
Proceedings of Machine Learning Research vol 211:1–13, 2023 5th Annual Conference on Learning for Dynamics and Control

DLKoopman: A deep learning software package for Koopman theory

Sourya Dey SOURYA@GALOIS.COM

Eric William Davis EWD@GALOIS.COM

421 SW 6th Avenue #300, Portland, OR 97204, USA

Editors: N. Matni, M. Morari, G. J. Pappas

Abstract
We present DLKoopman – a software package for Koopman theory that uses deep learning to learn
an encoding of a nonlinear dynamical system into a linear space, while simultaneously learning the
linear dynamics. While several previous efforts have either restricted the ability to learn encodings,
or been bespoke efforts designed for specific systems, DLKoopman is a generalized tool that can
be applied to data-driven learning and analysis of any dynamical system. It can either be trained
on data from individual states (snapshots) of a system and used to predict its unknown states, or
trained on data from trajectories of a system and used to predict unknown trajectories for new initial
states. DLKoopman is available on the Python Package Index (PyPI) as ‘dlkoopman’, and includes
extensive documentation and tutorials. Additional contributions of the package include a novel
metric called Average Normalized Absolute Error for evaluating performance, and a ready-to-use
hyperparameter search module for improving performance.
Keywords: koopman theory, deep learning, python package, autoencoder, software tool

1. Introduction

The abundance of data, combined with the rise in computational power, has enabled the creation
of increasingly powerful machine learning systems to model and predict the world around us. In
particular, deep learning – i.e. machine learning implemented via neural networks (NNs) compris-
ing multiple layers – has become extremely popular due to its ability to ‘intelligently’ learn the
rules of any system from its available data. One such data-driven application of deep learning is
to learn the dynamics of a system purely from its states, or snapshots. This is especially useful in
situations where the exact rules governing the system are prohibitively hard and/or time-consuming
to understand and analyze, whereas data can be easily and plentifully collected from the system.

Dynamic Mode Decomposition (DMD) is a technique to analyze nonlinear systems by approx-
imating them using linear dynamics, i.e. linearizing them. However, an arbitrary nonlinear system
will, in general, be poorly suited to linearization. Koopman theory1, first introduced in Koopman
(1931), overcomes this limitation by extending DMD to encode states of a nonlinear system into
observables in a different domain, performing linearization in this encoded domain, then decoding
back into the original input domain. This domain shift is critical to improving the fidelity of the lin-
ear model, leading to significantly better approximations. The obtained linear model is incredibly
powerful since linear techniques can be used to easily predict unknown states of the system, as well
as predict entire trajectories of how the system behaves starting from new initial conditions.

1. Also known as Koopman operator theory, or just Koopman operator.

© 2023 S. Dey & E.W. Davis.

DLKOOPMAN: A DEEP LEARNING SOFTWARE PACKAGE FOR KOOPMAN THEORY

A key challenge with implementing Koopman theory is finding an encoding for the original
input domain into a linearizable domain. Particularly suited to this task is the autoencoder deep
learning architecture, which consists of an encoder NN learning to convert input data to an encoded
domain suited to linear approximations, connected to a decoder NN simultaneously learning the
inverse function of the encoder so as to convert back to the original input domain.

Our core contribution in this paper is introducing DLKoopman – an open-source Python package
to implement Koopman theory. It can be installed via pip install dlkoopman. To the best
of our knowledge, we are the first effort to create a software package for Koopman theory that
is a) general and reusable, in the sense that it can operate on data from any system and perform
state prediction, as well as trajectory prediction, and b) complete, in the sense that it uses a deep
learning pipeline that includes learning both – the encoding into a linearizable domain, and the
corresponding linear dynamics. DLKoopman bridges the gap between two schools of prior work –
a) software packages that use DMD without learning an encoding into a domain that ensures good
linearization, and b) efforts that use deep learning for the encoding, but lack general software tooling
and are usually restricted to trajectory prediction.

We make two additional contributions via the package. Firstly, we introduce a novel error func-
tion – Average Normalized Absolute Error (ANAE) – which is useful for quantifying performance
and comparing different models. Secondly, we include a ready-to-use hyperparameter search mod-
ule that can provide significant performance gains when performing Koopman approximations.

1.1. Mathematical background

The mathematical details relevant to this paper are in Dey (2022), which we summarize here. For
a more extensive mathematical treatment, the reader can refer to several sources such as Kutz et al.
(2016); Tu et al. (2014); Williams et al. (2015). Suppose a system is described as dx

di = f (x(i)),
where x is the (generally multi-dimensional) state of the system indexed by i, which may, but need
not necessarily, be time. The system can be sampled to obtain its states at various discrete indexes,
which can be described as xi+1 = F (xi). Here, f(·) and F (·) are (generally nonlinear) functions
encapsulating the dynamics of how the system evolves. The first step in applying Koopman theory
is to transform the original x domain into an encoded domain y using an encoder g(·):

y = g (x) (1)

State evolution in the encoded domain is linear, i.e. dy
di = Ky(i), where K is the Koopman

matrix. This can be solved as:

y(i) = eKiy(0) = W eΩiW †y(0) ∀i ∈ R (2)

The Koopman matrix characterizes the system and contains information about it; in particular, its
eigenvectors W are referred to as the DMD modes, and the associated eigenvalues Ω govern how
the system behaves as it is evolved. Linearization is an incredibly powerful technique since any
unknown state of a system can be easily computed from any of its known states using well-developed
linear techniques, as done above to compute the unknown y(i) state from the initial state y(0).

In the discrete sampled equivalent of the above, the system is described as yi+1 = Kyi, where
K is the Koopman matrix. This can be solved as:

yi = Kiy0 ∀i ∈ Z (3a)

= WΛiW †y0 ∀i ∈ Z (3b)

2

DLKOOPMAN: A DEEP LEARNING SOFTWARE PACKAGE FOR KOOPMAN THEORY

The eigenvalues Λ from the discrete case are related to the general eigenvalues Ω as Λ = eΩ∆i,
where ∆i is the sampling interval for discretization.

The encoded domain is finally decoded to obtain states in the original domain:

x = g−1 (y) (4)

1.2. Highlights of DLKoopman

The core components of our DLKoopman package are a) an autoencoder architecture that learns an
encoder g(·) suited to linearization, and its corresponding decoder g−1(·), and b) a method to learn
the Koopman matrix. The latter can be achieved in two different ways, which also correspond to
the two primary tasks the package performs – state prediction and trajectory prediction.

1.2.1. STATE PREDICTION

The goal here is to learn the dynamics of a system from its known states, then predict the values of
its unknown states. As an example application, Sec. 2.4.1 describes DLKoopman performing state
prediction of the pressure on the surface of an airfoil at unknown angles of attack.

The input data is {xi, i ∈ I ⊂ R}, where I = {i0, i1, · · · , im} is a set of indexes at which the
states of the system have been measured. These input states are encoded to {yi}, and grouped into
matrices Yprev =

[
yi0 · · ·yim−1

]
and Ynext = [yi1 · · ·yim]. The Koopman matrix can be computed

as K = YnextY
†

prev, which uses Singular Value Decomposition (SVD). The subsequent workflow
involves computing its eigendecomposition W and Λ, using Λ to compute Ω, then using Eq. (2) to
compute {yi′ , i

′ ∈ I ′ ⊂ R, I ′ ∩ I = ∅}. Finally, these are decoded to get {xi′}, which are the pre-
dicted states of the original system at indexes {i′} where they were not measured. (Values of i′ can
be positive, negative, or fractional, which respectively correspond to forward extrapolation, back-
ward extrapolation, or interpolation.) All of these steps are included in the deep learning pipeline.

1.2.2. TRAJECTORY PREDICTION

Classical applications of Koopman theory provide data in the form of trajectories, i.e. ‘rollouts’ of
a system from an initial state for a fixed number of indexes into the future. The goal of trajectory
prediction is to learn the dynamics of the system from a given number of known trajectories, then
predict unknown trajectories starting from new initial states.

The input data is
{[

xj
0,x

j
1, · · · ,x

j
m

]
, j ∈ {j1, j2, · · · , jJ}

}
– the sequence inside square

brackets is a trajectory j starting from initial state xj
0 and rolled out up till state xj

m; there are
J such given trajectories. The pipeline begins by encoding all states in each trajectory. While the
Koopman matrix can be computed using SVD as before, it can be slow for lengthy trajectories.
Hence, for trajectory prediction, the DLKoopman package models the Koopman matrix K as the
weights of a linear NN layer – a multi-layer perceptron (MLP) with equal number of input and out-
put neurons, no bias, and no activation function or other source of nonlinearity. This can be directly
applied to evolve the system instead of performing the eigendecomposition. A linear layer incurs
the significant limitation of not being able to predict states for negative or fractional indexes since
it cannot be applied backwards or a fractional number of times, however, this limitation is irrele-
vant to trajectory prediction since trajectory indexes are only integral and always advance forward.

3

DLKOOPMAN: A DEEP LEARNING SOFTWARE PACKAGE FOR KOOPMAN THEORY

Then, given new initial states
{
xj′

0 , j
′ /∈ {j1, j2, · · · , jJ}

}
, the trained linear layer K can be used

to generate complete trajectories
{[

xj′

0 ,x
j′

1 , · · · ,x
j′
m

]}
for each of them using Eq. (3a).

1.3. Related Work

We first discuss other general-purpose software packages in literature that implement Koopman
theory. The Python package PyKoopman (Kaiser and de Silva (2020)) – built using the PyDMD
package (Demo et al. (2018)) for performing DMD only – can do state and trajectory prediction.
However, the user needs to provide a ready-made encoding y as input. In the absence of such
an input, the encoder used is an identity function, i.e. y = x, wherein Koopman theory reduces
to DMD only. The Python package pykoop (Dahdah and Forbes (2022)) allows the user to use
particular functions for encoding x into y, such as radial basis functions. A related example is the
Matlab toolbox koopman (Budisic (2017)), which constructs y as the Fourier Transform of x. We
note that these packages impose a certain amount of restriction regarding how the encoded states
are derived from the input states.

The motivation to learn encoded states unrestrictedly with sole focus on achieving good lin-
earization led to the development of deep learning models such as autoencoders to obtain y from
x. There have been other efforts along these lines, generally built to train on input trajectories and
perform trajectory prediction. While code exists for some of these efforts, such code is usually
bespoke and serves to demonstrate the specific results in the respective papers.

Lusch et al. (2018); Champion et al. (2019) focus on finding parsimonious / sparse representa-
tions for dynamical systems using autoencoders. In particular, Lusch et al. (2018) learns the Koop-
man matrix using a linear NN layer, and includes an auxiliary network to learn continuous eigen-
values. Alford-Lago et al. (2022) created the deep learning DMD (DLDMD) effort that has some
similarity to our work, but lacks code. Takeishi et al. (2017) uses linear-delay embedding for time-
series data. Azencot et al. (2020) uses recurrent NNs to learn consistent dynamics, similar to Otto
and Rowley (2019)’s Linearly Recurrent Autoencoder Network (LRAN) to learn low-dimensional
encodings, while Geneva and Zabaras (2022) uses transformers. Otto and Rowley (2019); Williams
et al. (2015) learn the elements of the Koopman matrix directly, following which they perform its
eigendecomposition. Yeung et al. (2017); Li et al. (2017) use feed-forward networks to encode the
original data, but they do not convert back to the original input domain using a decoder. In partic-
ular, Yeung et al. (2017) uses NN layers to learn the Koopman matrix, while Li et al. (2017) learns
it directly. Mardt et al. (2018); Wehmeyer and Noé (2018) use deep learning for Koopman theory
applied to the specific domain of molecular kinetics. Finally, note that the very recent work of Lew
(2023) discusses how numerical differentiation may overcome the limitation of linear layers being
restricted to predicting positive integral indexes only. However, we reiterate that learning the Koop-
man matrix directly, as discussed in Sec. 1.2.1, completely overcomes the problem by generalizing
prediction to any real-valued index.

2. The DLKoopman package

This section describes our core contribution – DLKoopman. The DLKoopman Python package is
available on PyPI and can be installed via pip install dlkoopman. The current version is
1.1.2 at the time of final submission, and can be cited using Dey (2023). Source code is available
at https://github.com/GaloisInc/dlkoopman. The README gives a broad overview

4

https://github.com/GaloisInc/dlkoopman

DLKOOPMAN: A DEEP LEARNING SOFTWARE PACKAGE FOR KOOPMAN THEORY

of the package and links to tutorials. The complete API reference and documentation can be found
at https://galoisinc.github.io/dlkoopman/.

2.1. Training

Figure 1: The training algorithm for a small example with three input states [x0,x1,x2], which can
be input to either StatePred or TrajPred (trajectory superscript omitted in figure).
These are passed through an encoder to get encoded states [y0,y1,y2]. These are passed
through a decoder to get [x̂0, x̂1, x̂2], and also used to learn the Koopman matrix. This
is used to derive predicted encoded states [y1, y2], which are passed through the same
decoder to get predicted approximations [x̂1, x̂2] to the original input states. Training
proceeds by minimizing errors – reconstruction between {x} and {x̂}, linearity between
{y} and {y}, and prediction between {x} and {x̂}.

The two core modules of the package are StatePred for state prediction, and TrajPred
for trajectory prediction. They have a similar algorithm during the training phase, the aim of which
is to optimize three metrics – reconstruction, linearity, and prediction. These are standard metrics
found in Koopman theory literature (Lusch et al. (2018); Alford-Lago et al. (2022)). The training
algorithm is described in Fig. 1.

The input data consists of states {x} of the system that we wish to model. StatePred requires
the states to be accompanied by indexes, e.g. {x10,x15,x19.5, · · · } (for the purposes of training,
indexes are rounded to have equal spacing, i.e. x19.5 will be converted to x20). TrajPred does not
require indexes since the states are assumed to form a trajectory

[
xj
0,x

j
1,x

j
2, · · ·

]
. These states are

passed through a MLP neural network – the encoder – to obtain encoded states {y}. The user needs
to provide the dimensionality of the encoded states via the required argument encoded size.

5

https://galoisinc.github.io/dlkoopman/

DLKOOPMAN: A DEEP LEARNING SOFTWARE PACKAGE FOR KOOPMAN THEORY

The encoded states are passed through a MLP – the decoder – to obtain reconstructed states {x̂}.
The reconstruction error is computed between {x} and {x̂}, minimizing this ensures the decoder
is learning the inverse function of the encoder.

For StatePred, the encoded states are used to perform SVD to obtain the Koopman matrix.
Its eigendecomposition is used to generate predictions {y} (note the different font) for encoded
states by using Eq. (2). An important consideration here is the rank of the SVD. Using a lower rank
usually results in approximations that generalize better by reducing overfitting, however, a rank too
low will incur bias. A lower rank also reduces the probability of numerical issues when performing
backpropagation (Contributors (2022b,a)). The user needs to provide rank since it’s a required
argument. For TrajPred, the initial encoded state y0 is evolved via a linear layer, which serves
as the Koopman matrix. This can be used to generate the entire predicted trajectory [y1, y2, · · ·] by
using Eq. (3a). The linearity error is computed between {y} and {y}, minimizing this ensures a
good Koopman matrix is being learnt that can achieve linearization.

The predictions for encoded states / trajectories are decoded to obtain predictions {x̂} (note the
different font) for input states / trajectories. The prediction error is computed between {x} and {x̂},
minimizing this ensures a good overall pipeline that learns the autoencoder and Koopman matrix.

2.2. New predictions

Figure 2: After training, (a) the StatePred can be used to compute predicted states for new
indexes such as i′, (b) the TrajPred can be used to generate predicted trajectories for
new starting states such as xj′

0 .

New predictions can be computed after training finishes. For StatePred, given any new
index i′ not present in the input data, the architecture can predict x̂i′ , as shown in Fig. 2(a). For

6

DLKOOPMAN: A DEEP LEARNING SOFTWARE PACKAGE FOR KOOPMAN THEORY

TrajPred, given any new initial state xj′

0 not present in the input data, the architecture can predict

the trajectory j′ as
[
x̂j

′

1 , x̂
j′

2 , · · ·
]
, as shown in Fig. 2(b).

2.3. Metrics

As described in Sec. 2.1, three metrics are computed to judge the goodness of a training run –
reconstruction, linearity, and prediction. The overall loss function is:

L = Llin + α
(
Lrecon + Lpred

)
+ βLAutoencoder + γLK (5)

This overall loss L is optimized when performing backpropagation to train the deep learning archi-
tecture. Llin, Lrecon and Lpred are computed using Mean Squared Error (MSE). α is a term that is
used to weight the losses for quantities that are outputs from the decoder, i.e. reconstruction and
prediction loss. β is the coefficient of weight decay LAutoencoder for the autoencoder parameters. γ is
the coefficient of a penalty LK for the elements of the Koopman matrix. For StatePred, LK is
the average absolute value of the elements of K, while for TrajPred – where K is a linear layer
– LK is weight decay for the parameters of the linear layer, and β = γ.

While losses are suitable for optimizing during gradient descent, they are dependent on the scale
of the data. This makes them unsuitable for human-readability in terms of how well a StatePred
run is performing. This motivates us to introduce a novel metric Average Normalized Absolute
Error (ANAE), which can be defined between two tensors of same size as:

ANAE(p, q) = Avgpi ̸=0

(
|pi − qi|
|pi|

)
(6)

where p is the reference, and q is the prediction. Note that p and q can have any number of
dimensions, they will be flattened before computing ANAE.

Thus, ANAE tells us how far off we can expect each element of the prediction to be from
the corresponding element in the reference. As an example, consider the reference data to have
two 3-dimensional states: [−0.1, 0.2, 0] and [100, 200, 300]. Suppose a trained StatePred model
produces predictions [−0.11, 0.15, 0.01] and [105, 210, 285] for this reference data. Normalizing the
absolute deviations by the absolute reference values yields 10% and 25% for the first two values,
the third value is ignored since its reference value is 0, and the last three values are each 5%. Taking
the average of these yields 10%. This is a useful figure. It tells us that when predicting unknown
states for which reference values are not available, the user can expect the current model to predict
values that are ∼ 10% off. Note that just like loss, ANAE can also be computed for reconstruction,
linearity, and prediction. Possibly the most important out of these is the prediction ANAE, since it
tells us the error we can expect from unknown state prediction.

2.4. Example Applications

The source code for DLKoopman includes complete tutorials in the examples/ folder.

2.4.1. STATE PREDICTION

Here, we briefly describe an application of the StatePred. This example attempts to predict the
pressure vector across the surface of a NACA0012 airfoil at varying angles of attack – a commonly

7

DLKOOPMAN: A DEEP LEARNING SOFTWARE PACKAGE FOR KOOPMAN THEORY

studied computational fluid dynamics (CFD) problem (Critzos et al. (1955); Voodarla (2021)). A
particular state xi for this case would be the 200-dimensional pressure vector x at angle of attack i.

The data consists of pairs of variables prefixed by X for the states, and t for the indexes. (Note
that the code uses prefix t for indexes since i is a variable commonly reserved for iterators.) Three
such pairs may be provided – Xtr and ttr form the training data that must be provided, while
Xva and tva, and Xte and tte, respectively, are validation and test data that may be optionally
provided to check the performance of training. For this example, each of the t variables is a list
containing values of angles of attack, while each corresponding X variable is a matrix of dimensions
(length(t)× 200) where each row contains the pressure vector for a particular angle of attack.

A StatePred instance can be created as:

sp = StatePred(
dh = dh, #StatePredDataHandler instance used to pass data
rank = 6,
encoded_size = 50,
encoder_hidden_layers = [100]

)

which results in an autoencoder that looks like Fig. 3(a). This can be trained (and validated, if Xva
and tva are provided) as:

sp.train_net(
numepochs = 1000,
decoder_loss_weight = 0.1, #alpha in the loss equation
weight_decay = 1e-5, #beta in the loss equation
Kreg = 0 #gamma in the loss equation

)

An epoch of training comprises computing the Koopman matrix using the entire training data,
using it to get predictions, then computing metrics on training data, and validation data if given. If
Xte and tte are provided, test statistics may be obtained after training via sp.test net().

The utils module of the package contains a utility to plot loss and ANAE statistics. An
example plot is shown in Fig. 3(b), which achieves 6.95% prediction ANAE on test data.

Now the pressure vector can be predicted at unknown angles of attack that were not present in
either of ttr, tva and tte. As examples, we pick an interpolated index 3.75◦, and an extrapolated
index 21◦. The predictions are yielded by running:

sp.predict_new([3.75,21])

2.4.2. TRAJECTORY PREDICTION

The primary difference in a TrajPred run compared to a StatePred run is that each epoch
is sub-divided into batches, with each batch containing a subset of training data trajectories. The
starting index of each of these trajectories is evolved via the linear layer to get predictions for the
rest of each trajectory, and compute training metrics. Validation metrics are computed at the end of
all batches in an epoch, while test metrics are computed at the end of all epochs, as before.

The versatility of the DLKoopman package allows it to run on different kinds of data, which
naturally also includes data sets that have been used in prior literature. The source code contains an

8

DLKOOPMAN: A DEEP LEARNING SOFTWARE PACKAGE FOR KOOPMAN THEORY

Figure 3: (a) Example autoencoder architecture. Dimensionality of the input states x
and reconstructed states x̂ is 200, and that of the encoded states y is
encoded size=50. The encoder is set to have one hidden layer of dimensionality
encoder hidden layers=[100]. The decoder here is the mirror image of the en-
coder, but it can be configured to be otherwise. (b) Example results for prediction ANAE
after training a StatePred model on NACA0012 airfoil pressure data at varying angles
of attack. The plots show prediction ANAE on training and validation data from epochs
100 to 1000, and final prediction ANAE on test data is noted at the top.

example of running TrajPred on data from a system exhibiting a polynomial manifold, described
by the equations ẋ1 = µx1 and ẋ2 = λ

(
x2 − x21

)
, with λ < µ < 0. This has been studied

previously in Brunton et al. (2016) and Lusch et al. (2018), and we use data from the latter. We
trained a TrajPred model on ∼ 10000 trajectories; the results are in the examples/ folder of
the source code and have been omitted here for brevity considerations.

2.5. Hyperparameter search

Both the StatePred and TrajPred contain several arguments / hyperparameters that affect the
architecture and training pipeline. A full list of these can be obtained from the API reference. Setting
suitable values for these hyperparameters is important to achieving good performance. While there
are techniques in literature such as Mendoza et al. (2018); Dey et al. (2020) that automatically
search for the best model to use on given data, they may be challenging to adopt to DLKoopman.
To ease this burden, we provide a hyperparameter search module in the DLKoopman package that is
ready to be used for StatePred and TrajPred. The key idea is that the user can provide ranges
for each hyperparameter to be swept over. Each set of hyperparameter values leads to a particular
model; many such models are then run on the given data and the results compiled and ranked, from
which the user can choose the best model(s).

The examples/ folder in the source code contains tutorials for hyperparameter search. Here,
we briefly run through an example. Suppose the user provides:

9

DLKOOPMAN: A DEEP LEARNING SOFTWARE PACKAGE FOR KOOPMAN THEORY

hyp_options = {
'rank': [3,4,5,6], #4 options
'encoded_size': 50, #1 option
'encoder_hidden_layers': [[200,200],[300,200,100]], #2 options
'numepochs': [200, 300, 400] # 3 options

}

This will result in a total of 4 × 1 × 2 × 3 = 24 sets of hyperparameter values, which will
use different values of rank, encoder hidden layers, and numepochs. All other argu-
ments will be set to the provided values (i.e. encoded size = 50), or defaults if not provided.
Hyperparameter search can then be run as:

run_hyp_search(
dh = dh, # instance of either StatePredDataHandler or

TrajPredDataHandler, depending on the problem↪→

hyp_options = hyp_options,
numruns = 15, # optional
sort_key = 'avg_pred_anae_va' # optional

)

Since a model can take time to run for large data sets, the optional argument numruns allows
the user to specify how many runs they want. In this case, 15 models will be sampled from the total
of 24 possibilities. The optional argument sort key defines the metric to sort the final results by.
In this case, the average prediction ANAE on validation data will be used to rank the models. We
strongly recommend providing validation data via the data handler, as performance on validation
data is a good indicator of the goodness of any model.

Finally, note that if the script is halted (such as the user stopping it forcibly, or other unforeseen
interruptions), intermediate results will be available. This is particularly useful for long runs.

2.6. Miscellaneous notes

The speed of executing individual runs depends on a variety of factors such as the amount of train-
ing data, complexity of the autoencoder network, and the computing platform. DLKoopman uses
Pytorch, and will run on GPUs by default if available. The user can change this default, as well as
several other configuration options such as the choice to use exact eigenvectors vs projected eigen-
vectors for state prediction (Kutz et al. (2016)). These configuration options have been included to
give freedom to the user – they are described under dlkoopman.config in the documentation.

3. Conclusion

We have presented DLKoopman – a software package for Koopman theory that uses a deep learning
autoencoder to learn linear encodings of a system, along with learning the corresponding linear
dynamics. It trains on data from snapshots of any system, and can perform both state prediction and
trajectory prediction. The package is open-source and can be installed as a Python tool. It contains
extensive documentation, examples, and a hyperparameter search module, and introduces a novel
performance metric ANAE. We hope that DLKoopman benefits many and becomes widely used as
a tool for data-driven analysis and behavioral predictions of dynamical systems. Future work will
include adding features such as control inputs and additional losses.

10

DLKOOPMAN: A DEEP LEARNING SOFTWARE PACKAGE FOR KOOPMAN THEORY

Acknowledgments

This material is based upon work supported by the United States Air Force and DARPA under
Contract No. FA8750-20-C-0534. Any opinions, findings and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily reflect the views of
the United States Air Force and DARPA. Distribution Statement A, “Approved for Public Release,
Distribution Unlimited.”

The authors would like to thank Ethan Lew and Pachapakesan Shyamshankar for helpful tech-
nical discussions and insights, and Matt Le Beau for administrative help.

References

D. J. Alford-Lago, C. W. Curtis, A. T. Ihler, and O. Issan. Deep learning enhanced dynamic mode
decomposition. Chaos: An Interdisciplinary Journal of Nonlinear Science, 32(3):033116, 2022.
doi: 10.1063/5.0073893.

Omri Azencot, N. Benjamin Erichson, Vanessa Lin, and Michael Mahoney. Forecasting sequential
data using consistent koopman autoencoders. In Proceedings of the 37th International Confer-
ence on Machine Learning, volume 119, pages 475–485, 13–18 Jul 2020.

Steven L. Brunton, Bingni W. Brunton, Joshua L. Proctor, and J. Nathan Kutz. Koopman invariant
subspaces and finite linear representations of nonlinear dynamical systems for control. PLOS
ONE, 11(2):1–19, 02 2016. doi: 10.1371/journal.pone.0150171.

Marko Budisic. Koopman mode decomposition. https://github.com/mbudisic/
koopman, 2017.

Kathleen Champion, Bethany Lusch, J. Nathan Kutz, and Steven L. Brunton. Data-driven discovery
of coordinates and governing equations. Proceedings of the National Academy of Sciences, 116
(45):22445–22451, 2019. doi: 10.1073/pnas.1906995116.

PyTorch Contributors. torch.linalg.eig — pytorch 1.13 documentation, 2022a. URL https://
pytorch.org/docs/stable/generated/torch.linalg.eig.html.

PyTorch Contributors. torch.linalg.svd — pytorch 1.13 documentation, 2022b. URL https:
//pytorch.org/docs/stable/generated/torch.linalg.svd.html.

Chris C. Critzos, Harry H. Heyson, and jr Boswinkle, Robert W. Aerodynamic characteristics of
naca 0012 airfoil section at angles of attack from 0 deg to 180 deg. Technical report, National
Aeronautics and Space Administration, 1955.

Steven Dahdah and James Richard Forbes. decargroup/pykoop. https://github.com/
decargroup/pykoop, 2022.

Nicola Demo, Marco Tezzele, and Gianluigi Rozza. PyDMD: Python Dynamic Mode Decomposi-
tion. The Journal of Open Source Software, 3(22):530, 2018. doi: https://doi.org/10.21105/joss.
00530.

Sourya Dey. Dynamic mode decomposition and koopman theory. arXiv preprint arXiv:2211.07561,
2022.

11

https://github.com/mbudisic/koopman
https://github.com/mbudisic/koopman
https://pytorch.org/docs/stable/generated/torch.linalg.eig.html
https://pytorch.org/docs/stable/generated/torch.linalg.eig.html
https://pytorch.org/docs/stable/generated/torch.linalg.svd.html
https://pytorch.org/docs/stable/generated/torch.linalg.svd.html
https://github.com/decargroup/pykoop
https://github.com/decargroup/pykoop

DLKOOPMAN: A DEEP LEARNING SOFTWARE PACKAGE FOR KOOPMAN THEORY

Sourya Dey. DLKoopman. https://pypi.org/project/dlkoopman/, 2023.

Sourya Dey, Saikrishna C. Kanala, Keith M. Chugg, and Peter A. Beerel. Deep-n-cheap: An au-
tomated search framework for low complexity deep learning. In Proceedings of the 12th Asian
Conference on Machine Learning (ACML), volume 129, pages 273–288. Proceedings of Machine
Learning Research (PMLR), Nov 2020.

Nicholas Geneva and Nicholas Zabaras. Transformers for modeling physical systems. Neural
Networks, 146:272–289, 2022. doi: 10.1016/j.neunet.2021.11.022.

Eurika Kaiser and Brian de Silva. PyKoopman. https://pypi.org/project/
pykoopman/, 2020.

B. O. Koopman. Hamiltonian systems and transformation in hilbert space. Proceedings of the
National Academy of Sciences, 17(5):315–318, 1931. doi: 10.1073/pnas.17.5.315.

J. Nathan Kutz, Steven L. Brunton, Bingni W. Brunton, and Joshua L. Proctor. Dynamic Mode
Decomposition. Society for Industrial and Applied Mathematics, Philadelphia, PA, 2016. doi:
10.1137/1.9781611974508. URL https://epubs.siam.org/doi/abs/10.1137/1.
9781611974508.

Ethan James Lew. AutoKoopman. https://pypi.org/project/autokoopman/, 2023.

Qianxiao Li, Felix Dietrich, Erik M. Bollt, and Ioannis G. Kevrekidis. Extended dynamic mode
decomposition with dictionary learning: A data-driven adaptive spectral decomposition of the
koopman operator. Chaos: An Interdisciplinary Journal of Nonlinear Science, 27(10), 2017. doi:
10.1063/1.4993854.

Bethany Lusch, J. Nathan Kutz, and Steven L. Brunton. Deep learning for universal lin-
ear embeddings of nonlinear dynamics. Nature Communications, 9, 2018. doi: 10.1038/
s41467-018-07210-0.

Andreas Mardt, Luca Pasquali, Hao Wu, and Frank Noé. VAMPnets for deep learning of molecular
kinetics. Nature Communications, 9, 2018. doi: 10.1038/s41467-017-02388-1.

Hector Mendoza, Aaron Klein, Matthias Feurer, Jost Tobias Springenberg, Matthias Urban, Michael
Burkart, Max Dippel, Marius Lindauer, and Frank Hutter. Towards automatically-tuned deep
neural networks. In AutoML: Methods, Sytems, Challenges, chapter 7, pages 141–156. Springer,
Dec 2018.

Samuel E. Otto and Clarence W. Rowley. Linearly recurrent autoencoder networks for learning
dynamics. SIAM Journal on Applied Dynamical Systems, 18(1):558–593, 2019. doi: 10.1137/
18M1177846.

Naoya Takeishi, Yoshinobu Kawahara, and Takehisa Yairi. Learning koopman invariant subspaces
for dynamic mode decomposition. In Proceedings of the 31st International Conference on Neural
Information Processing Systems, pages 1130—-1140, 2017.

Jonathan H. Tu, Clarence W. Rowley, Dirk M. Luchtenburg, Steven L. Brunton, and J. Nathan
Kutz. On dynamic mode decomposition: Theory and applications. Journal of Computational
Dynamics, 1(2):391–421, 2014.

12

https://pypi.org/project/dlkoopman/
https://pypi.org/project/pykoopman/
https://pypi.org/project/pykoopman/
https://epubs.siam.org/doi/abs/10.1137/1.9781611974508
https://epubs.siam.org/doi/abs/10.1137/1.9781611974508
https://pypi.org/project/autokoopman/

DLKOOPMAN: A DEEP LEARNING SOFTWARE PACKAGE FOR KOOPMAN THEORY

Goutham Voodarla. Analysis of naca0012 airfoil for different angle of attacks. https://skill-
lync.com/student-projects/analysis-of-naca0012-airfoil-for-different-angle-of-attacks, Aug 2021.

Christoph Wehmeyer and Frank Noé. Time-lagged autoencoders: Deep learning of slow collective
variables for molecular kinetics. The Journal of Chemical Physics, 148(24):241703, 2018. doi:
10.1063/1.5011399.

Matthew O. Williams, Ioannis G. Kevrekidis, and Clarence W. Rowley. A data–driven approxima-
tion of the koopman operator: Extending dynamic mode decomposition. Journal of Nonlinear
Science, 25(6):1307–1346, 2015.

Enoch H. Yeung, Soumya Kundu, and Nathan O. Hodas. Learning deep neural network representa-
tions for koopman operators of nonlinear dynamical systems. arXiv preprint arXiv:1708.06850,
2017.

13

	Introduction
	Mathematical background
	Highlights of DLKoopman
	State Prediction
	Trajectory Prediction

	Related Work

	The DLKoopman package
	Training
	New predictions
	Metrics
	Example Applications
	State Prediction
	Trajectory Prediction

	Hyperparameter search
	Miscellaneous notes

	Conclusion

