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Abstract
We consider the problem of online control of systems with time-varying linear dynamics. To

state meaningful guarantees over changing environments, we introduce the metric of adaptive re-
gret to the field of control. This metric, originally studied in online learning, measures performance
in terms of regret against the best policy in hindsight on any interval in time, and thus captures the
adaptation of the controller to changing dynamics. Our main contribution is a novel efficient meta-
algorithm: it converts a controller with sublinear regret bounds into one with sublinear adaptive
regret bounds in the setting of time-varying linear dynamical systems. The underlying technical
innovation is the first adaptive regret bound for the more general framework of online convex op-
timization with memory. Furthermore, we give a lower bound showing that our attained adaptive
regret bound is nearly tight for this general framework.
Keywords: time-varying dynamics, online control, adaptive regret, online learning

1. Introduction

Reinforcement learning and control have essentially identical objectives: to maximize long-term
reward in a Markov decision process. The focus in control theory is many times on dynamical
systems that arise in the real world, motivated by physical applications such as robotics and au-
tonomous vehicles. In these applications the dynamics have succinct descriptions coming from
physics equations. These are seldom linear! Even for simple physical systems such as the inverted
pendulum, the dynamics are nonlinear. Furthermore, dynamics in the real world often change with
time. For example, the dynamics of an UAV flying from source to target may change due to the
volatility of the weather conditions (wind, rain, and so forth).

In terms of provable methods, the theory of optimal and robust control has focused on efficient
algorithms for linear time invariant (LTI) systems. Nonlinear systems are significantly harder, and
in fact NP-hard to control in general (Blondel and Tsitsiklis, 2000). There are several different
approaches to deal with nonlinear dynamics, that we detail in the related work section. In this
paper we consider the approach of iterative linearization by using the first order approximation,
that was popularized by planning methods such as iLQR, iLC and iLQG. This allows one to model
nonlinear dynamics as linear time-varying (LTV) dynamical systems. However, instead of the
standard approach of applying planning methods for linear dynamical systems, we build on recent
regret minimization algorithms for online control.
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ADAPTIVE REGRET FOR TIME-VARYING CONTROL

To present our approach to the problem, we first describe the recent literature on online control
that differs from classical techniques by measuring performance in terms of regret. We then proceed
to show how to borrow concepts from online learning in changing environments to attain meaningful
guarantees for control of time-varying systems.

1.1. Online control of linear dynamical systems

A recent advancement in machine learning literature studies the control of dynamical systems in
the online learning, or regret minimization, framework. In the nonstochastic control setting, the
controller faces a dynamical system given by

xt+1 = Atxt +Btut + wt . (1)

Here At, Bt describe the system dynamics, xt is the state, ut is the control and wt is the poten-
tially adversarial (nonstochastic) perturbation. Prior literature considers solely the LTI case, where
At ≡ A,Bt ≡ B. The controller chooses the control signal ut, and incurs loss ct(xt, ut), for an ad-
versarially chosen convex cost function ct. Since the perturbations and cost functions are arbitrary
or chosen adversarially, the best policy is ill-defined a priori. Thus, the performance metric in this
model is worst-case regret w.r.t. the best policy in hindsight from a certain policy class Π. Formally,

RegretT =

T∑
t=1

ct(xt, ut)−min
π∈Π

T∑
t=1

ct(x
π
t , u

π
t ) . (2)

Several benchmark policy classes have been considered in the recent control literature. The simplest
to describe is the class of linear state feedback policies, i.e. policies that choose the control as a
linear function of the state, ut = Kxt. These policies are known to be optimal for the H2 control
andH∞ control formulations for LTI systems.

From this starting point we would like to extend nonstochastic control: can we prove regret
bounds for LTV systems? How would such bounds even look like? To address this question we
first consider the field of online learning, where the metric of regret is well studied, and investigate
its extension to changing environments.

1.2. Adaptive regret for online convex optimization

In the problem of online convex optimization (OCO), a learner iteratively chooses a point in a
convex decision set, i.e. zt ∈ K ⊆ Rd. An adversary then chooses a loss function ft : K 7→ R. The
goal of the learner is to minimize regret, or loss compared to the best fixed decision in hindsight,
given as

T∑
t=1

ft(zt)− min
z?∈K

T∑
t=1

ft(z
?) .

The theory of OCO gives rise to efficient online algorithms with sublinear regret, e.g. O(
√
T )

over T iterations, implying that on average the algorithm competes with the best fixed decision in
hindsight. However, the standard regret metric is not suitable for changing environments, where the
fixed optimal solution in hindsight is poor. For example, consider a scenario with ft = f for the
first T/2 iterations, and ft = g for the last T/2 iterations. Here, the standard regret metric ensures
convergence to the minimum of f + g, i.e. the best fixed decision in hindsight which potentially
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incurs linear loss.1 Yet, the optimal solution for this scenario is to shift between the minimum of f
to that of g midway!

For this reason, the metric of adaptive regret was developed by Hazan and Seshadhri (2009). It
captures the supremum over all local regrets in any contiguous interval I , defined as

sup
I=[r,s]⊆[1,T ]

[
s∑
t=r

ft(zt)− min
z?I∈K

s∑
t=r

ft(z
?
I )

]
. (3)

The strength of this definition is that it does not try to model the changes in the environment.
Instead, the responsibility is on the learner to try to compete with the best local predictor z?I at
all times. For the example above, if an algorithm does not converge to either the optimum of f in
[1, T/2] or the optimum of g in [1, T/2], it would suffer linear adaptive regret. In general, algorithms
that minimize adaptive regret by definition minimize regret as well and additionally are capable of
quickly switching between local optima. This metric is thus more appropriate for our investigation
of LTV dynamical systems.

1.3. Contributions

In the setting of online control over LTV systems as in (1), the adaptive regret metric implies the
following: an algorithm that minimizes adaptive regret is capable of competing against different
policies from the class Π throughout the time horizon T . Formally, adaptive regret against a policy
class Π is given as

AdRegretT = sup
I=[r,s]⊆[1,T ]

{
s∑
t=r

ct(xt, ut)− min
π?
I∈Π

s∑
t=r

ct(x
π?
I
t , u

π?
I
t )

}
. (4)

Just like we surveyed for OCO, the main change from standard regret for control is the supremum
over all intervals, and the fact that the minimum over the policies is local to the particular interval.
This ensures that an algorithm with sublinear adaptive regret guarantees enjoys low regret against
the best-in-hindsight policy π?I on any interval I . Hence, the algorithm captures any changes in the
dynamics of the LTV system by implicitly tracking the local optimal (in Π) policy.

The main challenge in applying existing adaptive regret methods from online learning to control
and reinforcement learning is the long-term effect that actions have. We first overcome this chal-
lenge in the setting of online convex optimization with memory (Anava et al., 2015). This setting
allows one to transfer learning in stateful environments to online learning, following the methodol-
ogy proposed in Agarwal et al. (2019a). The main contributions of our paper can be summarized as
(i) adaptive regret results for online control over LTV systems and (ii) technical contributions in the
OCO with memory setting possibly of independent interest.

Adaptive Regret over LTV systems. We propose an efficient meta-algorithm MARC, Algorithm
1, that converts a base controller with standard regret bounds to a control algorithm with provable
sublinear adaptive regret guarantees in the setting of linear, time-varying systems. We apply MARC
over recent algorithmic results in nonstochastic control, and obtain an efficient algorithm that attains
Õ(
√

OPT) adaptive regret against the class of disturbance response control (DRC) policies, where
OPT is the cost of the best policy in hindsight over the entire horizon.

1. To see this, take f(z) = ‖z − z?f‖2 and g(z) = ‖z − z?g‖2, then the optimum of f + g is the midpoint of z?f and z?g
and over the whole interval suffers cumulative loss linear in T .
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Adaptive Regret in OCO with memory. Our derivation goes through the framework of OCO
with memory, for which we give an efficient adaptive regret algorithm. Specifically, our algorithm
guarantees Õ(

√
OPT) adaptive regret for strongly convex functions with memory, where OPT is

the best loss in hindsight. This is the first such guarantee for a fundamental setting in prediction.
The aforementioned challenge of obtaining adaptive regret in the setting of OCO with memory is
that an online algorithm needs to change its decision slowly to cope with the memory constraint. On
the other hand, an online algorithm needs to be agile to quickly adjust to environment changes and
minimize adaptive regret. These two requirements are contradictory. We formalize this intuition by
proving the following lower bound.

Theorem 1 (Informal Theorem) Any algorithm for OCO with memory has AdRegretT = Ω(
√
T ),

even over strongly convex loss functions.

The lower bound above essentially shows our results to be tight for nonstochastic control al-
gorithms that are based on OCO with memory given that OPT = O(T ). However, we note that
despite the general lower bound it is still possible to attain o(

√
T ) adaptive regret in certain favor-

able settings. In fact, the positive results in this work, given as first-order adaptive regret bounds,
suggest exactly this: Algorithm 1 suffers adaptive regret much smaller than Õ(

√
T ) when the cost

of the best policy in hindsight OPT = o(T ) is sublinear.

Paper Organization. In subsection 1.4 we discuss related work. We provide important back-
ground and formalize the problem at hand in section 2. Section 3 describes the main meta-algorithm
and its performance guarantee for online control over changing dynamics. Our experimental results
are presented in section 4. The arXiv version includes details, formal theorems, proofs and all else
skipped in the main body of the paper for clarity of exposition.

1.4. Related work

The field of optimal and adaptive control is vast and spans decades of research, see e.g. Stengel
(1994); Zhou et al. (1996) for survey. In terms of nonlinear control, we can divide the literature into
several main approaches. The iterative linearization approach takes the local linear approximation
via the gradient of the nonlinear dynamics. One can apply techniques from optimal control to solve
the resulting changing linear system. Iterative planning methods such as iLQR (Tassa et al., 2012),
iLC (Moore, 2012) and iLQG (Todorov and Li, 2005) fall into this category. Our approach also
takes this route.

Another approach is using convex relaxations of the nonlinear dynamics to cope with the hard-
ness of the underlying non-convex optimization. These methods are applied for both H2 control
(see e.g. Majumdar et al. (2020)), and H∞ control (see Bansal et al. (2017)) formulations. They
are highly effective in some cases, but do not scale well to high dimensional problems. Finally,
the nonlinear system can also be linearized via the Koopman operator as detailed in Budisic et al.
(2012); Rowley and Dawson (2017).

In this work we restrict our discussion to online control of changing linear dynamical systems
with low adaptive regret. To the best of our knowledge, this is the first work with adaptive regret
bounds shown for time-varying dynamics.
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Online convex optimization and adaptive regret. We make extensive use of techniques from
the field of online learning and regret minimization in games (Cesa-Bianchi and Lugosi, 2006;
Hazan, 2016). Most relevant to our work is the literature on adapting to changing environments
in online learning, which starts from the works of Herbster and Warmuth (1998); Bousquet and
Warmuth (2002). The notion of adaptive regret was introduced in Hazan and Seshadhri (2009),
and significantly studied since as a metric for adaptive learning in OCO (Adamskiy et al., 2016;
Zhang et al., 2019). An alternative metric for changing systems studied in online learning is called
dynamic regret Zinkevich (2003). It has been estabilished that dynamic regret is a weaker notion
than strongly adaptive regret Daniely et al. (2015), in the sense that a sublinear bound on the former
implies sublinear dynamic regret, and the reverse is not true Zhang et al. (2018).

Regret minimization for online control. In classical control theory, the disturbances are assumed
to be i.i.d. Gaussian and the cost functions are known ahead of time. In the online LQR setting
(Abbasi-Yadkori and Szepesvári, 2011; Dean et al., 2018; Mania et al., 2019; Cohen et al., 2018),
a fully-observed time-invariant linear dynamic system is driven by i.i.d. Gaussian noise and the
learner incurs a cost which is (potentially changing) quadratic in state and input. When the costs are
fixed, the optimal policy for this setting is known to be linear ut = Kxt, where K is the solution
to the algebraic Ricatti equation. Several online methods (Mania et al., 2019; Cohen et al., 2019,
2018) attain

√
T regret for this setting, and are able to cope with changing loss functions. Regret

bounds for partially observed systems were studied in Lale et al. (2020a,b,c), with the most general
and recent bounds in Simchowitz et al. (2020).

Agarwal et al. (2019a) consider a significantly more general and challenging setting, called
nonstochastic control, in which the disturbances and cost functions are adversarially chosen, and
the cost functions are arbitrary convex costs. In this setting they give an efficient algorithm that
attains

√
T regret. This result was extended to unknown LTI systems in Hazan et al. (2019), and the

partial observability setting in Simchowitz et al. (2020). Logarithmic regret for the nonstochastic
perturbation setting was obtained in Simchowitz (2020). For a survey of recent techniques and
results see Hazan and Singh (2021).

A roughly concurrent line of work considers minimizing (dynamic) regret against the optimal
open-loop control sequence in both LTI and LTV systems. Li et al. (2019) achieve this by leveraging
a finite lookahead window while Goel and Hassibi (2021) reduce the regret minimization problem
to H∞ control. Zhang et al. (2021) follow up our work to devise methods with strongly adaptive
regret guarantees however these regret bounds, as opposed to ours, are not first-order.

2. Problem Setting and Preliminaries

Notation. Throughout this work we use [n] = [1, 2, ..., n] as a shorthand, ‖·‖ is used for Euclidean
and spectral norms, O(·) hides absolute constants, Õ(·) hides terms poly-logarithmic in T .

Online LTV Control A time-varying linear (LTV) dynamical system is given by the following
dynamics equation,

∀t ∈ [T ], xt+1 = Atxt +Btut + wt,

where xt ∈ Rdx is the (observable) system state, ut ∈ Rdu is the control, and (At, Bt) are
the system matrices with At ∈ Rdx×dx , Bt ∈ Rdx×du , wt ∈ Rdx is the disturbance. In our work,
we allow wt to be adversarially chosen. This is the key assumption in the nonstochastic control
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literature. The additional generality of adversarial perturbations allows the disturbance to model
slight deviations from linearity along with inherent noise.

We consider the setting of known systems, i.e. after taking an action ut the controller observes
the next state xt+1 as well as the current system matrices (At, Bt). This allows the controller to com-
pute the disturbance wt = xt+1−Atxt−Btut, so the knowledge of xt+1 and wt is interchangeable.
A control algorithm C chooses an action ut = C(x1, . . . , xt) based on previous information. It
then suffers loss ct(xt, ut) and observes the cost function ct. We remark that an adaptive adversary
chooses all (At, Bt), wt, ct. We make the following basic assumptions common in the nonstochastic
control literature.

Assumption 2.1 The disturbances are bounded in norm, maxt ‖wt‖ ≤W .

Assumption 2.2 There exist C,CB ≥ 1 and ρ ∈ (0, 1) such that for all t and H ∈ [1, t),

ΦH
t =

t−H+1∏
i=t

Ai,
∥∥ΦH

t

∥∥
op ≤ C · ρ

H , ‖Bt‖op ≤ CB .

Assumption 2.3 The cost functions ct : Rdx × Rdu → R are general convex functions that satisfy
the conditions 0 ≤ ct(x, y) ≤ 1 and ‖ct(x, y)‖ ≤ Lc max{1, ‖x‖+ ‖u‖} for some Lc > 0.

The standard performance metric of controller C over horizon T is regret with respect to a class of
policies Π as defined in (2) denoted RegretT (C). We instead minimize for the adaptive regret metric
of C with respect to Π as defined in (4), and denote it AdRegretT (C). In case the control algorithm
is randomized, we take the expectation of the metric over the randomness in the algorithm.

The choice of the policy class Π is essential for the performance of a control algorithm. One
target class of policies we compare against in this paper is disturbance response controllers (DRC),
whose control is a linear function of the states the controller would have reached in the absence
of exogenous control input, for some history-length parameter H . This comparator class is known
to approximate to arbitrarily high precision the state-of-the-art in LTI control: linear dynamical
controllers (LDC). For more in depth discussion of this and other policy classes, please refer to the
arXiv version.

This choice is a consequence of recent advances in convex relaxation for control (Agarwal et al.,
2019a,b; Hazan et al., 2019; Simchowitz et al., 2020) via a reduction of online control to the setting
of online convex optimization (OCO) with memory. The intuition behind this approach is that even
though actions have long-term effect in control, their effect is dissipating geometrically fast in time.
Thus, actions and states that occurred far in the past have only marginal effect on the dynamics as a
whole. The formal statement for this intuition is given in Definition 2, a generalization of Definition
2.1 from Agarwal et al. (2020).

Before stating the formal definition, we first describe the notion of an action set sequence. For a
fixed horizon T , let Ut ⊂ Rdu be the constraint set for action ut for each t ∈ [T ]. Denote the action
set sequence U1:T = {U1, . . . ,UT } and use u1:T ∈ U1:T to indicate ut ∈ Ut for all t ∈ [T ]. We
remark that Ut potentially depends on the system dynamics up to time t and the action set sequence
U1:T depends on the family of control algorithms used, but not on the particular individual instance.
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Definition 2 The action set sequence U1:T is said to have (H, ε)-bounded memory if for all fixed
arbitrary u1:T ∈ U1:T and all t ∈ [T ],

|ct(xt, ut)− ct(x̂t, ut)| ≤ ε,

where we define x̂t to be the proxy state with memoryH for the sequence of actions u1:T : for t > H ,
x̂t is the state reached by the system if we artificially set xt−H = 0 and simulate the dynamics (1)
with the actions ut−H , . . . , ut−1.

Suppose an action set sequence U1:T has (H, ε)-bounded memory. Then, given that x̂t =
x̂t(ut−H , . . . , ut−1), the performance guarantees of a proxy cost function ft(ut−H:t) = ct(x̂t, ut)
imply guarantees for the control setting. Furthermore, regret minimization of ft(ut−H:t) can be
done in the setting of OCO with memory. Finally, we state the necessary properties for a controller
C to be considered a base control algorithm.

Definition 3 A control algorithm C with an action set sequence U1:T is called a base controller if:

(i) U1:T has (H, ε)-bounded memory.

(ii) for all t ∈ [T ], the proxy loss ft(ut−H:t) = ct(x̂t, ut) is coordinate-wise L-Lipschitz.

Note that the properties of a base controller concern the control algorithm setup not the con-
troller instance itself. The definition of a base controller serves simply as an abstraction: in the
arXiv version we show it is not vacuous given that all previous control algorithms in the nonstochas-
tic control literature satisfy the conditions (Agarwal et al., 2019a; Simchowitz, 2020).

Adaptive Regret for Online Convex Optimization with Memory In the setting of online convex
optimization (OCO) with memory the adversary reveals the loss function ft : KH+1 7→ R that
applies to the past H + 1 decisions of the player, and the player suffers loss ft(zt−H:t) where
zi:j = {zi, . . . , zj} with i < j. Define the surrogate loss f̃t : K 7→ R to be the function with all
H + 1 arguments equal, i.e. f̃t(z) = ft(z, . . . , z) (this reduces to the standard setting with H = 0).
The regret in this setting is defined with respect to the best surrogate loss in hindsight as follows,

RegretT =
T∑
t=1

ft(zt−H:t)−min
z∈K

T∑
t=1

f̃t(z) .

The notion of adaptive regret in OCO with memory is defined analogously to (3), i.e. the
supremum of the local standard regret over all contiguous intervals,

AdRegretT (A) = sup
I=[r,s]⊆[T ]

[
s∑
t=r

ft(zt−H:t)− min
z?I∈K

s∑
t=r

f̃t(z
?
I )

]
.

The OCO setting with memory, as outlined in Anava et al. (2015), reduces to the standard setting
by assuming a Lipschitz condition on f and relating f to f̃ . To quantify this relation, it is crucial to
keep track of the movement between the consecutive actions by the learner. Henceforth, we define
the notion of action shift, a metric for the stability of the algorithm, as the overall shifting in distance
of consecutive actions by A,

ST (A) = sup
z1,...,zT←A

[
T−1∑
t=1

‖zt+1 − zt‖

]
. (5)
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Action shift is necessary to quantify an algorithm’s prediction stability: the predictions are stable if
the action shift is small and this is crucial in the setting with memory. On the other hand, adaptive
regret encourages an algorithm to move quickly to adapt to environment changes, thus compromises
the prediction stability by driving the action shift to be large.

3. Online Control of Time-Varying Dynamics

For the setting of online control described in Section 2, we devise MARC (Algorithm 1): a meta-
algorithm that takes a base controller C and “transforms” its standard regret guarantees into adaptive
regret bounds. It does so by maintaining N = T copies of the base controller (C1, . . . , CN ), with
the restriction that each Ci plays uit = 0 for t < i and only starts running C at round t = i. At
each round t, MARC chooses the action ut = uit given by Ci with some probability that reflects
Ci’s performance so far. As long as C is a base controller according to Definition 3, we can transfer
our general results on adaptive regret for online convex optimization with memory to the control
setting, yielding Theorem 4 given below.

Black-box use of C. Since the system is known to the meta-controller, each controller Ci can
construct a simulated environment with its own actions uit and identical system matrices and dis-
turbances. In particular, once the meta-controller observes the new state xt+1, it computes the
corresponding disturbance wt = xt+1−Atxt−Btut and feeds it to the base controllers along with
the system matrices (At, Bt). Afterwards, each base controller Ci simulates the system environment
with its own action, i.e. xit+1 = Atx

i
t+Btu

i
t+wt. Such behavior allows for black-box use of results

for the base controllers since each acts separately in response to the same dynamics.

Algorithm 1 Meta Adaptive Regret Controller (MARC)
Input: horizon T , action set sequence U1:T , N = T controllers C1, . . . , CN , parameters η, σ
Setup: assign wi1 = 1 and feedback F i1 = {xi1 = 0}, ∀i ∈ [N ], denote Wt =

∑N
i=1w

i
t

for t = 1, ..., T do
compute each action uit by Ci given F it
if t = 1 then

choose it = i w.p. pit = wit/Wt for all i ∈ [N ]
else

keep it = it−1 w.p. wit−1

t /w
it−1

t−1 , o.w. choose it = i w.p. pit = wit/Wt for all i ∈ [N ]
end
choose action ut = uitt , observe ct(·, ·), suffer cost ct(xt, ut)
observe new state xt+1, compute wt disturbance, obtain xit+1 given uit, wt for all i ∈ [N ]

let ft(ut−H:t) = ct(x̂t, ut) be proxy cost, f̃t(u) = ft(u, . . . , u) be surrogate proxy cost
compute wit+1 = wite

−ηf̃t(uit) and wit+1 = (1− σ)wit+1 + σW t+1/N for all i ∈ [N ]
update F it+1 = F it ∪ {xit+1, u

i
t, ct} for all i ∈ [N ]

end

Efficient implementation. We remark that Algorithm 1 is not computationally efficient relative
to a base controller C: it has the computational complexity of T such controllers. Yet, our algorithm
can be implemented in an efficient manner by keeping track of and updating only O(log T ) active
controllers. The inactive ones are represented by the stationary ut = 0 controller. This efficient
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version incurs only a O(log T ) extra multiplicative adaptive regret factor relative to Theorem 4 and
only O(log T ) computational overhead relative to the base controller C. For the sake of clarity and
brevity, we present Algorithm 1 without this component and present the efficient implementation
formally in the arXiv version.

Theorem 4 Let C be a base control algorithm by Definition 3 with ε = T−1 and denote OPT =
minπ∈Π

∑T
t=1 ct(x

π
t , u

π
t ). With the parameter choices of η = Õ(ST (C)

√
OPT)−1 and σ = T−1,

Algorithm 1 (MARC) achieves the following adaptive regret against the class of policies Π:

E [AdRegretT (MARC)] ≤ Õ2
(

RegretT (C) + ST (C)
√

OPT
)
, (6)

where RegretT (C) is the regret C attains w.r.t. Π, and ST (C) is its action shift.

Theorem 4 guarantee shows that Algorithm 1 converts a standard regret bound of a base con-
troller into an adaptive one with an extra additive term as in (6). Hence, of utmost interest are
algorithms from the literature that achieve logarithmic regret (and action shift). We showcase the
use of our meta-algorithm MARC on the DRC-ONS (Simchowitz, 2020) algorithm in Corollary 5.

Corollary 5 (MARC-DRC-ONS) Let C be the DRC-ONS algorithm from (Simchowitz, 2020).
Assume the cost functions ct are strongly convex. The MARC-DRC-ONS algorithm that performs
MARC over C enjoys the following adaptive regret guarantee w.r.t. the DRC policy class Πdrc (see
arXiv version for formal definition and discussion),

E [AdRegretT (MARC-DRC-ONS)] ≤ Õ
(√

OPT
)
. (7)

The result above holds for any LTV system that satisfies Assumptions 2.1, 2.2, 2.3. Note that the
adaptive regret bound Õ(

√
OPT) can be considerably smaller than

√
T if the LTV system (along

with the disturbances and costs) is favorable. More importantly, the bound, and more specifically
OPT, depends directly on the policy benchmark we are competing against, Πdrc in this case. Hence,
algorithms that enjoy low regret against larger policy classes automatically enjoy better adaptive
regret bounds via MARC. The formal statement and proof of Corollary 5 and application to other
control algorithms can be found in the arXiv version.

4. Experimental Results

To show the applicability of our algorithm in more realistic (and harder) scenarios, we consider the
control of a nonlinear system via iterative linearization as detailed in the introduction. We exper-
iment on the inverted pendulum environment, a commonly used benchmark consisting of a non-
linear and unstable system, popularized by OpenAI Gym (Brockman et al., 2016). We experiment
with both the original noiseless system, and a modified version in which we introduce a sinusoidal
shock in the middle of the run, i.e. for timesteps t ∈ [T/3, 2T/3] an adversarial perturbation of
0.3 ∗ sin(t/2π) is added to the state.

2. We hide factors of H,L since they have been shown to be poly-logarithmic in T in the nonstochastic control literature.
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Figure 1: Comparison of T/3-window averaged costs on a noiseless pendulum environment (left)
and a pendulum environment experiencing a midway sinusoidal shock (right).

For MARC, we implement the efficient version of Algorithm 1 using the GPC algorithm from
Agarwal et al. (2019b) as the base controller. As sanity checks, we compare our performance to GPC
and to the linear controller LQR which acts according to the algebraic Ricatti equation computed at
the start of the experiment. More relevantly, we also compare against iLQR, a planning method for
non-linear control via iterative linearization, implemented as in Tassa et al. (2012).

In the left plot of Figure 1, we see that our method enables a controller originally developed for
linear systems (GPC) to be used to solve this harder, nonlinear task, only slightly slower than the
iLQR baseline. In the right plot, we see that iLQR is unable to adapt to an unanticipated shock due to
its static and environment-agnostic design. Yet, our controller MARC demonstrates its robustness to
the adversarial noise, and succeeds at this new harder task. More generally, we see that our algorithm
works well in the setting of nonlinear control via iteratize linearization. These results confirm that
the proposed approach is highly promising even from a practical standpoint, and provides a viable
alternative to the classic planning approach.

5. Conclusion

We considered the control of time-varying linear dynamical systems from the perspective of online
learning. Using tools from the theory of adaptive regret, we devise new efficient algorithms with
provable guarantees in both online control and online prediction: they attain near-optimal first-order
regret bounds on any interval in time.

In terms of future directions and open problems, it is interesting to extend our results to strongly
adaptive regret: in particular, it is interesting to answer the question whether strongly adaptive first-
order regret, i.e. depending on the optimal cost per interval, can be achieved. This cannot be done
trivially by the approach of Daniely et al. (2015) and answering this question would resolve op-
timality in this setting given our lower bound. The provided expected regret results can be stated
with high probability using standard techniques with an additional

√
T term in the regret. How-

ever, obtaining high probability bounds without impeding the first-order regret bound is quite more
challenging and of independent interest to attain.

Finally, our guarantees hold with respect to adaptive, rather than oblivious adversaries, which
is crucial for nonlinear control. It is interesting to map out which properties of nonlinear dynamics
allow effective control via the LTV approximation.
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