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Abstract
This paper proposes an algorithm for motion planning among dynamic agents using adaptive con-
formal prediction. We consider a deterministic control system and use trajectory predictors to
predict the dynamic agents’ future motion, which is assumed to follow an unknown distribution.
We then leverage ideas from adaptive conformal prediction to dynamically quantify prediction
uncertainty from an online data stream. Particularly, we provide an online algorithm that uses de-
layed agent observations to obtain uncertainty sets for multistep-ahead predictions with probabilis-
tic coverage. These uncertainty sets are used within a model predictive controller to safely navigate
among dynamic agents. While most existing data-driven prediction approaches quantify prediction
uncertainty heuristically, we quantify the true prediction uncertainty in a distribution-free, adap-
tive manner that even allows to capture changes in prediction quality and the agents’ motion. We
empirically evaluate our algorithm on a case study where a drone avoids a flying frisbee.
Keywords: MPC, dynamic environments, uncertainty quantification, and conformal prediction.

1. Introduction

Motion planning of autonomous systems in dynamic environments requires the system to reason
about uncertainty in its environment, e.g., a self-driving car needs to reason about uncertainty in the
motion of other vehicles, and a mobile robot navigating a crowded space needs to assess uncertainty
of nearby pedestrians. These applications are safety critical, as the agents’ intentions are unknown,
and systems must be able to plan reactive behaviors in response to an increase in uncertainty.

Existing works include predictive and reactive approaches, e.g., multi-agent navigation via
the dynamic window approach Fox et al. (1997); Mitsch et al. (2013) or navigation functions
Dimarogonas et al. (2006); Tanner et al. (2003). Reactive approaches typically consider simpli-
fied dynamics and do not optimize performance. Predictive approaches incorporate predictions of
the agents’ future motion and can optimize performance. Interactive approaches take inter-agent
interaction into account Kretzschmar et al. (2016); Everett et al. (2021), while non-interactive ap-
proaches ignore potential interactions Trautman and Krause (2010); Du Toit and Burdick (2011).
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While many prior works assume perfect knowledge of the environment, an important challenge
is to account for uncertainty in prediction. Existing works address the problem by making simplify-
ing assumptions, such as linear system dynamics and bounded or Gaussian uncertainty distributions
Aoude et al. (2013); Thomas et al. (2021); Renganathan et al. (2020). However, addressing the
problem in its full generality for nonlinear dynamics and arbitrary distributions is an open problem.

In this paper, we use trajectory predictors to predict the agents’
future motion, and quantify prediction uncertainty in an adaptive
and online manner from past agent observations of a single tra-
jectory. Particularly, we use tools from the adaptive conformal
prediction (ACP) literature Gibbs and Candes (2021); Gibbs and
Candès (2022); Zaffran et al. (2022) to construct prediction regions
that quantify multistep-ahead prediction uncertainty. Based on this
quantification, we formulate an uncertainty-informed motion plan-
ner. Our contributions are as follows:

• We propose an algorithm that adaptively quantifies uncertainty of trajectory predictors using
ACP. Our algorithm is distribution-free and applies to a broad class of trajectory predictors,
providing average probabilistic coverage.

• We propose a model predictive controller (MPC) that leverages uncertainty quantifications to
plan probabilistically safe paths around dynamic obstacles. Importantly, our adaptive algo-
rithm enables us to capture and react to changes in prediction quality and the agents’ motion.

• We provide empirical evaluations of a drone avoiding a flying frisbee.

1.1. Related Work

Planning in dynamic environments has found broad interest, and non-interactive sampling-based
motion planner were presented in Phillips and Likhachev (2011); Renganathan et al. (2022); Aoude
et al. (2013); Majd et al. (2021); Kalluraya et al. (2022), while Du Toit and Burdick (2011); Wei
et al. (2022); Wang et al. (2022); Thomas et al. (2021) propose non-interactive receding horizon
planning algorithms. However, accounting for uncertainty in the agent motion is challenging.

Intent-driven models for planning among human agents have estimated agent uncertainty using
Bayesian inference Fisac et al. (2018); Nakamura and Bansal (2022); Fridovich-Keil et al. (2020);
Bansal et al. (2020). Model predictive control was also used in a stochastic setting to account
for uncertainty under the assumption of bounded or Gaussian uncertainty Fan et al. (2021); Nair
et al. (2022); Yoon et al. (2021). Data-driven trajectory predictors can provide mean and variance
information of the predictions, which can be approximated as a Gaussian distribution Busch et al.
(2022) and used within stochastic planning frameworks Choi et al. (2017); Omainska et al. (2021);
Fulgenzi et al. (2008). These approaches quantify prediction uncertainty in a heuristic manner for
real systems as the authors make certain assumptions on prediction algorithms and agent models and
its distribution, e.g., being Gaussian. Distributionally robust approaches such as Wei et al. (2022)
are distribution free and can ensure safety at the cost of conservatism.

Data-driven trajectory predictors, such as RNNs or LSTMs, provide no information about pre-
diction uncertainty which can lead to unsafe decisions. For this reason, prediction monitors were
recently presented in Farid et al. (2022); Luo et al. (2021) to monitor prediction quality. Especially
Luo et al. (2021) used conformal prediction to obtain guarantees on the predictor’s false negative
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rate. Conformal prediction was further used to obtain estimates on constraint satisfaction via neural
network predictors Dietterich and Hostetler (2022); Bortolussi et al. (2019); Qin et al. (2022); Lin-
demann et al. (2022b). Conceptually closest to our work are Chen et al. (2020); Lindemann et al.
(2022a) where prediction uncertainty quantifications are obtained using conformal prediction, and
then utilized to design model predictive controllers. While the algorithm in Chen et al. (2020) can
not provide end-to-end safety guarantees, Lindemann et al. (2022a) can provide probabilistic safety
guarantees for the planner. However, changes in the distribution that describes the agents’ motion
can not be accounted for, e.g., when the agents’ motion changes depending on the motion of the
control system. Another distinct difference is that offline trajectory data is needed, while we obtain
uncertainty quantifications in an adaptive manner from past agent observations of a single trajectory.

2. Problem Formulation and Preliminaries

The dynamics of our autonomous system are governed by the discrete-time dynamical system,

xt+1 = f(xt, ut), x0 := ζ (1)

where xt ∈ X ⊆ Rn and ut ∈ U ⊆ Rm denote the state and the control input at time t ∈ N ∪ {0},
respectively. The sets U and X denote the set of permissible control inputs and the workspace
of the system, respectively. The measurable function f : Rn × Rm → Rn describes the system
dynamics and ζ ∈ Rn is the initial condition of the system. For brevity, let x := (x0, x1, . . .) denote
the trajectory of (1) under a given control sequence u := (u0, u1, . . .).

The system operates in an environment with N dynamic agents whose trajectories are a priori
unknown. LetD be an unknown distribution over agent trajectories, i.e., let Y := (Y0, Y1, . . .) ∼ D
describe a random trajectory where the joint agent state Yt := (Yt,1, . . . , Yt,N ) at times t ∈ N∪ {0}
is drawn from RNn, i.e., Yt,j is the state of agent j at time t. For instance, Yt can denote the uncertain
two-dimensional positions of N pedestrians at time t. Modeling dynamic agents by a distribution
D provides great flexibility, andD can generally describe the motion of Markov decision processes.
We make no other assumptions on the distributionD, and in our proposed algorithm we will predict
states (Yt+1, . . . , Yt+H) for a prediction horizon of H from (Y0, . . . , Yt) and quantify prediction
uncertainty using ideas from ACP.

Problem 1 Given the system in (1), the unknown random trajectories Y ∼ D, and a failure proba-
bility δ ∈ (0, 1), design the control inputs ut such that the Lipschitz continuous constraint function
c : Rn × RnN → R is satisfied1 with a probability of at least 1− δ on average, i.e., that

lim
T→∞

1

T

T∑
t=1

Prob
(
c(xt, Yt) ≥ 0

)
≥ 1− δ (2)

We note that our previous work Lindemann et al. (2022a) considers a similar problem formula-
tion, but where we aim for pointwise satisfaction of the constraint function c, i.e., Prob(c(xt, Yt) ≥
0) ≥ 1 − δ for all t ≥ 0. In Lindemann et al. (2022a), however, it is assumed that an offline cali-
bration dataset drawn from D is available, which we will not assume here. This makes the problem

1. For an obstacle avoidance constraint, like c(x, y) := ∥x − y∥ − 0.5 ≥ 0, the Lipschitz constant is 1. We implicitly
assume that the constraint function is initially satisfied, i.e., that c(x0, y0) ≥ 0.
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more challenging so that we aim for the average probabilistic guarantee in equation (2). Addition-
ally, we allow the distribution D to depend on x, e.g., a pedestrian’s behavior may change if a car
comes too close, which is not possible in Lindemann et al. (2022a). This work is a step towards the
implementation of a general framework that can adapt to such changes in the agent distribution.

To address Problem 1, we use trajectory predictors to predict the motion of the agents (Y0, Y1, . . .)
to enforce the constraint (2) within a MPC framework. In Lindemann et al. (2022a), we assumed
the availability of calibration data from D to build prediction regions that quantify uncertainty of
trajectory predictors. In this setting, we can collect data online to adapt our uncertainty sets based
on past performance of our predictor using ACP without any assumptions on the distribution of the
uncertainty and exchangeability of the validation and training dataset.

Remark 1 We could parameterize the distribution D by the trajectory x to model potential inter-
actions between system and agents. This way, we can react to cases where the trajectory predictor
(introduced next) is trained without information of x, i.e., without taking interactions into account.

Trajectory Predictors: Given observations (Y0, . . . , Yt) at time t, we want to predict future states
(Yt+1, . . . , Yt+H) for a prediction horizon of H . Assume that PREDICT is a function that maps
observations (Y0, . . . , Yt) to predictions (Ŷ 1

t , . . . , Ŷ
H
t ) of (Yt+1, . . . , Yt+H). Note that t in Ŷ τ

t

denotes the time at which the prediction is made, while τ indicates how many steps we predict
ahead. In principle, PREDICT can be a classical auto-regressive model or a neural network based
method.

While our proposed problem solution is compatible with any trajectory predictor PREDICT, we
focus in the case studies on real-time updating strategies like sliding linear predictors with extended
Kalman filter. Extracting a dynamics model from data is challenging, especially when the available
data is limited, noisy, and partial. Takens (1981) showed that the method of delays can be used to
reconstruct qualitative features of the full-state, phase space from delayed partial observations. By
building on our previous work using time delay embedding in dynamic obstacle avoidance (Wei
et al. (2022)), we employ a linear predictor based on spatio-temporal factorization of the delayed
partial observations as the pairing trajectory predictor (Dixit et al., 2022, Appendix).
Adaptive Conformal Prediction (ACP): Conformal prediction is used to obtain prediction regions
for predictive models, e.g., neural networks, without making assumptions on the underlying distri-
bution or the predictive model Vovk et al. (2005); Shafer and Vovk (2008); Angelopoulos and Bates
(2021). Let R1, . . . , Rt+1 be t+1 independent and identically distributed (i.i.d.) random variables.
The goal in conformal prediction is to obtain a prediction region of Rt+1 based on R1, . . . , Rt. For-
mally, given a failure probability δ ∈ (0, 1), we want to obtain a prediction region Rt+1 ≤ C such
that

Prob(Rt+1 ≤ C) ≥ 1− δ.

We refer to Ri also as the nonconformity score. For supervised learning, we can select Ri :=
∥Zi−µ(Xi)∥where µ is the predictor so that a large nonconformity score indicates a poor predictive
model. By a quantile argument, see (Tibshirani et al., 2019, Lemma 1), we can obtain C to be the
(1 − δ)th quantile of the empirical distribution of the values R1, . . . , Rt and ∞. Calculating the
(1− δ)th quantile can be done by assuming that R̄1, . . . , R̄t correspond to the values of R1, . . . , Rt,
but instead sorted in non-decreasing order (R̄ refers to the order statistic ofR), i.e., for each R̄i there
exists exactly one Rj such that R̄i = Rj and R̄i+1 ≥ R̄i. By setting q := ⌈(t+ 1)(1− δ)⌉ ≤ t, we
obtain the (1− δ)th quantile as C := R̄q, i.e., the qth smallest nonconformity score.
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The underlying assumption in conformal prediction is that R1, . . . , Rt+1 are exchangeable (ex-
changeability includes i.i.d. data). This is an unreasonable assumption for time-series predic-
tion where Rt may denote the nonconformity score at time t. To address this issue, ACP was
studied in Gibbs and Candes (2021); Gibbs and Candès (2022); Zaffran et al. (2022); Bastani
et al. (2022). The idea is now to obtain a prediction region Rt+1 ≤ Ct+1 adaptively so that
Prob(Rt+1 ≤ Ct+1) ≥ 1 − δ for each time t. In fact, the prediction region is now obtained us-
ing Ct+1 := R̄qt+1 where qt+1 := ⌈(t+ 1)(1− δt+1)⌉ depends on the variable δt+1 that is adapted
online based on observed data. In this way, Ct+1 becomes a tuneable parameter by the choice of
δt+1. To adaptively obtain the parameter δt+1, ideas from online learning are used and we update
δt+1 as

δt+1 := δt + γ(δ − et) with et :=

{
0 if rt ≤ Ct

1 otherwise
(3)

where we denote by rt the observed realization of Rt and where γ is a learning rate. The idea is to
use δt+1 to adapt to changes in the distribution of R1, . . . , Rt+1 over time by using information on
how much Ct overcovered (rt ≪ Ct) or undercovered (rt ≫ Ct) in the past.

Remark 2 One of the main performance enhancers is the proper choice of γ. In Gibbs and Candès
(2022), the authors present fully adaptive conformal prediction (FACP) where a set of learning
rates {γi}1≤i≤k is used in parallel from which the best γ is selected adaptively. Based on past
performance (using a reweighting scheme that evaluates which γi provided the best coverage), the
authors maintain a belief p(i)t at each time step t for each {δ(i)t }1≤i≤k. The new update laws are

δ
(i)
t+1 := δ

(i)
t + γi(δ − e(i)t ) with e

(i)
t :=

{
0 if rt ≤ C(i)

t

1 otherwise

where C(i)
t := R̄

q
(i)
t

with q(i)t := ⌈(t + 1)(1 − δ(i)t )⌉, while Ct := R̄qt with qt := ⌈(t + 1)(1 −∑k
i=1 p

(i)
t δ

(i)
t )⌉.

3. Adaptive Conformal Prediction Regions for Trajectory Predictions

Recall that we can obtain predictions (Ŷ 1
t , . . . , Ŷ

H
t ) at time t of future agent states (Yt+1, . . . , Yt+H)

from past observations (Y0, . . . , Yt) using the PREDICT function. Note, however, that these point
predictions contain no information about prediction uncertainty and can hence not be used to reason
about the safety constraint (2). To tackle this issue, we aim to construct prediction regions for
(Yt+1, . . . , Yt+H) using ideas from ACP.

To obtain prediction regions for (Yt+1, . . . , Yt+H), we could consider the nonconformity score
∥Yt+τ − Ŷ τ

t ∥ at time t that captures the multistep-ahead prediction error for each τ ∈ {1, . . . ,H}.
A large nonconformity score indicates that the prediction Ŷ τ

t of Yt+τ is not accurate, while a small
score indicates an accurate prediction. For each τ , we wish to obtain a prediction region using Cτ

t

that is again defined by an update variable δτt . Note, however, that we can not evaluate ∥Yt+τ − Ŷ τ
t ∥

at time t as only measurements (Y0, . . . , Yt) are known, but not (Yt+1, . . . , Yt+H). Consequently,
we cannot use the update rule (3) to update δτt , as the error eτt would depend on checking if ∥Yt+τ −
Ŷ τ
t ∥ ≤ Cτ

t . To address this issue, we define the time lagged nonconformity score

Rτ
t := ∥Yt − Ŷ τ

t−τ∥
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that we can evaluate at time t so that we can use the update rule (3). This nonconformity scoreRτ
t is

time lagged in the sense that, at time t, we evaluate the τ step-ahead prediction error that was made
τ time steps ago. We can now update the parameter δτt+1 that defines Cτ

t+1 as

δτt+1 := δτt + γ(δ − eτt ) with eτt :=

{
0 if ∥Yt − Ŷ τ

t−τ∥ ≤ Cτ
t

1 otherwise.
(4)

To compute Cτ
t+1, note that we can not compute Rτ

1 , . . . , R
τ
τ−1. Therefore, with minor change,

we let Cτ
t+1 be the ⌈(t− τ + 1)(1− δτt+1)⌉th smallest value of (Rτ

τ , . . . , R
τ
t )

2.
By obtaining a prediction region for Rτ

t+1 using ACP, we obtain a prediction region for the τ
step-ahead prediction error that was made τ − 1 time steps ago, i.e., for ∥Yt+1 − Ŷ τ

t+1−τ∥. Under
the assumption that Rτ

t+1 and Rτ
t+τ are independent and identically distributed, Rτ

t+1 serves as a
prediction region for τ step-ahead prediction error that was made 0 time steps ago (now at time
t), i.e., for Rτ

t+τ which encodes ∥Yt+τ − Ŷ τ
t ∥. Naturally, in our setting Rτ

t+1 and Rτ
t+τ are not

independent and identically distributed. However, by adapting the prediction regions based on
the performance of the multi-step predictions using ACP, we can still obtain on-average coverage
guarantees, albeit weaker than the point-wise guarantees provided by conformal predictions. We
remark that for the theoretical guarantees that we provide in the next section, only the one step-
ahead prediction errors are relevant.

Corollary 3 Let γ be a learning rate, δ10 ∈ (0, 1) be an initial value for the recursion (4), and T
be the number of times that we compute the recursion (4). Then, for the onestep-ahead prediction
errors, it holds that

1− δ − p1 ≤
1

T

T−1∑
t=0

Prob(∥Yt+1 − Ŷ 1
t ∥ ≤ C1

t+1) ≤ 1− δ + p2 (5)

with constants p1 :=
δ10+γ
Tγ , p2 :=

(1−δ10)+γ
Tγ so that limT→∞ p1 = 0 and limT→∞ p2 = 0.

Proof Since the probability of an event is equivalent to the expected value of the indicator function
of that event, it follows by the definition of the error e1t+1 that

Prob(∥Yt+1 − Ŷ 1
t ∥ ≤ C1

t+1) = E[1− e1t+1] = 1− E[e1t+1]. (6)

For a given initialization δτ0 and learning rate γ, we know from (Gibbs and Candes, 2021, Propo-
sition 4.1) that the following bound holds (with probability one) for the misclassification errors

−(1− δ10) + γ

Tγ
≤ 1

T

T−1∑
t=0

e1t+1 − δ ≤
δ10 + γ

Tγ
=⇒

∣∣∣ 1
T

T−1∑
t=0

e1t+1− δ
∣∣∣ ≤ max(δ10 , 1− δ10) + γ

Tγ
.

2. Instead of keeping track of all data, we will choose a sliding window of the N most recent data. For all prediction
regions, we will then consider (Rτ

t−N , . . . , Rτ
t ) and compute Cτ

t+1 as the ⌈(N + 1)(1− δτt+1)⌉th smallest value.
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Hence, taking the expectation of the above two-sided inequality, we get that

−(1− δ10) + γ

Tγ
≤ 1

T

T−1∑
t=0

E[e1t+1]− δ ≤
δ10 + γ

Tγ
,

(a)⇔ −(1− δ10) + γ

Tγ
≤ 1

T

T−1∑
t=0

(
1− Prob(∥Yt+1 − Ŷ 1

t ∥ ≤ C1
t+1)

)
− δ ≤ δ10 + γ

Tγ
,

⇔ 1− δ + (1− δ10) + γ

Tγ
≥ 1

T

T−1∑
t=0

Prob(∥Yt+1 − Ŷ 1
t ∥ ≤ C1

t+1) ≥ 1− δ − δ10 + γ

Tγ
,

where we used equation (6) for the equivalence in (a).

Remark 4 The above result can be similarly extended to the FACP case with a set of candidate
learning rates, γ, (Gibbs and Candès, 2022, Theorem 3.2).

Example 1 To illustrate these multistep-ahead prediction regions, consider a planar double pen-
dulum whose dynamics are governed by chaotic, nonlinear dynamics that are sensitive to the ini-
tial condition (Shinbrot et al., 1992). We study the predictions made by a linear predictor that
uses noisy observations of the position of the double pendulum (Dixit et al., 2022, Appendix) and
use ACP to predict the uncertainty in the predictions. Both the trajectory predictor and the un-
certainty quantification using ACP use online data from a single trajectory. ACP provides the
multi-step errors in the linear predictions with a coverage level of δ = 0.1, and learning rates
γ =

(
0.0008 0.0015 0.003 0.005 0.009 0.017 0.03 0.05 0.08

)
.

Figure 1 compares the 1-step and 6-step ahead error prediction regions to the true multi-
step errors for two states, the second mass position, x2, y2. The percentages of one-step errors
that are incorrectly predicted, i.e., e1t = 1, for the positions of each mass, x1, x2, y1, y2 are
2.36%, 0.94%, 1.57%, 1.73% respectively. We can see the effects of adaptation as the ACP pre-
diction regions are larger in areas of poor performance of the linear predictor (and consequently
higher error in the prediction) and smaller in regions where the linear predictor performs well. We
note that the miscoverage levels are lower than the expected miscoverage when δ = 0.1. This is
because the learning rates γ used are small, because of which the adaptation is slower. As the
learning rate becomes larger, the adaptation is faster and the miscoverage levels will be closer to
10%. In practice, we found that higher learning rates lead to high variations in the prediction sets.

4. Uncertainty-Informed Model Predictive Control

Based on the obtained uncertainty quantification from the previous section, we propose an uncertainty-
informed model predictive controller (MPC) that uses predictions Ŷ τ

t and adaptive predictionsCτ
t+1.

The underlying optimization problem that is solved at every time step t is:

min
(ut,...,ut+H−1)

t+H−1∑
k=t

J(xk+1, uk) (7a)

s.t. xk+1 = f(xk, uk), k ∈ {t, . . . , t+H − 1} (7b)

c(xt+τ , Ŷ
τ
t ) ≥ LCτ

t+1, τ ∈ {1, . . . ,H} (7c)

uk ∈ U , xk+1 ∈ X , k ∈ {t, . . . , t+H − 1} (7d)
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Figure 1: The multi-step prediction errors are shown for two of the six states of a double pendulum
(x2, y2). ACP can correctly predict regions of high and low error (90% coverage regions)
by adjusting the prediction quantile using update law (3). The orange lines are the true
multi-step prediction errors and the blue areas are the error regions predicted by ACP.

where L is the Lipschitz constant of the constraint function c, J is a step-wise cost function, and
ut, . . . , ut+H−1 is the control sequence. The optimization problem in (7) is convex if the functions
J and f are convex, the function c is convex in its first argument, and the sets U and X are convex.

Based on this optimization problem, we propose a receding horizon control strategy in Algo-
rithm 1. In line 1 of Algorithm 1, we initialize the parameter δt0 simply to δ. Lines 2-11 present
the real-time planning loop by: 1) updating the states xt and yt and calculating new predictions Ŷ τ

t

(lines 3-4), 2) computing the adaptive nonconformity scores Cτ
t+1 (lines 5-9), and 3) solving the

optimization problem in (7) of which we apply only ut (lines 10-11).

Algorithm 1 MPC with ACP Regions
Input: Failure probability δ, prediction horizon H , learning rate γ
Output: Control input ut(xt, Y0, . . . , Yt) at each time t

1: δτ0 ← δ for τ ∈ {1, . . . ,H}
2: for t from 0 to∞ do # real-time motion planning loop
3: Update xt and Yt
4: Obtain predictions Ŷ τ

t for τ ∈ {1, . . . ,H}
5: for τ from 1 to H do # compute ACP regions
6: δτt+1 ← δτt + γ(δ − eτt )
7: Rτ

t := ∥Yt − Ŷ τ
t−τ∥

8: q ←
⌈
(t+ 1)(1− δτt+1)

⌉
9: Set Cτ

t+1 as the qth smallest value of (Rτ
τ , . . . , R

τ
t )

10: Calculate controls ut, ..., ut+H−1 as the solution of (7)
11: Apply ut to (1)

Remark 5 While Algorithm 1 uses a single learning rate, one can similarly extend the above algo-
rithm to be fully adaptive using a candidate set of {γi}1≤i≤k without loss of generality.
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Remark 6 Gibbs and Candes (2021) assume that when δt+1 ≤ 0, Ct+1 → ∞. This means that
when the algorithm requires robust behavior, the∞-prediction region ensures that any prediction at
the next time-step should be correctly classified. For a physical system, there are limits on how much
the dynamic obstacle can accelerate in one time-step which gives us an upper bound Rmax <∞ on
the worst-case error. In practice, we enforce 0 ≤ δt+1 ≤ 1 with Ct+1 ≤ Rmax.

Theorem 7 Let γ be a learning rate, δ10 ∈ (0, 1) be an initial value for the recursion (4), and
T be the number of times that we compute the recursion (4). If the optimization problem (7) in
Algorithm 1 is recursively feasible, then Algorithm 1 will lead to

1

T

T−1∑
t=0

Prob
(
c(xt+1, Yt+1) ≥ 0

)
≥ 1− δ − p1 (8)

with constant p1 :=
δ10+γ
Tγ so that limT→∞ p1 = 0.

Proof By assumption, the optimization problem in (7) is feasible at each time t ∈ {0, 1, . . .}. Due
to constraint (7c) and Lipschitz continuity of c, it hence holds that

0 ≤ c(xt+1, Ŷ
1
t )− LC1

t+1 ≤ c(xt+1, Yt+1) + L∥Yt+1 − Ŷ 1
t ∥ − LC1

t+1 (9)

at each time t ∈ {0, 1, . . .}. Consequently, note that ∥Yt+1 − Ŷ 1
t ∥ ≤ C1

t+1 is a sufficient condition
for c(xt+1, Yt+1) ≥ 0. In a next step, we can derive that

Prob
(
c(xt+1, Yt+1) ≥ 0

) (a)
= Prob

(
c(xt+1, Yt+1) ≥ 0

∣∣ ∥Yt+1 − Ŷ 1
t ∥ ≤ C1

t

)
Prob(∥Yt+1 − Ŷ 1

t ∥ ≤ C1
t )

+ Prob
(
c(xt+1, Yt+1) ≥ 0

∣∣ ∥Yt+1 − Ŷ 1
t ∥ > C1

t

)
Prob(∥Yt+1 − Ŷ 1

t ∥ > C1
t )

(b)

≥ Prob
(
c(xt+1, Yt+1) ≥ 0

∣∣ ∥Yt+1 − Ŷ 1
t ∥ ≤ C1

t

)
Prob(∥Yt+1 − Ŷ 1

t ∥ ≤ C1
t )

(c)
= Prob(∥Yt+1 − Ŷ 1

t ∥ ≤ C1
t )

where the equality in (a) follows from the law of total probability, while the inequality in (b) fol-
lows from the nonnegativity of probabilities. The equality in (c) follows as Prob(c(xt+1, Yt+1) ≥
0 | ∥Yt+1 − Ŷ 1

t ∥ ≤ C1
t ) = 1 since ∥Yt+1 − Ŷ 1

t ∥ ≤ C1
t implies c(xt+1, Yt+1) ≥ 0 according to (9).

We now use the result from Corollary 3 to complete the proof.

5. Case Studies: Multirotor operating in small angle regime dodging a flying frisbee

We compare the performance of the MPC with ACP uncertainty prediction regions with our past
work that uses a distributionally robust approach to uncertainty quantification (Wei et al., 2022). We
use the same multirotor operating in the presence of a moving obstacle example with a MPC planner.
The multirotor is constrained to operate within the state constraints θ ∈ [−0.45, 0.45] radians and
φ ∈ [−0.45, 0.45] radians. We use the following standard multirotor linear dynamics,

ẍ = −gθ, ÿ = gφ, z̈ = u1 − g, φ̈ =
u2
Ixx

, θ̈ =
u3
Iyy

, ψ̈ =
u4
Izz

, (10)

where the planner control inputs u1, u2, u3, u4 correspond to the thrust force in the body frame and
three moments. The vehicle’s moments of inertia are Ixx = 0.0075kgm2, Iyy = 0.0075kgm2, Izz =

9
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Case δ 0.025 0.05
UQ method Proposed Wei et al. (2022) w/EKF Proposed Wei et al. (2022) w/EKF
%Feas. 83.8 87.4 97.1 80.9 90.3 97.6

Frisbee %Succ. 99.2 100 100 100 100 100
w/drag dmin 2.91 14.2 5.27 2.74 4.97 4.25

σ(dmin) 1.25 2.04 1.28 1.3 1.97 1.11

Table 1: Summary of results from MC simulations of system (10). We
used FACP for predicting uncertainty sets with learning rates γ =
{0.0008, 0.0015, 0.003, 0.005, 0.009, 0.017, 0.03, 0.05, 0.08, 0.13} and using the
last 30 measurements of the obstacle.

0.013kgm2. The MPC planner has a horizon length of 10 steps and the planner is updated at 20 Hz.
It is implemented through a Sequential Convex Programming approach (Morgan et al., 2014).

Numerical simulations of the proposed MPC planner with ACP regions and dynamics (10) are
presented as it avoids a Frisbee that is thrown at the drone from various initial positions, velocities,
and rotation speed. The Frisbee is modeled following Hummel (2003), and we implement linear
predictions of the trajectory arising from its nonlinear dynamics.

We conducted 1000 Monte Carlo simulations per allowed failure probability level δ to com-
pare the numerical feasibility, percentage of success in obstacle avoidance (if the MPC planner is
feasible), and the planner’s conservativeness, as measured by the minimum distance between the
obstacle and agent centers, i.e., d̄min and σ(dmin) describe the average and standard deviation of
this minimum distance across simulations, respectively. We compare three uncertainty quantifica-
tion techniques in Table 1, (1) The proposed ACP method (Algorithm 1), (2) empirical bootstrap
prediction that accounts for the prediction uncertainty using the empirical bootstrap variance (Wei
et al., 2022), and (3) the sliding linear predictor with an Extended Kalman Filter (EKF) that provides
Gaussian approximations of the obstacle prediction uncertainty (Dixit et al., 2022, Appendix).

Discussion: Table 1 shows that our proposed method can successfully avoid the Frisbee, while
using a significantly smaller average divergence distance (dmin, σ(dmin)) from the Frisbee. I.e., our
approach avoids the conservatism of other approaches due to the adaptivity of the uncertainty sets.
Our method can usefully adjust the prediction sets when the underlying uncertainty distribution is
shifting (due to discrepancy in the linear dynamic predicted and the true nonlinear obstacle motion).
We also note that the feasibility of the MPC optimization is worse for our method compared to Wei
et al. (2022) and the EKF predictor. This issue arises during sudden changes in the size of the
uncertainty sets when the learning rate γ is chosen too large. We will investigate this issue in future
work by considering tools to ensure recursive feasibility (Hewing et al., 2020) or by providing
backup controllers (Singletary et al., 2022; Tordesillas et al., 2020) when the MPC is infeasible.

6. Conclusion

We presented an algorithm for safe motion planning in an environment with other dynamic agents
using ACP. Specifically, we considered a deterministic control system that uses state predictors to
estimate the future motion of dynamic agents. We then leveraged ideas from ACP to dynamically
quantify prediction uncertainty from an online data stream, and designed an uncertainty-informed
model predictive controller to safely navigate among dynamic agents. In contrast to other data-
driven prediction models that quantify prediction uncertainty in a heuristic manner, we quantify
the true prediction uncertainty in a distribution-free, adaptive manner that even allows to capture
changes in prediction quality and the agents’ motion.

10
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