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Abstract
We consider the problem of estimating the value function of an infinite-horizon �-discounted
Markov reward process (MRP). We establish non-asymptotic guarantees for a general family of
multi-step temporal difference (TD) estimates, including canonical K-step look-ahead TD for
K = 1, 2, . . . and the TD(�) family for � 2 [0, 1) as special cases. Our bounds capture the
dependence of these estimates on both the variance as defined by Bellman fluctuations, and the
bias arising from possible model mis-specification. Our results reveal that the variance component
shows limited sensitivity to the choice of look-ahead defining the estimator itself, while increasing
the look-ahead can reduce the bias term. This highlights the benefit of using a larger look-ahead: it
reduces bias but need not increase the variance.
Keywords: reinforcement learning, Markov reward process, policy evaluation, temporal difference
learning

1. Introduction

Policy evaluation in reinforcement learning refers to evaluating the performance of a decision pol-
icy using existing data. The quality of a given policy can be measured by its value function V

⇤,
corresponding to the expected sum of (discounted) rewards under a trajectory generated by running
the given policy. Policy evaluation is central to many applications. For example, in the setting of
clinical treatments, the value function might correspond to the expected long-term survival rate of
septic patients (e.g., Komorowski et al. (2018)), whereas in inventory management, it measures the
profits/losses of a company over time (e.g., Giannoccaro and Pontrandolfo (2002)).

In practice, policy evaluation is rendered challenging by the complexity of the underlying state
space, which can be of finite cardinality but prohibitively large, or continuous in nature. In most
cases of interest, it is essential to use some type of function approximation to compute what is
known as a projected fixed point associated with the Bellman operator. In particular, in this paper,
we study projected fixed point approximations within a linear function space.

Our focus is the multi-step temporal difference (TD) methods that are commonly used in prac-
tice. Recall that the value function V

⇤ can be characterized as the unique fixed point of the Bellman
operator T , and the standard approach is to empirically approximate the projected fixed point asso-
ciated with this operator. Given observations from trajectories, we can form empirical approxima-
tions to multi-step versions of the Bellman operator—of the form T (w) : =

P
K

k=1wkT (k) where
the integer K � 1 is the look-ahead parameter, and w 2 RK

+ is a vector of non-negative weights
summing to one, and T (k) is the multi-step Bellman operator that looks ahead k steps. The TD(�)-
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family is a well-known instance of this type of approach. Given the wide range of possible choices
of look-ahead K and weight vector w, one naturally wonders how to make principled choices, and
in particular ones that lead to better estimators. These types of questions, while long recognized
as being important in reinforcement learning (e.g., Jaakkola et al. (1993); Baird (1995); Bertsekas
and Tsitsiklis (1996); Singh and Dayan (1998); Boyan (1999); Yu and Bertsekas (2009); Mann
et al. (2016); Bhandari et al. (2018)), are far from completely resolved. In particular, what would
be desirable—and the goal of this paper—is theory that gives a very precise understanding of the
trade-offs involved, along with some actionable guidelines for the practitioner.

In this paper, we explore these fundamental issues in the context of �-discounted Markov reward
processes. Our main contributions are to provide a non-asymptotic characterization of the statistical
properties of a broad class of multi-step policy evaluation procedures, with a particular emphasis on
how Bellman fluctuation (variance) and model mis-specification (bias) affect the estimation error.
Our theory reveals some surprising phenomena, and also provides guidance on the choice of look-
ahead in multi-step methods.

1.1. Our contributions and paper organization

Our main contribution to provide sharp upper bounds on the error in policy evaluation based on a
single observed trajectory. Our result (Theorem 1) applies to broad class of projected fixed point
estimators, and gives high-probability upper bounds on the associated estimation error. These up-
per bounds are specified in terms of a signal-to-noise ratio, or SNR for short, one which captures
the essential difficulty of value function estimation. We identify two different types of fluctuations,
denoted by �m and �a respectively, that correspond to martingale noise (variance), and error due to
the Bellman residual (bias), respectively. The martingale noise exhibits behavior similar to that of
independent random variables, whereas the temporal dependence in the underlying Markov chain
interacts with the Bellman residual to form �a. Our characterization of these interactions has a num-
ber of interesting implications. As one example, consider the natural intuition about multi-step TD
methods—as written about in past work on the topic (Bertsekas and Tsitsiklis, 1996; Boyan, 1999;
Yu and Bertsekas, 2009)—that increasing look-ahead, which is known to reduce the (determinis-
tic) approximation error, will increase the (stochastic) estimation error. The results in this paper
reveal many scenarios in which estimation error is not increased by larger choices of look-ahead
parameter; other factors dictate the limits of choosing look-ahead.

1.2. Related work

This paper builds upon our earlier work (Duan et al., 2021b), in which we studied the properties of
the standard one-step (K = 1) least-squares temporal difference (LSTD) estimate in its kernelized
form. In contrast, the major challenge addressed here is to provide a precise characterization of a
much broader class of multi-step estimates.

There is large body of past work on analyzing LSTD procedures (e.g., Munos and Szepesvári
(2008); Farahmand et al. (2016); Liu et al. (2015); Fan et al. (2020); Long et al. (2021)). Of most
direct relevance here is a line of past work on-policy evaluation and optimization for trajectory-
based models. Antos et al. (2008) studied policy iteration using single trajectory generated under
a fixed policy. Under a �-mixing condition, they proved various non-asymptotic bounds on both
the estimation of the value function, as well as the sub-optimality of the associated policy. Their
analysis, involving VC-crossing dimension to measure the function complexity, and proved consis-
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tency of policy evaluation and optimization as the trajectory length increases, but the underlying
rates are slow (and hence sub-optimal). Focusing on the special case of linear function approxima-
tion, Lazaric et al. (2012) proved non-asymptotic bounds for both standard LSTD and least-squares
policy iteration; their bounds involve both the feature dimension, and the smallest eigenvalue of the
Gram matrix. Bhandari et al. (2018) provided non-asymptotic bounds for temporal difference learn-
ing. When applied to data from a single Markov trajectory, their bounds involve a multiplicative
factor of the mixing time relative to the i.i.d. case. In application to TD(�) algorithms, their analysis
does not capture the possible benefits of increased � in reducing statistical estimation error that we
document in this work. It should be noted that bounds in the aforementioned papers (Antos et al.,
2008; Lazaric et al., 2012; Bhandari et al., 2018) do not isolate the variance structure of the pol-
icy evaluation problem, which is essential to establishing the statistical optimality of the estimates.
Some recent work, involving a subset of the current authors, does isolate this variance structure in
the linear case. Mou et al. (2021) studied stochastic approximation procedures for solving linear
fixed point equations over Rd, given observations from a single trajectory of an underlying Markov
chain. Among the consequences of their general theory are instance-dependent guarantees for the
MSE of TD(�) methods.

In this paper, we measure model mis-specification in an instance-dependent (and hence not
worst-case) way, as either the L

2-distance between V
⇤ and its projection onto F, or the Bellman

residual associated with the projected fixed point. This instance-dependence provides a more refined
view than worst-case notions, such “realizability” or “completeness” (e.g., Munos and Szepesvári
(2008); Farahmand et al. (2016); Chen and Jiang (2019); Duan and Wang (2020); Uehara et al.
(2021); Duan et al. (2021a); Zanette (2021)), along with approximate versions thereof (Munos and
Szepesvári, 2008; Chen and Jiang, 2019; Uehara et al., 2021; Duan et al., 2021a), that have been
used to specify approximation error in past work on reinforcement learning. However, it should be
noted that the global nature of our measure of approximation error makes it more restrictive than
pointwise notions that have been used for estimating functionals of value functions (e.g., Zanette
and Wainwright (2022)).

1.3. Paper organization and notation

The remainder of this paper is organized as follows. In Section 2, we begin by introducing the
background of Markov reward process, value function estimation as well as multi-step Bellman
equations. In Section 3, we present the statements of non-asymptotic upper bounds (Sections 3.1
and 3.2) and the interpretations of the terms that set the noise levels (Section 3.3). In Section 4,
we show that various structural conditions result in different optimal choices for the look-ahead. In
Section 5, we provide illustrative simulations that verify the predictions of the theory.

Notation: Throughout the paper, we use C, c, c0 etc. to denote universal constants whose nu-
merical values may very from line to line. Given a distribution µ, we define the L

2(µ)-norm
kfkµ : =

qR
f2µ(dx). We also make use of the supremum norm kfk1 : = supx2X |f(x)|.

2. Background and problem set-up

In this section, we provide background and then set up the problem to be studied in this paper. We
begin in Section 2.1 with background on Markov reward processes and value functions. Section 2.2
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is devoted to the definitions of multi-step Bellman equations and operators. Section 2.3 introduces
the empirical temporal difference (TD) estimates that we analyze.

2.1. Markov reward processes

For a given discount factor � 2 [0, 1), a �-discounted Markov reward process consists of a time-
homogeneous Markov chain on a state space X , combined with a reward function r that maps each
state x to a scalar reward r(x). The Markov chain is defined by a transition function P , so that when
the chain is in state x at the current time, it transitions to a random state X

0 drawn according to a
probability distribution P(· | x).

The value function measures the expected value of a geometrically discounted sum of the re-
wards over a trajectory of the Markov chain. In particular, for each possible starting state x 2 X ,
we define V

⇤(x) : = E
⇥P1

t=0 �
t
r(Xt)

�� X0 = x
⇤
, where the expectation is taken over a trajec-

tory (x,X1, X2, . . .) that is governed by the probability transition operator P . The existence and
well-definedness of the value function V

⇤ is guaranteed under mild conditions.
In this paper, we study the problem of estimating the value function V

⇤ based on a set of ob-
servations from a single trajectory ⌧ = (x1, x2, . . . , xn) 2 X n from the Markov chain, where x1

is drawn from the stationary distribution. We assume that the reward function r is known, so that
the rewards r(xi) are also given. Our results extend to the case of unknown reward function, but we
study the known reward case for the bulk of our analysis so as to draw attention to the differences
between multi-step Bellman operators (all of which share the same reward structure).

Letting µ correspond to the stationary distribution of the Markov chain, we measure the error
associated with an estimate bf of V ⇤ in terms of the squared-L2(µ)-norm

k bf � V
⇤k2µ : = E

⇥
( bf(X)� V

⇤(X))2
⇤
.

2.2. Multi-step Bellman operators

The estimates studied in this paper are established based on the observation that, for any positive
integer k = 1, 2, . . ., the value function V

⇤ is the solution to the k
th-order Bellman fixed point

equation V
⇤(x) = r(x)+ � EX1|x

⇥
r(X1)

⇤
+ . . .+ �

k�1 EXk�1|x
⇥
r(Xk�1)

⇤
+ �

k EXk|x
⇥
V

⇤(Xk)
⇤
.

For natural reasons, we refer to the integer k as the number of look-ahead steps.
For future reference, we introduce a more concise formulation of this fixed point relation as

V
⇤ = T (k)(V ⇤), where the k-step Bellman operator T (k) is given by

�
T (k)(f)

�
(x) : = E

 k�1X

`=0

�
`
r(X`) + �

k
f(Xk) | X0 = x

�
for any f 2 L

2(µ) and x 2 X .

More generally, we can form convex combinations of operators of this type. As one possible for-
malization, fix a positive integer K � 1, and consider the class of all weighted K-step Bellman

operators

T (w) : =
P

K

k=1wkT (k)
, (1)

where the non-negative weight vector w =
�
w1 . . . wK

�
ranges over the probability simplex in

R
K . Given these constraints, it can be verified that any such weighted operator T (w) also has the

original value function V
⇤ as its unique fixed point. Notice that if we observe a single trajectory

of length n, we can (in principle) try to approximate a K-step weighted Bellman operator for any
K 2 {1, 2, . . . , n� 1}.
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Given any weight vector w 2 RK , we define the effective discount factor of the w-weighted
TD estimate as

� : =
P

K

k=1wk�
k
. (2)

Note that �  � for any choice of the weight vector in the probability simplex.
Let us consider a few examples to illustrate. As a first example, in the standard K-step temporal

difference method, the weight vector is given by wK = 1, and w` = 0 for ` 6= K. This choice
leads to the effective discount factor � = �

K . Given an integer K � 1, a second example is the K-
truncated TD(�) method, in which the weight vector takes the form w = 1��

1��K

⇥
1 � . . . �

K�1
⇤

for some � 2 [0, 1). This choice leads to an effective discount factor � = � (1��)
1���

1��
K
�
K

1��K . If we

take the limit as K ! 1, then we see that � ! � (1��)
1���

and (1� �)�1 ! 1���

1��
.

2.3. Multi-step temporal difference estimates

In this paper, we study multi-step temporal difference (TD) estimates that are based on linear func-
tion approximation. Any such function space is defined by a feature mapping � : X ! R

d, where
d denotes the (finite) dimension. The linear spaceH consists of linear combinations of the features,
i.e. H : =

�
f(·) = �(·)>f

�� f 2 Rd
 

. Define an associated function norm kfkH : = kfk2.
Throughout this paper, we assume that the linear function spaceH contains all constant functions.

The multi-step TD estimator bf is defined as the fixed point of an empirical Bellman operator
bT (w). For each k 2 {1, . . . ,K}, and time step t 2 {1, 2, . . . , n � k}, define the k-step future
return as bGt+k

t+1(f) : =
P

k�1
`=1 �

`
r(xt+`)+�

k
f(xt+k). In terms of these future returns, the empirical

Bellman operator is given by

f 7! bT (w)(f) : = r + argmin
h2H

(
1

n�K

n�KX

t=1

⇣
h(xt)�

KX

k=1

wk
bGt+k

t+1(f)
⌘2

+ �nkhk2H

)
,

where �n > 0 is a user-defined regularization parameter. The estimate bf is then the solution to
the fixed point equation bf = bT (w)( bf). We use f

⇤ to denote the population-level estimate, i.e. the
projected fixed point of Bellman operator T (w). When there exists any model mis-specification, i.e.
V

⇤
/2 H, we may have f

⇤ 6= V
⇤.

The estimator bf can also be written as the solution of a linear operator equation defined in terms
of covariance and cross-covariance operators associated with the RKHS. It is also closely connected
with the standard description of temporal difference learning as a form of stochastic approximation.

3. Non-asymptotic upper bounds on multi-step LSTD

In this section, we develop some non-asymptotic theory for the estimation error associated with the
function bf computed using multi-step LSTD method. From the introduction, its overall error as an
estimate of the true value function V

⇤ is upper bounded as

k bf � V
⇤kµ  k bf � f

⇤kµ| {z }
Estimation error

+ kf⇤ � V
⇤kµ| {z }

Approximation error

. (3)

The approximation error kf⇤�V
⇤kµ is deterministic in nature, and controlled by the richness of the

underlying RKHS, as well as the choice of weight vector w in a multi-step TD method. The goal of
this section is to characterize the statistical estimation error k bf � f

⇤kµ associated with estimating
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the projected fixed point f⇤. In the sequel, Section 3.1 provides the statement of the upper bound.
Section 3.2 presents bounds on the noise level that appears in the theorem. In Section 3.3, we
provide intuition for the noise terms.

3.1. Statement of upper bound

Our analysis relies on the following mixing condition, which involves a scalar ⌧⇤ � 1, known as the
mixing time, and a nonnegative constant C⌫ < 1.

(MIX(⌧⇤)) The Markov chain is uniformly ergodic, meaning that
��Pt(· | x)� µ(·)

��
TV

 C⌫ (1� ⌧
�1
⇤ )t for any state x 2 X and step t 2 N . (4)

In addition to this mixing condition, our analysis imposes some boundedness conditions on the
feature mapping �, as well as the covariance matrix ⌃cov =

R
X �(x)�(x)>µ(dx) 2 Rd⇥d that it

induces. This covariance matrix has a collection of eigenvalues {µj}dj=1 ⇢ R along with associated
eigenvectors {vj}dj=1 ⇢ Rd. We impose the following regularity condition:

(BD(b,)) The feature mapping � : X ! R
d and eigenfunctions are uniformly bounded—viz.

sup
x2X

k�(x)k2  b and sup
x2X

sup
1jd

��hvj ,�(x)i
�� /pµj   . (5)

We now turn to the other ingredients that underlie our main result:

Effective timescale: Recalling the definition (2) of the effective discount factor � ⌘ �(w), we use
H : = (1� �)�1 to denote the effective timescale associated with a w-weighted TD method.

Bellman fluctuations: We measure the variability of the K-step Bellman operator via

�m(f⇤) : =
KX

`=1

�
`

vuutE
h
Var

⇥� KX

k=`

wk T (k�`)(f⇤)
�
(X 0)

�� X
⇤i

, (6a)

where X is drawn from the stationary distribution µ and (X,X
0) are successive samples from

the Markov chain P .

Bellman residual and mixing: When the value function V
⇤ does not belong to the space H, the

projected fixed point f⇤ differs from V
⇤, and hence the Bellman residual T (w)(f⇤) � f

⇤ is
non-zero. In this case, our bounds involve an additional noise term, given by

�a(f
⇤) : = 2

p
⌧⇤
��T (w)(f⇤)� f

⇤��
µ

n
1 + 1

4 log
kT (w)(f⇤)�f

⇤k1
kT (w)(f⇤)�f⇤kµ

o
(6b)

where ⌧⇤ is the mixing time.

We are now ready to present our main result. Consider a user-defined radius R such that

R � max
�
kf⇤ � rkH, krk1

b

 
, (7)

along with the effective noise level

⇣0 : = H
�
�m(f⇤) + �a(f

⇤)
 
. (8)
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Theorem 1 (Non-asymptotic upper bound) Under the mixing condition (MIX(⌧⇤)) and the fea-

ture boundedness condition (BD(b,)), consider the multi-step LSTD method. Suppose that the

sample size n is large enough to ensure that n � c 
4
d
2(⌧⇤ +K)(1� �)�2

. Then for any regular-

ization parameter �n � c0 (1 � �)

2
⇣
2
0

R2
d

n
log n, the projected fixed point bf ⌘ bf(�n) satisfies the

bound

k bf � f
⇤k2µ  c1R

2
n

2
⇣
2
0

R2

d

n
log2 n+

�n

1� �

o
(9)

with probability at least 1� c2 exp
�
� c

† 
2
⇣
2
0

b2 R2 d
�
, where c

† : = c3
(1��)2(1��)2

⌧⇤+K
.

With the minimal choice of regularization parameter �n = c0 (1 � �)

2
⇣
2
0

R2
d

n
log n, Theorem 1

guarantees that k bf � f
⇤k2µ . 

2
⇣
2
0 (d/n) log

2
n with high probability.

3.2. Bounding the noise level ⇣0
The bound (9) from Theorem 1 holds, in weakened form, for any upper bound on the noise level ⇣0.
Accordingly, in order to develop intuition for the behavior of our bounds, it is useful to derive such
an upper bound that decouples into a variance term along with a form of approximation error. In
particular, let us define the expected Bellman variance

�
2(V ⇤) : = EX⇠µ

⇥
Var[V ⇤(X 0)

�� X]
⇤
, (10)

associated with the true value function. Recall that ⌧⇤ � 1 is the mixing time, H = (1 � �)�1

stands for the effective horizon, and define the error V ⇤
? : = V

⇤ � ⇧H(V ⇤) in the projection1 of
V

⇤ onto the function class. With this notation, it can be shown that the effective noise ⇣0 defined in
equation (8) is upper bounded as

⇣0  e⇣0 : = c
0
n
H �(V ⇤)| {z }
uncertainty

+ H

p
max{H, ⌧⇤} kV ⇤

?kµ| {z }
model error

o
(11)

where the pre-factor c0 ⌘ c
0(f⇤) depends only on the logarithmic quantity log kT (w)(f⇤)�f

⇤k1
kT (w)(f⇤)�f⇤kµ

.
We notice that the term H �(V ⇤) remains invariant to the choice of the weight vector w. Conse-

quently, in the regime of negligible mis-specification, no matter what type of TD method is chosen—
with possibilities including K-step TD method for K 2 Z+, or TD(�) for any � 2 [0, 1)—the
estimation error k bf � f

⇤k2µ should scale in a similar manner. Thus, the flexibility in the choice of
TD method does not have any benefits for reducing estimation error. To be clear, it can still reduce
the approximation error in the decomposition (3), since the effective discount factor can be reduced.

It should be emphasized that in other regimes, careful choices of the weight vector w can reduce
the estimation error. More precisely, this choice can reduce the effective horizon H , which in turn
can reduce the model error portion of the effective noise bound e⇣0, as well as the approximation
error kf⇤ � V

⇤k2µ. Reductions in H can be achieved by choosing a larger look-ahead parameter K
in a multi-step TD method, or a larger value of � 2 [0, 1) in the TD(�) family of methods.

1. To be clear, the projection ⇧H(V
⇤) is, in general, not the same as the projected fixed point f⇤.
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3.3. Intuition for �m(f⇤) and �a(f⇤)

Let us provide some intuition for how the standard deviation �m(f⇤) and model mis-specification
error �a(f⇤), from equations (6a) and equation (6b) respectively, enter the upper bound.

Introducing the shorthand en : = n�K. The proof of Theorem 1 involves bounding an empirical
process supg2G

�
1
en
Pen

t=1 g(xt) ⌫t
 

, where G is a carefully chosen function class and the random
variable ⌫t is given by

⌫t =

⇢ KX

k=1

wk
bGt+k

t+1(f
⇤)� E

h KX

k=1

wk
bGt+k

t+1(f
⇤)
��� xt

i

| {z }
mt⌘m(xt+K

t+1 )

�
+
�
T (w)(f⇤)� f

⇤�(xt)| {z }
at⌘a(xt)

. (12)

In equation (12), the random variable ⌫t is decomposed into the sum of two parts, mt and at. In
our analysis, we show that fluctuations associated with first term mt lead to standard deviation
�m(f⇤) in definition (8) of noise level ⇣0, while the term at gives rise to the model mis-specification
error �a(f⇤).

4. Choices of look-ahead under various uniform structural conditions

In the analysis of RL algorithms, it is standard to impose various types of uniform structural condi-
tions on the MRP. In this section, we explore the consequences of our instance-dependent results for
two such structural constraints: (i) a uniform bound on the reward function r; and (ii) a L2(µ)-norm
upper bound on the value function V

⇤. Our theory shows that different choices of TD parameters
should be made in these two settings.

4.1. Uniformly bounded reward

Suppose that the reward function is uniformly bounded—viz. krk1  %r for some finite constant
%r—and that the weight vector w is chosen to ensure that

H ⌘ H(w) .
n
1 +

H

⌧⇤

o
. (13a)

The bound (13a) can be guaranteed by setting

K & min{H, ⌧⇤} for K-step TD, or (1� �)�1 & min{H, ⌧⇤} for TD(�). (13b)

With these choices, the noise level ⇣0 is bounded as

⇣0 . H

p
max{H, ⌧⇤} %r , (13c)

which, in turn, implies that

k bf � f
⇤k2µ . %

2
r H

2 max{H, ⌧⇤}
d

n| {z }
✏2

log2 n (14)

holds with probability at least 1� c2 exp
�
� c

† n ✏
2

b2 H2%2r

�
.
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4.2. Value function with bounded L
2(µ)-norm

Now suppose that kV ⇤kµ  %V for some finite %V , and the weight vector w is chosen to ensure that

H ⌘ H(w) . min
np

H, 1 +
H
p
⌧⇤

o
. (15a)

The bound (15a) can be satisfied by letting

K & min
�
H,

p
H + ⌧⇤

 
in K-step TD, or (1� �)�1 & min

�
H,

p
H + ⌧⇤

 
in TD(�) .

(15b)

We therefore prove that the effective noise level is bounded as

⇣0 . max{H,
p
⌧⇤} %V . (15c)

As before, for the LSTD estimate bf , we have

k bf � f
⇤k2µ . %

2
V max{H2

, ⌧⇤}
d

n| {z }
✏2

log2 n (16)

with probability at least 1�c2 exp
�
�c

† n ✏
2

b2 %2V

�
. By comparison with the bound (14) for the bounded

reward case, we see that estimation error is increased; this change is to be expected, since we have
imposed only the milder condition of a L

2-bounded value function.

5. Some illustrative simulations

It is helpful to examine some simulations, so as to reveal the phenomena predicted by our theory.
Here we show some plots of the mean-squared estimation error Ek bf�f

⇤k2µ for estimates bf obtained
using various types of multi-step LSTD estimates of the value function.

Figure 1 provides comparisons of TD estimates with look-ahead lengths K 2 {1, 5, 10}, as
applied to a discounted MRP with � = 0.9. We conducted three groups of experiments in total,
corresponding to the following types of MRP instances: (i) slowly mixing but well-specified (no
mis-specification, i.e. V

⇤ 2 H); (ii) large mis-specification but rapidly mixing; or (iii) large mis-
specification and slowly mixing. As indicated in the figure, panel (a) involves the first two cases (i)
and (ii), whereas panel (b) provides results for case (iii).

From panel (a), we see that, for both cases (i) and (ii), the choice of look-ahead K has little
effect; all three methods (K 2 {1, 5, 10}) behave very similarly. This behavior should be contrasted
with case (iii): as shown in panel (b), in this setting, increasing the look-ahead K leads to substantial
reductions in the MSE. Thus, while some settings are unaffected by look-ahead choice, changing K

does have a very significant effect for a model that is both mis-specified and slowly mixing.

6. Discussion

In this paper, we analyzed non-asymptotic statistical properties of multi-step temporal difference
(TD) methods. In particular, we investigated how variance (Bellman fluctuation) and bias (model

9
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(a) No mis-specification or fast mixing (b) Large mis-specification and slow mixing.

Figure 1. Log-log plots of the mean-square error (MSE) versus the sample size n for different multi-
step temporal difference (TD) estimates when using data from a single path. For each point on each
curve on each plot, the MSE was approximated by taking a Monte Carlo average over 5000 trials; 3
times sample errors are shown by the shaded area. (a) No mis-specification or fast mixing: When
there are enough samples, the MSEs of TD estimates with different look-ahead have similar scales.
(b) Large mis-specification and slowly mixing: The MSE is smaller for larger step K in the TD
estimates.

mis-specification) influence the statistical estimation error. Our theory shows when and to what
extent multi-step TD methods improve the quality of estimates.

Our work leaves open a number of intriguing questions; let us mention a few of them here
to conclude. First, it would be interesting to develop a principled method for parameter selection
in w-weighted TD that can be implemented without population-level knowledge. Currently, our
theory involves some quantities that are non-trivial to estimate using data, for instance, the norm
of Bellman residual and the mixing time. Second, the scope of the paper is restricted to the on-
policy setting in reinforcement learning. The generalization of the theory to off-policy evaluation
remains challenging. It is interesting to determine whether, and if so under what conditions, off-
policy procedures can be devised to benefit from multi-step predictive models. Another interesting
direction is how to use possible freedom in data collection so as to develop adaptive procedures that
minimize the estimation error.
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