Kn

r , Kn
i , and Rn satisfy

sup
n∈N

traceKn
r (Rn)−1 <∞ and sup

n∈N
traceKn

i (Rn)−1 <∞. (4)

Proof sketch Discrete-time H2 is an RKHS with kernel r(z, w) = zw∗/(zw∗ − 1). (This fact
is proven in Devonport et al. (2022).) Condition (4) then ensures by Driscoll’s zero-one theo-
rem (Driscoll (1973)) that the sample paths of f inhabit H2 with probability one. Condition (3)
ensures by (Adler and Taylor, 2007a, Theorem 1.4.1) that the restriction of f to the unit circle is
bounded with probability one. Since an H∞ function is precisely an H2 function whose values on
the unit circle are bounded, it follows that f inhabits H∞ with probability one. �

Remark 6 According to Driscoll’s theorem, the probability that f ∈ H2 is either zero or one. (Zero
occurs when either supremum in condition (4) is infinite.) Similarly, the realizations of a Gaussian
process are bounded with probability zero or one (Landau and Shepp (1970)). This means that the
realizations of a z-domain Gaussian process are either almost surelyH∞ functions or almost surely
not.
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Remark 7 Condition (4) is necessary and sufficient for f to inhabitH2 with probability one. On the
other hand, condition (3) is sufficient but not necessary for ‖f‖∞ to be bounded. Indeed, necessary
and sufficient conditions for a stochastic process to be almost surely bounded are generally not
available even for real-valued Gaussian processes except in special cases. Fortunately, covariance
functions in practice often satisfy a stronger condition that implies (3) ((Adler and Taylor, 2007b,
eq. 2.5.17)), namely that k(s, t) = k(s, s)− q(s− t) +O(|s− t|2+δ), for small |s− t|, where q is
a positive definite quadratic form and δ > 0.

The general condition for a process to be conjugate symmetric is given by the following result.

Proposition 8 Let f be a z-domain Gaussian process with domain D, covariance k, and comple-
mentary covariance k̃. Then f is conjugate-symmetric if and only if k and k̃ satisfy the conditions

k(z, z) = k(z∗, z∗), k(z, z) = k̃(z, z∗) (5)

for all z ∈ D.

Proof sketch Under (5), the joint distribution for (f∗(z), f(z∗)) is a degenerate complex Gaussian
distribution where both components are perfectly correlated with the same variance, and thus equal
with probability one. If (5) doesn’t hold, this cannot be true for all z. �

Together, Theorem 5 and Proposition 8 give sufficient conditions on the covariance functions
of a general mean-zero z-domain Gaussian process in order for it to be a conjugate-symmetric
H∞ Gaussian process. While Conditions (3) and (5) can be verified in practice, Condition (4)
generally cannot. We are therefore motivated to find special cases of z-domain Gaussian processes
for which (4) can be replaced by a more tractable condition. The broadest such case that we have
found is where, in addition to satisfying Conditions (3) and (5), the Hermitian covariance function
is stationary when restricted to the unit circle.

Definition 9 A z-domain Gaussian process is Hermitian stationary when its Hermitian covariance
function satisfies k(ejθ, ejφ) = k(ej(θ−φ), 1) for all θ, φ ∈ [−π, π).

Using a stationary process as a prior is common practice in machine learning and control-theoretic
applications of Gaussian process models. Stationary processes are useful for constructing regression
priors that do not introduce unintended biases in their belief about the frequency response: since
f(ejθ) has the same Hermitian variance across the entire unit circle, a sample path from a Hermitian
stationary H∞ process is just as likely to exhibit low-pass behavior as it is high-pass or band-pass.1

We can obtain a “partially informative” prior by adding an H∞ process encoding strong beliefs in
one frequency range (such as the presence of a resonance peak) to an H∞ process encoding weaker
beliefs across all frequencies. The sum, also anH∞ process, encodes a combination of these beliefs.

Under the additional condition of Hermitian stationarity, it turns out that the H∞ process is
characterized by a sequence of nonnegative constants.

Theorem 10 Let f be a Hermitian stationary, conjugate-symmetric z-domain Gaussian process
with continuous Hermitian covariance k and complementary covariance k̃. Then f is an H∞ pro-
cess if and only if k and k̃ have the form

k(z, w) =
∞∑
n=0

a2
n(zw∗)−n, k̃(z, w) =

∞∑
n=0

a2
n(zw)−n, (6)

1. To be truly “noninformative” in the sense of introducing unwanted biases, the complementary covariance should be
stationary. However, this is not possible while satisfying (5).
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where {an}∞n=0 is a nonnegative real `1 sequence. Furthermore, f may be expanded as

f(z) =
∞∑
n=0

anwnz
−n, (7)

where wn
i.i.d.∼ N (0, 1).

Proof sketch That (7) leads to (6) follows from direct calculation and the independence of the
wn. Under the summability condition on the an, the impulse response of f is absolutely summable
with probability one, implying BIBO stability. Thus (7) is BIBO stable (and hence in H∞) with
probability one.

To see that a Hermitian stationary, conjugate-symmetricH∞ Gaussian process must have (6), (7)
and that the summability condition holds, start with an expansion of f into the basis {z−n}∞n=0 of
H∞. Hermitian stationarity implies that the coefficients are uncorrelated, turning the basis function
expansion into (7), from which (6) follows. Since the process is H∞, its impulse response must be
absolutely summable with probability one, which is only true if the summability condition on the
an holds. �

Theorem 10 provides a useful tool for constructing conjugate-symmetric H∞ Gaussian pro-
cesses: all we need to do is select a summable sequence of nonnegative numbers. For example, we
use Theorem 10 to construct the following regression prior for the next section.

Example 2 (Geometric H∞ process) Take a2
n = αn with α ∈ (0, 1); this yields a conjugate-

symmetric H∞ Gaussian process with Hermitian covariance kα(z, w) =
∑∞

n=0 α
n(zw∗)−n =

zw∗

zw∗−α and complementary covariance k̃α(z, w) = zw
zw−α .

5. Gaussian Process Regression in the Frequency Domain

Let Hg ∈ H∞ denote the system whose transfer function g ∈ H∞ we wish to identify. While not
stochastic, g is unknown, and we represent both our uncertainty and our prior beliefs in a Bayesian
fashion with an H∞ Gaussian process f with Hermitian and complementary covariances k and k̃.
To model our prior beliefs, the distribution of f should give greater probability to functions we
believe are likely to be similar to g, and should assign probability zero to functions we know that
g cannot be. As an example of the latter, the fact that P (f ∈ H∞) = 1 encodes our belief that
g ∈ H∞, which demonstrates the importance of H∞ Gaussian processes for prior model design.

We suppose that our data consists of n noisy frequency-domain point estimates yi = g(zi) + ei,

where ei
i.i.d.∼ N

(
0, σ2

e

)
, zi ∈ Ē. If our primary form of data is a time-domain trace of input and

output values, we first convert this data into an empirical transfer function estimate (ETFE). There
are several well-established methods to construct ETFEs from time traces, such as Blackman-Tukey
spectral analysis, windowed filter banks, or simply dividing the DFT of the output trace by the DFT
of the input trace. In our numerical examples, we will use windowed filter banks.

Our approach is essentially the same procedure as standard Gaussian process regression as de-
scribed in Rasmussen and Williams (2006) extended to the complex case. We take the mean of the
prior model to be zero without loss of generality. To estimate the transfer function at a new point z,
we note that g(z) is related to (y1, . . . , yn) under the prior model as[

g(z)
y

]
∼ CN

(
0,

[
Kxx Kxy

KH
xy Kyy

]
,

[
K̃xx K̃xy

K̃H
xy K̃yy

])
; (8)
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where y ∈ Cn, Kyy ∈ Cn×n, Kxy ∈ Cn×1, and Kxx ∈ C are defined componentwise as

(y)i = yi, (Kyy)ij = k(zi, zj) + σ2
eδij , (Kxy)ij = k(z, zi), Kxx = k(z, z) + σ2

e , (9)

and the components of the complementary covariance matrix are defined analogously. The minimum-
error linear estimator ĝ(z) for g(z) given the data and its predictive Hermitian variance σ2

g are (Schreier
and Scharf, 2010, §5.3)

ĝ(z) = KH
xyK

−1
yy y, σ2

g(z) = k(z, z)−KH
xyK

−1
yy kxy. (10)

These expressions are identical to the posterior mean and variance of a real Gaussian process re-
gression model (cf. Equation (2.19) in Rasmussen and Williams (2006)) except that Kxx, Kxy, and
Kyy are complex-valued.

For general complex-valued Gaussian regression, the widely linear estimator, which incorpo-
rates y∗ and the complementary covariance, is an improvement over the strictly linear estimator.
The degree of improvement is measured by the matrix P = Kyy − K̃yy(K

∗
yy)
−1K̃∗yy, which is the

error variance of linearly estimating y∗ from y under the prior model. In particular, when P = 0
the strictly and widely linear estimators coincide (Schreier and Scharf, 2010, §5.4.1). In our ex-
periments, we find that the strictly linear estimator performs well for conjugate-symmetric H∞ GP
priors, and that P is nearly singular and very small in norm compared toKyy and K̃yy, implying that
its performance is close to the widely linear estimator.2 For these reasons, we use the strictly lin-
ear estimator in the regression examples below. We believe the strictly linear estimator works well
for conjugate-symmetric H∞ process because of the prior assumption of causality and conjugate
symmetry. We discuss this in more detail in Devonport et al. (2022).

For z ∈ D and η > 0, define the confidence ellipsoid Eη(z) = {w ∈ C : |w − ĝ(z)|2 ≤
η2σ2

g(z)}. By Markov’s inequality, we know that f(z) ∈ Eη(z) with probability ≥ 1 − 1/η2. This
implies bounds on the real and imaginary parts by projecting the confidence ellipsoid onto the real
and imaginary axes: from these we can construct probabilistic bounds on the magnitude and phase
of f(z) via interval arithmetic, which we will see in the numerical examples.

Let θ ∈ Θ denote the hyperparameters of a covariance function kθ, so that Kyy becomes a
function of θ: then the log marginal likelihood of the data under the posterior for the strictly linear
estimator is L(θ) = −1

2

(
yHKyy(θ)

−1y + log detKyy(θ) + n log 2π
)
. Keeping the data y and

input locations zi fixed, L(θ) measures the probability of observing data y when the prior covariance
function is kθ. By maximizing L with respect to θ, we find the covariance among kθ, θ ∈ Θ that
best explains the observations.3

5.1. Examples: Identifying Second-order Systems

We apply the strictly-linearH∞ Gaussian process regression method described above to the problem
of identifying two second-order systems. The first test system is a second-order system that exhibits
a resonance peak. The system is specified in continuous time, with canonical second-order transfer
function g(s) =

ω2
0

s2+2ξω0s+ω2
0

, where ω0 = 20π rad/s, and ξ = 0.1, and converted to the discrete-
time transfer function g(z) using a zero-order hold discretization with a sampling frequency of

2. The widely linear regression equations, which we show in Devonport et al. (2022), require inverting P . In this case,
the widely linear estimator is numerically unstable compared to the strictly linear estimator.

3. Although it seems contradictory to choose prior parameters based on posterior data, it can be justified as an empirical-
Bayes approximation to a hierarchical model with θ as hyperparameter.
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Figure 1: Bode plot of the second-order resonant system (orange), and its estimate (blue) usingH∞
Gaussian process regression from an empirical transfer function estimate (black points)
with η = 3 confidence ellipsoid bounds (grey).

fs = 100 Hz. We suppose that we know a priori that there is a resonance peak, but not about
its location or half-width, and we have no other strong information about the frequency response.
For this prior belief, an appropriate prior model is a weighted mixture of a cozine process and a
Hermitian stationary process. In particular, we use the family of H∞ processes with covariance
functions k(z, w) = σ2

gkg(z, w) + σ2
ckc(z, w), k̃(z, w) = σ2

g k̃g(z, w) + σ2
c k̃c(z, w), where kg is

the covariance of the geometric H∞ process defined in Example 2, and kc is the covariance of
the cozine process, and likewise for the complementary covariance. σ2

g and σ2
c are weights that

determine the relative importance of the two parts of the model. This family of covariances has five
hyperparameters: kg ∈ [0,∞), α ∈ (0, 1), kc ∈ [0,∞), ω0 ∈ [0, π], and a ∈ (0, 1).

We suppose that an input trace u(n) of Gaussian white noise with variance σ2
u = 1/fs is run

through Hg yielding an output trace y(n); our observations comprise these two traces, corrupted by
additive Gaussian white noise of variance σ2 = 10−4/fs. To obtain an empirical transfer function
estimate, we run both observation traces through a bank of 25 windowed 1000-tap DFT filters.
The impulse responses of the filter bank are hi(n) = ejωinw(n) for i = 1, . . . , 25, with Gaussian
window w(n) = exp(−1

2(σw(n−500)/1000)2) for n = 0, . . . , 999, and w(n) = 0 otherwise, with
window half-width σw = 0.25. Let ui, yi denote the outputs of filter hi with inputs u, y respectively:
yi(n)/ui(n) gives a running estimate of g(ejωi), whose value after 1000 time steps we take as our
observation at zi = ejωi . Figure 1 shows the regression from the strictly linear estimator (10) after
tuning the covariance hyperparameters via maximum likelihood, along with predictive error bounds
based on η = 3 confidence ellipsoids.

The second is a second-order allpass filter. This system is specified in discrete time with the
transfer function g(z) = |z0|2−2 Re[z0]+1

1−2 Re[z0]+|z0|2 , where z0 = 0.5e±jπ/4 are the system’s poles, with sam-
pling frequency fs = 100 Hz. For this system we assume that we do not have a priori information
on the structure of the frequency response, so we use a Hermitian stationary H∞ process as the
prior model. In particular, we take the family of geometric H∞ process, indexed by hyperparameter
α ∈ (0, 1). To construct the empirical transfer function estimate, we use the same data model and

9



FREQUENCY DOMAIN GAUSSIAN PROCESS MODELS FOR H∞ UNCERTAINTIES

filter bank as the previous example. Figure 2 shows the strictly linear regression after tuning the
covariance hyperparameters, again with predictive error bounds from η = 3 confidence ellipsoids.

Figure 2: Bode plot of the second-order allpass system (orange), and its estimate (blue) using H∞
Gaussian process regression from an empirical transfer function estimate (black points)
with η = 3 confidence ellipsoid bounds (grey).

6. Conclusion

TheH∞ processes constructed using the results of this paper, particularly Theorem 10, are effective
priors for Bayesian nonparametric identification of transfer functions. Furthermore, the strictly
linear estimator, which is suboptimal for general complex Gaussian process priors, provides transfer
function estimates that are close to optimal for conjugate-symmetricH∞ priors. We have numerical
evidence that suggests that as the number of frequency data points increases, the covariance becomes
maximally improper, a case in which the strictly linear is indeed optimal. We will investigate this
conjecture in future work.

The applications presented in this paper use H∞ Gaussian process as statistically interpretable
regression priors, but do not consider questions of probabilistic robustness. We intend to follow this
work with a similar investigation into the robustness properties of H∞ models, such as probabilistic
bounds on the H∞ norm, and integral quadratic constraints that hold with high probability for an
H∞ process with given mean and covariance functions.
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