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Abstract
In this work, we present the hyperparameter optimization of an online, off-policy reinforcement
learning algorithm based on a parallel search. Since this model-free learning algorithm solves the
H∞ optimal tracking problem iteratively using ordinary least squares regression, we propose using
the condition number of the data matrix as a model-free measure for tuning the hyperparameters.
This addition enables automated optimization of the involved hyperparameters. We demonstrate
that the condition number is a useful metric for tuning the number of collected samples, sampling
interval, and other hyperparameters involved. In addition, we demonstrate a correlation between
this condition number and properties of the sum of sinusoids persistent excitation.
Keywords: Reinforcement learning, Hyperparameter tuning, Condition number, Optimization, In-
finite horizon optimal control

1. Introduction

In machine learning, hyperparameters are parameters used to control the learning procedure. They
configure various aspects of the learning algorithm and can have widely varying effects on the re-
sults and performance. Hyperparameters must be set appropriately by the user in order to maximize
the usefulness of the learning approach (Claesen and Moor, 2015). Hyperparameter optimization, or
tuning, is the process of choosing a set of hyperparameters that result in good learning performance
and convergence of the learning algorithm on a particular problem. Hyperparameter search is com-
monly performed manually and is typically computationally expensive (Farahmandi et al., 2018).
Most approaches to hyperparameter tuning involve either parallel search, sequential optimization,
or some combination of the two (Cauwet et al., 2020; Bergstra et al., 2013). Parallel methods, such
as grid search and random search, perform many parallel optimizations, each with a different set of
hyperparameters, with a view to finding a single best output from one of the optimizations. Paral-
lel methods exploit computational horsepower by coordination of simultaneous learning processes.
Sequential optimization methods perform few optimization processes in parallel, but do so many
times sequentially. Information from previous steps is used to focus the search on the most promis-
ing parameter values (e.g., Bayesian optimization) (Jaderberg et al., 2017; Turner et al., 2021).
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HYPERPARAMETER TUNING

We present for the first time (to our knowledge), the hyperparameter optimization of an online,
off-policy integral reinforcement learning (IRL) algorithm based on a parallel search using condition
number of the data matrix as a performance measure. We first review the construct of the H∞
tracking problem. We discuss the iterative algorithm used to learn the control policy based solely
on collected data. Next, our proposed model-free approach for tuning the number of data samples
N and the sampling interval T is discussed. In order to be able to quantify differences between
analytic and experimental results, we performed studies with a linear time-invariant (LTI) system,
a pitch-plane model of an F-16 aircraft, followed by tuning of the persistent excitation. Finally, we
show results for condition number, performance function difference between optimal and learned,
and policy difference between optimal and learned for a wide range of hyperparameter values to
demonstrate the dependence of the learned solution on each parameter.

2. H∞ Tracking Problem

We begin by briefly describing the H∞ tracking problem presented and solved in Modares et al.,
2015. The reader is encouraged to review the reference for a more detailed description. Consider
an LTI system1 with dynamics represented by (1) where x ∈ Rn is the state vector, u ∈ Rm is the
control input, d ∈ Rq is the external disturbance, and A ∈ Rn×n, B ∈ Rn×m, D ∈ Rn×q are the
plant, input, and disturbance matrices, respectively. It is assumed that the coefficients in A, B, and
D are unknown and that the system is stabilizable.

ẋ = Ax+Bu+Dd (1)

The tracking error is defined in (2) where r(t) is the reference trajectory.

ed ≜ x(t)− r(t) (2)

The performance output is a function of the tracking error and the control as

∥z(t)∥2 = ed
TQed + uTRu (3)

where Q ⪰ 0 and R ≻ 0 are user-defined matrices. For the tracking problem, we define the
augmented system state as

X̄ =
[
ed

T rT
]T ∈ R2n. (4)

The goal is to attenuate the effect of the disturbance input d on the performance output z. The
disturbance attenuation condition is∫∞

t e−α(τ−t)(X̄T Q̄X̄ + uTRu) dτ∫∞
t e−α(τ−t)(dTd) dτ

≤ γ2 (5)

where α > 0 is a discount factor, γ is a parameter that quantifies the amount of attenuation from the
disturbance input d(t) to the defined performance output variable z(t), and

Q̄ =

[
Q 0
0 0

]
. (6)

1. In this paper, we focus exclusively on LTI systems, but the original work of Modares et al., 2015 is applicable to any
continuous-time system.
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This disturbance attenuation condition leads to the discounted performance function

J(u, d) =

∫ ∞

t
e−α(τ−t)(X̄T Q̄X̄ + uTRu− γ2dTd) dτ. (7)

The objective of the H∞ tracking problem is to minimize the discounted performance function.
Considering the augmented state vector defined in (4), the system dynamics can be rewritten as

˙̄X = ĀX̄ + B̄u+ D̄d (8)

with

Ā =

[
A A−A′

0 A′

]
, B̄ =

[
BT 0T

]T
, D̄ =

[
DT 0T

]T (9)

where ṙ(t) = A′r(t) is the linearized model of the command generator dynamics. The solution of
this H∞ tracking problem is determined by the following game algebraic Riccati equation (GARE):

Q̄+ (Ā− 0.5αI)TP + P (Ā− 0.5αI)− PB̄R−1B̄TP +
1

γ2
PD̄D̄TP = 0. (10)

The optimal control is obtained by the unique solution of the GARE (10):

u∗ = −R−1B̄TPX̄. (11)

3. Off-Policy Integral Reinforcement Learning Algorithm

Our proposed hyperparameter tuning is for the off-policy IRL algorithm presented in Modares et al.,
2015. In this section, we describe this algorithm for LTI systems. It consists of two phases to
solve the H∞ optimal tracking problem for systems with unknown dynamics. These are known as
the data-collection phase and the learning phase. The augmented system dynamics in (8) can be
written as

˙̄X = ĀX̄ + B̄ui + D̄di + B̄(u− ui) + D̄(d− di) (12)

where ui and di are the actor and disturber policies, respectively, to be updated and the i subscript
denotes the current iteration of the learning algorithm. During the data-collection phase of the IRL
algorithm, we apply a fixed stable control policy u and disturbance d to the system and collect
information about the state, control input, and disturbance at N samples, taken at sampling interval
T . In the learning phase of the algorithm, we use the collected information to iteratively solve the
following off-policy IRL Bellman equation for the value function Vi, updated control policy ui+1,
and disturbance di+1 until a stopping criterion is met:

e−αTVi(X̄(t+ T ))− Vi(X̄(t)) =

∫ t+T

t
e−α(τ−t)(−X̄T Q̄X̄ − uTi Rui + γ2dTi di) dτ

+

∫ t+T

t
e−α(τ−t)(−2uTi+1R(u− ui) + 2γ2dTi+1(d− di)) dτ.

(13)

Note that α and γ are correlated in the GARE (10) and since they are used to control the overall
learning process, they are considered hyperparameters of the algorithm. According to Theorem 4 in
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Modares et al., 2015, the control solution (11) makes the system (8) with d = 0 locally asymptoti-
cally stable if

α ≤ α∗ = 2∥(L̄Q)
1
2 ∥ (14)

where
L̄ = BR−1BT +

1

γ2
DDT . (15)

As a practical matter, a very small α and/or a large Q will satisfy condition (14). The GARE (10)
effectively imposes a lower bound on γ in order to be a solution. Also important is the fact that
in (13), u is the control applied to the system and can be different than the updated policy ui.

For LTI systems with full-state feedback, knowing the form of the optimal performance func-
tion, control, and disturbance, allows us to approximate the value function, updated control policy,
and updated disturbance in the Bellman equation (13) as functions of the states such that

Vi(X̄) ≊ Ŵ T
vi (X̄ ⊗ X̄) (16)

ui+1(X̄) ≊ Ŵ T
ui+1

X̄ (17)

di+1(X̄) ≊ Ŵ T
di+1

X̄ (18)

where Ŵvi ∈ R4n2
, Ŵui+1 ∈ R2n×m and Ŵdi+1

∈ R2n×q are time-constant weight vectors and ⊗
denotes the Kronecker product. Using (16), the left hand side of (13) becomes

Ŵ T
vi (e

−αT (X̄(t+ T )⊗ X̄(t+ T ))− (X̄(t)⊗ X̄(t))). (19)

Using (17) and (18) for iteration i, the first term on the right hand side of (13) becomes

vec(−Q̄− ŴuiRŴ T
ui

+ γ2ŴdiŴ
T
di
)T ×

∫ t+T

t
e−α(τ−t)(X̄(t)⊗ X̄(t)) dτ (20)

and the second term on the right hand side of (13) becomes

− vec(Ŵui+1)
T 2(R⊗ I(2n))(∫ t+T

t
e−α(τ−t)(u⊗ X̄(t)) dτ − (Ŵ T

ui
⊗ I(2n))

∫ t+T

t
e−α(τ−t)(X̄(t)⊗ X̄(t)) dτ

)
+ vec(Ŵdi+1

)T 2γ2
(∫ t+T

t
e−α(τ−t)(d⊗ X̄(t)) dτ

−(Ŵ T
di
⊗ I(2n))

∫ t+T

t
e−α(τ−t)(X̄(t)⊗ X̄(t)) dτ

)
.

(21)

Combining (19), (20), and (21) allows us to write the IRL Bellman equation (13) in the form

y(t) = Ŵ Th(t) + e(t) (22)

where

y(t) = vec(−Q̄− ŴuiRŴ T
ui

+ γ2ŴdiŴ
T
di
)T ×

∫ t+T

t
e−α(τ−t)(X̄(t)⊗ X̄(t)) dτ, (23)
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Ŵ =
[
Ŵ T

vi vec(Ŵui+1)
T vec(Ŵdi+1

)T
]T

, (24)

h(t) =



e−αT (X̄(t+ T )⊗ X̄(t+ T ))− (X̄(t)⊗ X̄(t))

2(R⊗ I(2n))
(∫ t+T

t e−α(τ−t)(u⊗ X̄(t)) dτ

−(Ŵ T
ui

⊗ I(2n))
∫ t+T
t e−α(τ−t)(X̄(t)⊗ X̄(t)) dτ

)
−2γ2

(∫ t+T
t e−α(τ−t)(d⊗ X̄(t)) dτ

−(Ŵ T
di
⊗ I(2n))

∫ t+T
t e−α(τ−t)(X̄(t)⊗ X̄(t)) dτ

)


(25)

and the Bellman error e(t) is the error associated with the approximations in (16)-(18).
Following the algorithm, we collect N samples of state, control input, and disturbance data at

sampling interval T (points t1 to tN ), and use that information to form

H =
[
h(t1), . . . , h(tN )

]T (26)

Y =
[
y(t1), . . . , y(tN )

]T
. (27)

Thus, we can write
Y = HŴ (28)

where Y is the observation vector and H is the data matrix.
We can solve (28) for Ŵ by the Ordinary Least Squares method, and if H has full rank the

solution is
Ŵ = H+Y = (HTH)−1HTY (29)

where H+ is the pseudoinverse of the H matrix. Plugging the weight vector Ŵ into (16)-(18) allows
us to compute the value function Vi, updated control policy ui+1, and the updated disturbance di+1.

4. Proposed Hyperparameter Tuning

This model-free IRL algorithm solves the H∞ optimal tracking problem without requiring any
knowledge of the system dynamics. We do, however, assume that we at least know the structure of
the system dynamics, so the dimensions n, m, and q are known. We also assume access to state
variables and the disturbance. In this model-free sense, one might ask how to form the data matrix
H ∈ RN×M where N is the number of samples with sampling interval T , and M = 4n2 + (m ×
2n) + (q × 2n) is the number of independent coefficients in Ŵ . Since M is a fixed number based
on the system dynamics (16)-(18), N is the only unknown parameter that affects the size of the H
matrix. In the least squares problem (28), if N = M and H is nonsingular, the answer is simply
Ŵ = H−1Y . If, however, N > M so that we have more equations than unknowns, the problem is
called overdetermined and in general no Ŵ will satisfy (28) (Demmel, 1997, §3.1). Note that, if H
has full rank, the moment matrix HTH in (29) can be inverted which gives the solution.

For the numerical analysis of this least squares problem, we use Singular Value Decomposition
(SVD) as a powerful tool for determining the quality of the data matrix. In SVD, for any H ∈
RN×M , according to (Demmel, 1997, Theorem 3.2), there exist orthogonal matrices U ∈ RM×M
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and V ∈ RN×N such that UTHV = diag(σ1, . . . , σp) ∈ RN×M where p = min(N,M) and the
singular values of H are σ1 ≥ σ2 ≥ · · · ≥ σp ≥ 0.

The condition number κ(H) is the ratio of the largest to smallest singular values (κ(H) =
σ1/σp). Our experiments show that the condition number of the data matrix can become quite
large making the least squares problem (28) ill-conditioned. This demonstrates the sensitivity of the
least squares solution to small changes in the data matrix coefficients (Golub and Van Loan, 1996,
§2.7; Higham, 2002, §20.1). Since we solve the IRL Bellman equation (13) iteratively, finding the
accurate solution of the least squares problem for an ill-conditioned data matrix is numerically and
computationally challenging.

In order to collect data in the data-collection phase of the algorithm and form the data ma-
trix (26), one needs to select N and T without requiring any knowledge of the system dynamics.
We found that different selections of N and T , with all other parameters including the initial state
vector x0 fixed, yield different κ(H) and show different properties of convergence to the optimal
solution. Smaller values of κ(H(N,T )) result in better convergence to the optimal solution. Since
these two parameters are used to control the overall learning process, they are also considered to be
hyperparameters of the algorithm. To find the best selection of N and T , we used the Grid Search
process that searches through a manually specified subset of the N -T hyperparameter space. Note
that in this search, the initial state x0 and all other parameters are fixed.

Through experimentation, we determined that the data matrix always has the highest condition
number during the second iteration of the learning phase of the algorithm, so our Grid Search results
only plot that value. As soon as the Grid Search is completed and we have estimates of the best
values for N and T , we can then return and complete the learning phase using those values to solve
the optimization problem. We present results for an example in the following section.

5. Model-free Numerical Tuning of N and T

In this section, we present model-free numerical tuning of the hyperparameters N and T using fixed
values of α and γ for a LTI system. In Section 7, we show how our model-free tuning correlates
with the optimal solution for different values of α and γ. This LTI example is taken from Modares
et al., 2015 and represents the longitudinal dynamics of an F-16 in cruise coupled with an elevator
actuator. The model is defined in the form of (1) with

A =

−1.01887 0.90506 −0.00215
0.82225 −1.07741 −0.17555

0 0 −1

 , B =

00
5

 , D =

10
0

 , x =

aq
δ

 (30)

where a is the angle of attack, q is the pitch rate and δ is the elevator deflection angle. The objective
is to design an angle-of-attack controller to track a constant reference signal such that r = const
and ṙ = 0. This makes A′ = 0 in (9). Also, we have

Q =

20 0 0
0 0 0
0 0 0

 , R = 1. (31)

Now, we can form the augmented system dynamics (8) using (9). Using the Riccati solution of the
GARE (10) in (11), the Euclidean norm of the optimal gain K∗ = R−1B̄TP can be computed for
a range of α and γ, as shown in Figure 1.
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For this LTI system, from trial and error, we find that there is no solution to the Riccati equation
for γ less than the lower bound γ∗ = 2.6. In a model-free situation, however, one has to be able
to safely pick α and γ without reference to such information. In Figure 1, we note that for γ > 3,
regardless of α, the resulting ∥K∗∥ is relatively small and decreases with an increase in γ. In
Section 7, we show how results vary depending on the selection of α and γ.

Now, with a fixed set of values for α and γ (0.1 and 10, respectively), we implement the algo-
rithm and solve the H∞ tracking problem according to Modares et al., 2015. We can compute the
upper bound α∗ = 0.8944 from (14). Data was collected using a disturbance on angle of attack
modeled as a sum of 1000 sinusoids with angular frequencies from a uniform random distribution
between −50 and 50 rad/s:

d(t) = 0.08
1000∑
i=1

sin(ωit), ωi ∈ [−50, 50]. (32)

Also, because the control input and all of the states need to be observable in the data matrix, we
persistently excite the control input and the command generator states with a sum of sinusoids in the
same format as (32), but with appropriately selected amplitudes, while collecting the required data.
These amplitudes constitute an additional set of hyperparameters that need to be tuned in order to
achieve an acceptable solution.

In order to determine the best estimate of N and T , we performed a Grid Search for N ∈
[100, 200, 300, 400, 500, 600] and T ∈ [0.01, 0.05, 0.1, 0.5, 1, 5, 10]. The results of this search are
shown in Figure 1. The algorithm converges well to the optimal solution with the lowest condition
number log10(κ(H(500, 0.05))) = 17.56 corresponding to N = 500 and T = 0.05 seconds. If
we only want to collect N = 200 samples, the collection needs to be done at a sampling interval
of T = 0.1 seconds, corresponding to the lowest condition number of H in the plot for N = 200.
Also, if we want to collect data at a sampling interval of T = 0.05 seconds, we should collect more
than N = 300 samples. Therefore, we are able to choose appropriate values for N and T without
any knowledge of the system dynamics.

(a) ∥K∗∥ (b) κ(H)

Figure 1: (a) ∥K∗∥ as a function of α and γ (b) Condition number of the data matrix κ(H) for
different N and T
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6. Tuning Persistent Excitation

As explained in Section 5, in the data-collection phase of the algorithm, persistently exciting (PE)
signals were added to control inputs [u1, . . . , um], disturbances [d1, . . . , dq], and augmented states
[X̄n+1, . . . , X̄2n] while the required information was collected. There are m + q + n required PE
signals in this algorithm. As part of this study, we experimented with multiple types of PE signals
including white noise, linear chirp, exponential chirp, and sum of sinusoids. We found that a sum of
sinusoids PE signal was the most effective at converging to the optimal solution, so the PE signals
used in this study are sums of sinusoids in the following format with appropriate amplitudes, aλ,

Ψλ(t) = aλ

ξ=1000∑
i=1

sin(ωλ,it), ωλ,i ∈ [−∆λ,∆λ] (33)

where λ ∈ [1, . . . ,m,m + 1, . . . ,m + q,m + q + 1, . . . ,m + q + n]. ωλ,i is one of ξ = 1000
uniformly distributed random angular frequencies between −∆λ and ∆λ. Both aλ and ∆λ are
additional hyperparameters that need to be tuned. More terms in the sum of sinusoids PE (larger
ξ) make the excitation richer which is why we chose a large value for ξ. In a model-free sense, the
amplitudes, aλ, can be tuned appropriately as long as the system remains stable during the data-
collection phase. Optimal tuning of the amplitudes was not addressed with this work. However, for
fixed amplitudes, we found a strong correlation between the condition number of the data matrix
κ(H) and the range of the uniformly distributed random angular frequencies when using the same
frequency range for all PE signals. We now refer to the frequency range as [−∆,∆]. Since there is
no information about the system dynamics in a model-free algorithm, this seems like a reasonable
approach. The results presented in Figure 2 show how changes in ∆ affect κ(H) in this study.

For comparison, in Figure 2 (right), we present our results for the largest (∆ = 1000 rad/s) and
smallest (∆ = 0.00001 rad/s) ranges of angular frequencies we could compute along with the one
that gives the lowest κ(H). The results show that a very small PE (or by extrapolation no PE) will
result in high κ(H) (ill-conditioned) which makes it impossible for the algorithm to converge to the
optimal solution. Conversely, a very wide range like ∆ = 1000 rad/s results in a relatively low and
constant κ(H) for all values of N and T . Subsequently, we found specific range in this example
which leads to the lowest κ(H) for N and T . In fact, ∆ = 0.1 rad/s will result in relatively low
κ(H) for large T . In other words, N , T , and the range of angular frequencies, ∆, in the PE signals
can be tuned via the Grid Search described in Section 5 in order to achieve good convergence to the
optimal solution. The best values of ∆, N , and T for the example in this study are located in the
darkly-shaded regions of Figure 1. Additionally, despite using the same range of frequencies for all
PE signals, we found that none of the PE signals individually could account for the lowest condition
number. The low condition number comes from the combined influence of each PE signal on the
system. Despite having knowledge of the system dynamics for the example in the paper, use of that
knowledge in terms of the eigenvalues did not appear to provide any benefit in tuning ∆.

7. Correlation between Condition number and optimal solution

In previous sections, we presented a method for tuning N , T , and PE for a fixed selection of α and
γ without requiring a system model. In addition to those hyperparameters, the selection of α and γ
is also an important part of the learning algorithm, since they are present in (10). In Section 5, we
provided guidelines for choosing α and γ. In this section, we explain this in more detail and show
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(a) Gradual development (b) Minimum and maximum

Figure 2: Condition number of the data matrix κ(H) for different N and T when different angular
frequency ranges [−∆,∆] for PE signals are used.

how our model-free Grid Search for low condition number κ(H) can produce better convergence to
the optimal solution.

Using a sum of sinusoids PE signal, we computed condition number κ(H), the relative norm of
the performance function difference ||J∗−J ||/||J∗|| and the norm of the gain difference ||K∗−K||
for a range of α and γ values. In these computations, J is the learned performance index (7), J∗ is
the optimal performance index, K is the learned gain, and K∗ is the optimal gain (Figure 1).

Figure 3 (left) presents condition number of the data matrix κ(H) for different N and T as α
and γ are varied. In general, for any selection of α and γ, κ(H) decreases as N and T increase.
In other words, for any selection of α and γ, when we collect more samples with longer sampling
interval, we generally obtain a better learned solution. However, note that there may be particular
small N and T for any selection of α and γ which can lead to lower κ(H) as we see in Figure 1
(right). In fact, as explained in Section 5, κ(H) is a great model-free measure to identify these
particular N and T which lead to a lighter and faster data collection.

In Figure 3 (middle and right), we depict relative norm of the performance function difference
||J∗ − J ||/||J∗|| and norm of the gain difference ||K∗ − K||, respectively, for different N and T
when changing α and γ. As α increases, the convergence to the optimal solution degrades.

As can be seen in the plots, a small α with γ > 20 is a safe selection for any N and T . Also,
for each selection of α and γ, as N and T increase, the convergence of the learned solution to
the optimal solution gets better. This implies a correlation between low condition number and the
ability to converge to the optimal solution.

8. Conclusion

The model-free IRL algorithm discussed in this paper solves the H∞ optimal tracking problem
iteratively by the Ordinary Least Squares method, so the condition number of the data matrix κ(H)
plays a key role in the convergence of the algorithm. The data matrix is formed after collecting
data, so the value of κ(H) is computed without any knowledge of the system dynamics. Since the
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(a) κ(H) (b) ||J∗ − J ||/||J∗|| (c) ||K∗ −K||

Figure 3: Condition number of the data matrix κ(H), relative norm of performance function differ-
ence ||J∗ − J ||/||J∗||, and norm of the gain difference ||K∗ −K|| for different N and T
as α and γ are varied (N increases to the right, T increases vertically on the inner grid)

choices of number of samples, N , and sampling interval, T , strongly influence the properties of
the data matrix, they also strongly influence the convergence properties of the algorithm. We found
that, for any selection of α and γ, κ(H) generally decreases as N and T increase. In addition,
the convergence of the learned solution to the optimal solution generally improves as both N and T
increase. In other words, when we collect more samples with longer sampling interval, we generally
obtain a better learned solution. Also, for any selection of α and γ, the search for lowest κ(H) can
lead to particularly small N and T which makes data collection lighter and faster. It is shown that
as α increases, the convergence of the learned solution to the optimal solution degrades. For this
reason, we recommend starting with a small value for α in order to get the best convergence.

We also found a strong correlation between κ(H) and the PE signals in the form of sums of
sinusoids. Very small PE (or no PE) results in high κ(H) which makes convergence to the optimal
solution difficult. In contrast, a very wide range of angular frequencies results in a relatively low
and constant κ(H). We found specific ranges for the F-16 model which lead to the lowest overall
κ(H) and we determined none of the PE signals individually could account for it. The combined
influence of the PE signals seems to be the determining factor leading to lower condition numbers.
This was also true in the case of measurement noise. We found that using measurement noise alone
as the PE resulted in higher condition numbers than when we applied the sum of sinusoids PE.

Immediate future work includes investigating the application of our findings to multiple classes
of systems where each class is represented by the same equations of motion but with different
physical parameters. Examples of system classes could include vehicles with double integrator
dynamics, multiple types of fixed-wing aircraft, and multiple types of multirotors.
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