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Abstract
We explore space traffic management as an application of collision-free navigation in multi-

agent systems where vehicles have limited observation and communication ranges. We investigate
the effectiveness of transferring a collision avoidance multi-agent reinforcement (MARL) model
trained on a ground environment to a space one. We demonstrate that the transfer learning model
outperforms a model that is trained directly on the space environment. Furthermore, we find that
our approach works well even when we consider the perturbations to satellite dynamics caused by
the Earth’s oblateness. Finally, we show how our methods can be used to evaluate the benefits of
information-sharing between satellite operators in order to improve coordination.
Keywords: transfer learning, multi-agent reinforcement learning, graph neural networks, space
traffic management

1. Introduction

There are an estimated 8,800 satellites and over a million pieces of debris in the sky today (Space De-
bris Office, 2022); by 2030, there will be an estimated 150,000 active satellites in space (O’Callaghan,
2022). The sheer numbers of objects in orbit and the resulting potential collisions will likely make
current approaches untenable, and make autonomous decision-making an essential characteristic of
space traffic management (STM) in the future (Hobbs et al., 2020).

Multi-agent reinforcement learning (MARL) has yielded promising results in several settings
(Vinyals et al., 2019; Berner et al., 2019), including for navigation and collision avoidance problems
(Lowe et al., 2017a; Yu et al., 2022). Transfer learning has achieved extensive success by leveraging
prior knowledge of past learned policies of relevant tasks (Yang et al., 2020; Khan et al., 2019;
Muandet et al., 2017). Inspired by this, we investigate the effectiveness of transferring a ground-
based collision avoidance MARL model to space traffic management, or more specifically, for the
collision-free navigation of satellites in orbit. We leverage our recent work on a graph neural network
(GNN) based architecture for MARL, called InforMARL (Nayak et al., 2023). We demonstrate that
transfer learning from the ground to the space environment is remarkably effective: it achieves better
sample complexity and slightly higher rewards than when directly training a model on the space
environment. This is despite the two environments being quite different in terms of the underlying
dynamics that govern them. We then consider a more refined abstraction of the space environment
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that accounts for perturbations in gravitational disturbances due to the Earth’s oblateness and find
that transfer learning is still effective.

Finally, we study the role that information-sharing plays in satellite operator decision-making.
Operators are hesitant to share information about their satellites for a number of reasons, including
proprietary and security concerns (Rendleman and Mountin, 2015). While third-party screening
services may scan for potential collisions between satellites belonging to different operators, these
services do not have access to the high-quality state information known to the operator of a satellite.
Consequently, these screening services often have a high false alarm rate, with a detrimental impact
on the trust placed on their alerts by satellite operators (Hiles et al., 2021). Miscommunications
between operators has resulted in numerous near-misses between satellites in orbit (Foust, 2021;
Grupen et al., 2021). Motivated by these observations, we use our model to assess the value of
sharing orbits and maneuver information among satellite operators.

2. Related work

Collision avoidance of spacecraft has traditionally relied on optimal control approaches. For example,
Bombardelli and Hernando-Ayuso (2015) relied on the linear relation between the applied thrust
and an object’s relative motion in the collision plane to try to maximize the collision miss distance.
Building upon Bombardelli (2013)’s analytical formulation, Salemme et al. (2020) designed low-
thrust propulsion collision avoidance maneuvers using a finite-burn arc through an indirect optimal
control model. De Vittori et al. (2022) focused on computational efficiency and used an indirect
trajectory optimization technique for on-board low-thrust collision avoidance maneuver design. The
overarching assumption in these aforementioned works is that there is sufficient information about
objects in the environment in order to efficiently maneuver and avoid collisions. By contrast, our
work studies situations in which complete information may not be readily available.

In practice, information sharing is very limited in the space domain. The Federal Communications
Commission and Department of Commerce solicited feedback from operators about space traffic
management data sharing (Rendleman and Mountin, 2015; Weeden et al., 2019); in response,
commercial operators expressed a desire to limit the exchange of proprietary information that could
give their competitors insight into the capabilities, health, and life of their satellites. It was also
suggested that some operators may not have high-quality data to share. The above observations
motivate the development of methods that can accommodate scenarios with limited information.

Recent work has used reinforcement learning for spacecraft trajectory optimization, guidance,
and control (Izzo et al., 2019; Sullivan and Bosanac, 2020; Cheng et al., 2019; Hovell and Ulrich,
2020). In contrast to these works, we focus on multi-agent coordination among satellites (or their
operators) to improve the safety and efficiency of space traffic operations. While there has been
much recent work on MARL, including for navigation and collision avoidance problems (Lowe et al.
(2017a); Yu et al. (2022); see Nayak et al. (2023) for more references), it has seen limited use in
space domain applications (Siew et al., 2022). To the best of our knowledge, our work represents one
of the first efforts to use MARL for satellite navigation and collision avoidance.

3. Methods

Figure 1 provides an overview of InforMARL (Nayak et al., 2023), the approach that we adapt for
space traffic management applications. We make two main modifications to the original InforMARL
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Figure 1: Schematic depiction of InforMARL, the approach that we adapt to the space environment in
this paper. The meaning of each icon is shown in the legend on the left of the environment box. Each
agent or satellite i receives observations about other satellites and space debris within its sensing
radius, denoted by the blue shaded circle. This information is passed into a GNN, which learns
compact representations of the relationships between objects. The output of the GNN is denoted
x
(i)
agg. (ii) Information aggregation: Each agent’s state and observations (oi) from a neighborhood d

are aggregated to obtain X
(i)
agg. (iii) Graph information aggregation: The vectors of all the agents are

averaged to get Xagg. (iv) The concatenated vector [oi, X
(i)
agg] is input to an RL algorithm to obtain a

recommended action. Figure adapted from Nayak et al. (2023).

method. First, we use a new space environment, described in Section 3.1, that reflects the relative
dynamics of satellites in orbit. Second, we modify the goal-sharing and goal-setting properties in the
information aggregation and graph information aggregation modules of Figure 1, as explained in
Section 3.2.

3.1. Environments

In this work, we consider two different environments: (1) A ground environment in which the
agents’ dynamics are governed by a double integrator physics model (Rao and Bernstein, 2001),
and (2) a space environment in which the relative motion between two agents (satellites) follows
the Clohessy-Wiltshire equations (Vallado and McClain, 2007). We also consider a modified space
environment that accounts for perturbations in the dynamics caused by the oblateness of the Earth.

3.1.1. GROUND ENVIRONMENT: DOUBLE-INTEGRATOR MODEL

For the ground environment in our transfer learning experiments, we rely on a double integrator
physics model to simulate the motion of agents “on the ground" (Rao and Bernstein, 2001). Our
environment is a modification of the one used in Lowe et al. (2017b). It corresponds to a 2D space in
which agents move based on the following dynamics:

mẍ = −γẋ+ fx (1)

mÿ = −γẏ + fy (2)
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Here, fx(t) and fy(t) represent the x and y components of the total force on an agent at time t. The
total force is a sum of the control action from the RL algorithm (see point (iv) in Figure 1) and any
collision forces experienced by the agent. m is the mass of each entity, and γ is a damping coefficient.
In our ground environment simulations, each agent starts from a random, stationary position. The
environment size is a hyperparameter, defining the area available for an agent to move in.

3.1.2. SPACE ENVIRONMENT: CLOHESSY-WILTSHIRE EQUATIONS

Figure 2: The Radial In-track Cross-track (RIC)
coordinate frame, centered on the target satel-
lite. The radial direction is defined along the
satellite’s position vector, and the cross-track di-
rection along its angular momentum vector. The
in-track direction completes the triad.

Figure 3: The xy plane highlighted in Figure 2.
The shaded circle represents the sensing region
of satellite i. Each satellite has its own goal,
denoted by pgoali and pgoalj .

For two objects in orbit, we consider their relative motion to be governed by Clohessy-Wiltshire
Equations (Vallado and McClain, 2007), as follows:

ẍ = 3ω2
nx+ 2ωnẏ (3)

ÿ = −2ωnẋ (4)

z̈ = −ω2
nz (5)

The above equations consider a localized coordinate system centered around one of the satellites,
referred to as the target). The target satellite is assumed to have a circular orbit with an orbital rate of
ωn. The coordinates are defined such that x is measured radially outward from the target, y is along
the orbit track of the target body, and z is along the angular momentum, as shown in Figure 2.

In general, spacecraft and debris have elliptical (including possibly circular) orbits. For example,
suppose the target satellite in Figure 3 has an orbit depicted by the solid line. The orbit of a nearby
satellite on the same plane is shown by the dashed line. Suppose the target satellite maneuvers to
shift from its original orbit to a new transfer orbit, depicted by the dotted line. Since the coordinate
frame is defined relative to the original frame, we can still track the relative motion of both satellites.

For the perturbed model, the dynamic equations are modified to include gravitational disturbances
(or perturbations) due to Earth’s oblateness:

ẍ = (5c2 − 2)ω2
nx+ 2ωncẏ (6)

ÿ = −2ωncx (7)

z̈ = (2− 3c2)ω2
nz (8)
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In the above, c is a parameter that reflects the change in orbital rate experienced by the satellite due
to these perturbations. The value of c is given by:

c =
√
1 + s, where s =

3J2R
2
e

8r2
(1 + 3 cos(2ϕ)). (9)

In Equation 9, J2 is a coefficient representing the gravitational effect of a body’s oblateness, Re

represents the Earth’s radius, r represents the radius of the path of the target satellite, and the
inclination, ϕ, is the angle of the orbit relative to Earth’s equator. An angle of ϕ = 0◦ represents
an equatorial orbit, whereas ϕ = 90◦ represents a polar orbit. We note that substituting c = 1 (i.e.,
ϕ = 54◦) in Equations (6)-(8) results in the Clohessy-Wiltshire equations ((3)-(5)).

A full derivation of the perturbed equations can be found in Roberts and Roberts (2004). While
there exist additional environmental perturbations, such as solar radiative pressure or three-body
effects, their impacts are magnitudes smaller (Walter, 2018). Consequently, these other perturbations
only affect satellite dynamics over time periods that are much longer than the episode lengths
considered in this paper, which are of the order of a few hours.

This work focuses on in-plane maneuvers, which means all satellites and debris involved are
assumed to lie on the same xy orbital plane, as shown in Figure 2. Similar to the ground environment,
the maneuvers are determined by the control action (a force in the xy plane) recommended by the RL
algorithm. In both the original Clohessy-Wiltshire equations and the perturbed model, z-dynamics is
decoupled from those in the x- and y-directions. While not a topic of investigation in this paper, we
believe that, in principle, the same techniques could be applied to the cross-track dimension.

3.1.3. COMPARISON OF GROUND AND SPACE ENVIRONMENTS

We explore the potential of transfer learning for this application because the space environment has
complicated dynamics that are much more challenging for the algorithm to learn. From equations 3
and 4, we see that the x and y variables in the Clohessy-Wiltshire equations are coupled. By contrast,
the ground equations are independent of one another.

In both cases, we adopt a simplistic reward function similar to the one used in multi-agent
particle environment (Lowe et al., 2017b). We assume that at time t, each agent i gets a reward:
r
(i)
t = r

(i)
dist,t + r

(i)
coll,t + r

(i)
goal,t, where r

(i)
dist,t is the negative of the Euclidean distance to the goal,

r
(i)
coll,t = −5 if it collides with any other entity and zero otherwise, and r

(i)
goal,t = +5 if the agent

has reached the goal and zero otherwise. The joint reward function is defined as the sum of the
individual agent rewards, which encourages cooperation among all agents. It is worth noting that
reward function can be further refined, especially in terms of how collisions are penalized. Future
research will include imposing larger penalties for collisions, as well as the use of control barrier
functions for providing safety guarantees (Cheng et al., 2020).

It should be noted that the scale of distances in the ground environment is in meters (and speeds
in m/s), whereas the scale of the space environment is in kilometers (and km/s, respectively). Despite
the orders-of-magnitude differences in the units, the numerical values are quite similar in the ground
and space environments. Although the control action is the same (1 N) for both environments, the
dynamics in the space environment are much more sensitive to external control actions (Hinkel et al.).
We investigated additional scaling mechanisms between the two environments, but found that the
sample complexity of InforMARL was sufficient to achieve successful transfer learning.
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3.2. Graph representation

We use an agent-entity graph as used by Agarwal et al. (2019); Nayak et al. (2023) to represent the
interactions between different satellites and debris in the environment. For each agent i, we define an
agent-entity graph at each time-step t. This graph is made up of nodes and edges, g(i)t ∈ G : (V, E),
where each node v ∈ V is an entity in the environment. Edges, e ∈ E , are defined when an agent and
an entity are within a sensing radius d of one another. For agent-agent interactions, the edges are
bidirectional, meaning that the messages are passed back and forth. For agent-non-agent interactions,
the edges are unidirectional, meaning that messages are only passed from the non-agent entity to
the agent. Translating this to the space environment, a bi-directional edge means that there is open
communication between both satellites, while a unidirectional edge means that the satellite has
received information about the location of a nearby piece of debris. Each agent i’s local observation
o(i) consists of its position and velocity in a global frame of reference and the relative position of the
agent’s goal with respect to its position.

As depicted in the environment block in Figure 1, each node j in the graph g(i) has node features
xj = [pji , v

j
i , p

goal,j
i ,entity_type(j)] where pji , v

j
i , p

goal,j
i are the relative position, velocity,

and position of the goal of the entity at node j with respect to agent i, respectively. If node j
is an obstacle or a goal, then it is set to be equivalent to the position pgoal,ji ≡ pji . The variable
entity_type(j) ∈ {agent,obstacle,goal} determines the type of entity at node j. In this
context, the goal entity type is used to indicate each satellite’s intentions to maneuver.

To determine the value of information sharing, we rely on two graph variants. The first graph
variant is for the case when satellites share their goals. For this graph type, the agents share both
their goal pgoal,ji and their state information pji , v

j
i . The second graph variant is for the case when

satellites are hiding their goals. For this graph type, each agent node j on the graph is transformed
into: xj = [pji , v

j
i ,entity_type(j)].

4. Numerical experiments

We first demonstrate the scalability of the approach using the space environment for both training
and testing, while varying the number of agents. Next, we consider the effectiveness of transferring a
model trained in the ground environment to the space one, both in unperturbed and perturbed cases.
We then use our model to evaluate the benefits of satellite operators sharing goal information for the
purposes of space traffic management.

Agents start at random locations at the beginning of each episode; the corresponding goals
are also randomly distributed. Static obstacles are placed randomly in the environment in each
episode. The environment is a 2 km × 2 km area, and the episode length is approximately one hour.
Each scenario is initialized with three pieces of debris, which remain at the same relative locations
throughout the simulation. The episode continues even after a collision. However, a collision force is
exerted on any colliding agent that affects its subsequent dynamics. The overarching objective is for
every agent to reach its corresponding goal without colliding with any other entity. Since the episode
continues even after a collision, it is possible for there to be multiple collisions in the same episode.

We calculate the following metrics: 1) The total rewards obtained by the agents during an episode
using the reward function defined in Section 3.1.3. A higher value corresponds to better performance.
2) The fraction of an episode taken on average by agents to get to their goals, denoted T (lower is
better). T is set to 1 if an agent does not reach its goal. 3) Percent of episodes in which all agents
get to their goals, denoted S% (higher is better). 4) The total number of collisions those agents had
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in an episode, denoted # col. The lower this metric, the better the performance of the algorithm.
Although having fewer collisions is better, some learned policies do not significantly move the agents
from their initial orbit, and hence do not get to the goal but have a lower collision rate. In short, the
collision rate and the success rate should be considered in conjunction with each other.

It is important to note that the size of the environment considered (4 sq km) along with the
number of objects in it (between 6-13) result in unrealistically dense scenarios. The purpose of these
experiments is to evaluate the scalability of the methods and the general trends in performance, and
not to determine values (e.g., of the collision rates) that are representative of real-world operations.

4.1. Scalability

Train
Test

m= 3 m= 5 m= 10

n= 3

Reward/m 61.57 60.21 57.78
T 0.44 0.44 0.43

(# col)/m 0.36 0.77 1.41
S% 98 94 96

n= 5

Reward/m 60.52 60.52 57.07
T 0.44 0.44 0.44

(# col)/m 0.78 1.28 1.41
S% 98 98 91

Table 1: Performance metrics obtained by training InforMARL on a space environment with n
satellites and testing it on one with m satellites: (a) Total reward obtained in an episode per agent,
Reward/m. (b) Fraction of episode taken on average by agents to reach their goal, T (lower is better).
(c) Average number of collisions per agent in an episode, #col/m (lower is better). (d) Success rate,
S%: percentage of episodes in which all agents are able to get to their goals (higher is better).

The first experiment, shown in Table 1, demonstrates the scalability of our algorithm when trained
on n agents and tested on m agents. The number of obstacles is held constant to be 3 throughout
both all training and evaluation. When evaluating the connectivity throughout the experiments, we
found that each agent maintained a connection with at least one entity in the environment more than
90% of the time, meaning that the vast majority of the experiment involves information-sharing
between entities. We find that in all scenarios considered, our approach can control the satellites
to reach their goals within approximately 44% of the episode length. As expected, the number of
collisions per agent increases when there are more satellites (i.e., the environment has become more
dense). As mentioned in Section 3.1.3, these values can be improved further by modifying the reward
function or by using control barrier functions. A key finding is that the reward per agent remains
approximately the same even when the model is trained with n < m. Our approach also has robust
sample complexity, with a high success rate for unseen scenarios. As the number of objects in space
is expected to dramatically increase in the coming years, the scalability and sample efficiency of our
technique make it a promising approach to space traffic management.

4.2. Transfer learning

Figure 4 compares the effectiveness of transfer learning (denoted by InforMARL w/ Transfer Learn-
ing) relative to other MARL baseline algorithms. The transfer learning model was initialized using
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Figure 4: InforMARL with transfer learning learns a similar reward to RMAPPO despite having
access to less information. The transfer learning model also outperforms the baseline InforMARL
model that was trained only on a space environment.

weights trained on a ground environment, and then trained in the space environment. Consequently,
in Figure 4, we offset the plot of InforMARL with transfer learning by 200,000 steps (the number of
steps used to train the ground-based model). We trained each algorithm 5 times on 5 separate seeds.
The shaded area envelops one standard deviation of the runs.

Three of the baseline methods (RMAPPO (Yu et al., 2022), VDN (Sunehag et al., 2017) and
RMADDPG (Lowe et al., 2017a)) use global information, i.e., every satellite in the environment
would be required to share their information publicly. We also explored the performance of QMIX
(Rashid et al., 2018) and MATD3 (Ackermann et al., 2019), but the performance was similarly poor
(see the appendix of Nayak et al. (2023) for results). While the assumption of global information shar-
ing can help determine a performance bound, it is not realistic in practice. By contrast, InforMARL
(both with and without transfer learning) uses only local information. Over the training period,
InforMARL with transfer learning reaches a similar reward to RMAPPO (Yu et al., 2022), despite
needing significantly less information. This finding indicates that the quality of the information,
rather than its quantity, is an important driver of performance. Furthermore, we see in Figure 4 that
InforMARL with transfer learning outperforms the InforMARL model that was trained from scratch
on the satellite environment. These results indicate that ground-based models can be used to acceler-
ate training for space traffic applications. Initial investigations suggest that the poor performance on
some instances without transfer learning are because of allocation to weaker computational nodes.
InforMARL with transfer learning appears to be less impacted by the specific computational nodes
assigned for training. A possible reason is that the initialization with the ground model helps avoid
some of the less efficient learning paths, resulting in more consistent training performance. We plan
to study this further in future work.

Based on the above results, we believe that the benefits of using InforMARL with transfer
learning for such space applications are mainly two-fold: (1) The simplicity of the ground dynamics
and the availability of more established ground simulation environments make transfer learning from

8



SATELLITE NAVIGATION AND COORDINATION WITH LIMITED INFORMATION SHARING

ground to space an attractive approach; and (2) InforMARL with transfer learning appears to be less
susceptible to the performance of the specific computational nodes that are assigned for training.

4.3. Sensitivity to perturbations

Table 2 demonstrates the performance of InforMARL with transfer learning in the perturbed satellite
environment for 3 agents. Once again, the transfer learning model was initialized using weights
trained on a ground environment, and then trained in the space environment. We find that even
in perturbed environments, the sample complexity of InforMARL allows the algorithm to learn
effectively.

In the perturbed model with dynamic equations given by (6)-(8), an inclination of 54°corresponds
to the unperturbed Clohessy-Wiltshire equations. When comparing the additional inclination values
on the table to 54°, the transfer learning model still performed well, at a comparable level to the
model without perturbations ( Table 2).

Inclination (ϕ) 0° 28° 45° 54° 63° 72° 81° 90°
Average reward 170.10 166.33 167.07 169.73 168.14 171.78 174.29 169.76

Standard deviation ± 6.32 ± 6.18 ±6.09 ± 3.07 ± 8.85 ± 5.45 ± 3.02 ± 6.10

Table 2: Sensitivity of InforMARL with transfer learning to different perturbations (orbit inclinations),
for a three-agent system. The average total reward achieved at the end of training and its standard
deviation are presented, based on 5 runs with 5 different random seeds.

4.4. Value of sharing goals

We use our method to evaluate the value of satellites sharing their goals (i.e., sharing their orbits,
and any associated changes or maneuvers) with each other. In our experiments, a randomly chosen
satellite changes its goal midway through the episode. The new goal is set to a uniformly-random
location that is within a distance ρmax of the original goal, as illustrated in Figure 5.

Figure 5: For one of the three
agents, the goal is randomly resets
midway through the episode to be
within a distance ρmax from pgoali .
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Figure 6: Percentage improvement achieved through goal-
sharing for (1) the success rates, S (in blue; left-axis), and (2)
the fraction of episode (or time) taken on average by agents
to reach their goal, T (in red; right-axis). Moving averages
over 0.2 km increases in ρmax are shown.
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We progressively increase ρmax in steps of 20 m from zero to 1 km (which considering the
2-km×2-km environment size is approximately equivalent to resetting the goal randomly some-
where within the environment). We generate 100 instances for each value of ρmax, with random
initializations of satellite locations and their goals. For each such instance, we use InforMARL
trained on the space environment to evaluate the cases when the satellites share their goals with each
other, and when they do not. We consider two performance measures from Section 4.1, the success
rate (S) and the average time to reach goal (T ). We evaluate the performance improvement from
goal-sharing as follows: For the success rates, we calculate Sgoal_sharing−Sno_goal_sharing

Sno_goal_sharing
as a percentage.

The improvement in the average time to reach the goal is calculated similarly, accounting for the fact
that an improvement corresponds to a decrease in T .

Figure 6 demonstrates the performance improvement (relative to the performance without goal
sharing) that is achieved through goal sharing, as the maximum goal reset distance increases. We
note that positive values in Figure 6 indicate that the success rates increase with goal-sharing and the
times taken by agents to reach their goals decrease, illustrating the benefits of goal-sharing for all
values of ρmax considered. The median number of collisions was found to be the same irrespective
of goal-sharing, so we do not discuss this performance metric further.

For small values of ρmax (e.g., ρmax < 0.3 km in Figure 6), the approximate location of the new
goal can be inferred from the current goals/orbits, so we see relatively modest performance improve-
ment in success rates from goal-sharing. As ρmax increased further, we see significant improvements
(reaching a more than 100% increase) in the success rates from goal-sharing. Interestingly, we
see that for higher values of ρmax (e.g., ρmax > 0.65 km in Figure 6), the benefits of goal-sharing
begin to decrease. We hypothesize that this behavior is related to relationship between the aleatory
uncertainty of satellite trajectories and collision risk (Balch et al., 2019). Let us consider the example
described by Balch et al. (2019): Suppose two satellites are known with certainty to be on a collision
course (i.e., there is no epistemic uncertainty). If we knew that one of the operators could apply
an arbitrarily large maneuver in a random, unknown direction, then the probability of a collision
post-maneuver decreases as the magnitude of the possible maneuver increases. Analogously in our
situation, this would mean that for large enough values of ρmax, the success rates start increasing
even without goal-sharing; consequently, the percentage improvement in these rates obtained from
goal sharing starts decreasing as seen in Figure 6.

In summary, we find that goal-sharing generally improves success rates and decreases times to
goal, demonstrating the potential benefits of such information-sharing among satellite operators.

5. Conclusions and Future Work

We demonstrated that transfer learning from a ground-based environment to a space-based one
can improve both sample complexity and performance, despite the significant differences in the
underlying dynamics that govern the agents in the two environments. We also found that InforMARL,
our GNN-based approach, is scalable in a space-based environment, satisfying a critical need
for space traffic management as the skies become more dense with satellites and debris. Our
initial investigations showed that goal sharing among satellite operators can improve the safety and
efficiency of space traffic operations. Future work will include developing a more realistic space
traffic simulation environment, accounting for communication delays and losses, adding mechanisms
to provide safety guarantees, and designing incentive mechanisms for information-sharing among
satellite operators.
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