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Abstract
This paper studies the problem of stochastic continuum-armed bandit with constraints (SCBwC),
where we optimize a black-box reward function fpxq subject to a black-box constraint function
gpxq ď 0 over a continuous space X . We model reward and constraint functions via Gaus-
sian processes (GPs) and propose a Rectified Pessimistic-Optimistic Learning (RPOL) framework,
a penalty-based method incorporating optimistic and pessimistic GP bandit learning for reward
and constraint functions, respectively. We consider the metric of cumulative constraint viola-
tion

řT
t“1pgpxtqq`, which is strictly stronger than the traditional long-term constraint violation

řT
t“1 gpxtq. The rectified design for the penalty update and the pessimistic learning for the con-

straint function in RPOL guarantee the cumulative constraint violation is minimal. RPOL can
achieve sublinear regret and cumulative constraint violation for SCBwC and its variants (e.g., under
delayed feedback). These theoretical results match their unconstrained counterparts. Our experi-
ments justify RPOL outperforms several existing baseline algorithms.1

Keywords: Stochastic continuum-armed bandit; Hard constraint; Bayesian optimization

1. Introduction

Stochastic continuum-armed bandit optimization is a powerful framework to model many real-world
applications, (e.g., networking resource allocation Fu and Modiano (2021), online recommendation
Krause and Ong (2011), clinic trials Durand et al. (2018), neural network architecture search White
et al. (2021). In stochastic continuum-armed bandits, the learner aims to optimize a black-box
reward/utility function over a continuous feasible set X by sequentially interacting with the envi-
ronment. The interaction with the practical environment is often subject to a variety of operational
constraints, which are also black-box and complicated. For example, in networking resource allo-
cation, we maximize the users’ quality of experience under complex resource constraints; in clinic
trials, we optimize the quality of treatment while guaranteeing the side effect of patients minimal;
in the neural architecture search, we search a neural network with a small generalization error while
keeping the training time within the time limit. In these applications, the learner requires to optimize
a black-box reward/utility function fpxq while keeping the black-box constraint pgpxq ď 0q satis-
fied. The black-box problem is unsolvable in general without any regularity assumption on fpxq

and gpxq. We assume the reward and constraint functions lie in Reproducing Kernel Hilbert Space
(RKHS) with a bounded norm such that fpxq and gpxq can be modeled via Gaussian processes.

1. The technical report can be found in Guo et al. (2022b). The corresponding author: Xin Liu.
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The previous works in stochastic continuum-armed bandit with constraints (SCBwC) are classi-
fied into two categories according to the type of constraints: hard and soft constraints, respectively.
For the type of hard constraints, there is a sequence of studies on safe Bayesian optimization Amani
et al. (2020); Berkenkamp et al. (2021); Sui et al. (2015, 2018), where the algorithms satisfy the
constraint instantaneously at each round, i.e., hard constraint. However, these results rely on the key
assumption that an initial safe/feasible decision set is known apriori; otherwise, it would be impossi-
ble to guarantee the hard constraints. Moreover, the algorithms in Amani et al. (2020); Berkenkamp
et al. (2021); Sui et al. (2015, 2018) suffer from high-computation complexity because they require
to construct a safe decision set and search for a safe and optimal solution for each round. Without
any prior information on the constraint function or safe set, the constraint violation is unavoidable.
A recent line of work focuses on the soft constraints Ariafar et al. (2019); Shi and Eryilmaz (2022);
Zhou and Ji (2022), which allow the constraints to be violated as long as they are satisfied in the
long term. In other words, the soft constraint violation

řT
t“1 gpxtq should be as small as possible.

The soft constraint violation is a reasonable metric for the long-term budget or fairness constraints.
However, it is improper for safety-critical applications because we may have a sequence of deci-
sions with zero soft constraint violation and violates the constraints at every round. For example,
consider a sequence of decisions tgtpxtqu such that gtpxtq “ ´1 if t is odd and gtpxtq “ `1 if t is
even. For such a sequence with T “ 1000, we have

řτ
t“1 gtpxtq ď 0 for any 1 ď τ ď T, but the

constraint violates at half of T rounds.
In this paper, we focus on stochastic continuum-armed bandit with constraints (SCBwC) via the

Gaussian processes model and study the cumulative/hard constraint violation
řT

t“1pgpxtqq`. The
cumulative violation (or hard violation) is a strictly stronger metric than the soft violation because it
cannot be compensated among different rounds. Our goal is to optimize a black-box reward function
while keeping the cumulative violation minimal. In this paper, we propose a Rectified Pessimistic-
Optimistic Learning (RPOL), an efficient penalty-based framework integrating optimistic and pes-
simistic estimators of reward and constraint functions into a single surrogate function. The frame-
work acquires the information of block-box reward and constraint functions efficiently and safely,
and it is flexible to achieve strong performance in SCBwC and its variants (bandits with delayed
feedback). It is worth to be emphasizing that a concurrent work Xu et al. (2022) also considers the
cumulative violation. However, it requires solving a complex constrained optimization problem for
each round that might suffer from high computational complexity, and it is not clear if their method
can be applied to bandits with delayed feedback as in our paper. Moreover, our experiments show
RPOL outperforms their method w.r.t. both reward and constraint violation.

1.1. Main Contribution

Algorithm Design This paper proposes a rectified pessimistic-optimistic learning framework (RPOL)
for SCBwC, where the rectified design is to avoid aggressive exploration and encourages conser-
vative/pessimistic decisions such that it can minimize the cumulative constraint violation. The pro-
posed framework is flexible to incorporate the classical exploration strategies in Gaussian process
bandit learning (e.g., GP-UCB in Srinivas et al. (2009) or improved GP-UCB in Chowdhury and
Gopalan (2017)) and provides the strong performance guarantee in regret and cumulative viola-
tion. Moreover, our framework is also readily applied to the variants of SCBwC, (e.g., bandits with
delayed feedback in Section 5).
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Reference Regret Soft Violation Hard Violation Design Method
Zhou and Ji (2022) OpγT

?
T q OpγT

?
T {χq N/A Primal-dual

Xu et al. (2022) OpγT
?
T q OpγT

?
T q OpγT

?
T q Constrained optimization

RPOL-UCB OpγT
?
T q OpγT

?
T q OpγT

?
T q Penalty

Table 1: Our results and related work in SCBwC, where χ is a constant related to Slater’s condition
of the offline problem in (4) and requires to be known in Zhou and Ji (2022). Zhou and
Ji (2022) and this paper can be regarded as unconstrained optimization methods, and Xu
et al. (2022) is a constrained optimization-based method.

Reference Regret Hard Violation

Verma et al. (2022) O
´

γT
ρm

p
?
T ` mq

¯

N/A

RPOL-CensoredUCB O
´

γT
ρm

p
?
T ` mq

¯

O
´

γT
ρm

p
?
T ` mq

¯

Table 2: Our results and related work in SCBwC under delayed feedback.

Theoretical Results We develop a unified analysis method for RPOL framework in Theorem 1,
where the regret and cumulative violation depend on the errors of optimistic or pessimistic learning.
The method is quite general to be used in analyzing SCBwC and its variants, and we establish the
following theoretical results (γT is the information gain w.r.t. the kernel used to approximate reward
and constraint functions via GPs).

• For SCBwC, we instantiate RPOL with GP-UCB (RPOL-UCB) and prove it achieves O
`

γT
?
T

˘

regret and cumulative constraint violation. RPOL-UCB strictly improves Zhou and Ji (2022)
as shown in Table 1 and achieves similar performance with an efficient penalty-based method
compared to the concurrent work Xu et al. (2022), a constrained optimization-based method.

• For SCBwC with delayed feedback, we integrate RPOL with censored GP-UCB (RPOL-
CensoredUCB) and show it achieves O

´

γT
ρm

p
?
T ` mq

¯

regret and cumulative violation, where
m and ρm are the parameters related to the delay, as shown in Table 2. To the best of our knowl-
edge, this is the first result in SCBwC with delayed feedback.

2. Problem Formulation

We study a stochastic continuum-armed bandit with constraints, where the arms/decisions are in a
continuous space X P Rd. The reward function f : X Ñ R and constraint function g : X Ñ R
are continuous functions of the arms/decisions. Both f and g are black-box to the learner, and the
learner acquires their knowledge sequentially. At each round t P rT s, the learner makes decision
xt P X and then observes the noisy reward and cost

rt “ fpxtq ` δt,

ct “ gpxtq ` εt,

where noise δt and εt are random variables with zero-mean. Note rt and ct are bandit feedback be-
cause the leaner only observes the (noisy) version of fp¨q and gp¨q at xt. Since f and g are unknown
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apriori (possibly complicated and non-convex) and X is a continuous set with an infinity cardinality,
it is infeasible in general to achieve the global optimal solution for arbitrary reward and constraint
functions. We imposed the regularity assumption that fp¨q and gp¨q are within Reproducing Ker-
nel Hilbert Space (RKHS). The assumption implies that a well-behaved continuous function can be
represented with a properly chosen kernel function Srinivas et al. (2009) and we can model reward
and constraint functions via Gaussian processes as introduced below.
Gaussian process model for f and g functions Gaussian process (GP) is a random process in-
cluding a collection of random variables that follows a joint Gaussian distribution. Gaussian pro-
cess GPpµpxq, kpx, x1qq over X is specified by its mean µpxq and covariance kpx, x1q. For the re-
ward function fpxq, we have GPpµf pxq, kf px, x1qq such that µf pxq “ Erfpxqs and kf px, x1q “

Erpfpxq ´ µf pxqqpfpx1q ´ µf px1qqs. Let At “ tx1, ¨ ¨ ¨ , xt´1u be the collection of decisions and
tr1, ¨ ¨ ¨ , rt´1u be the collection of noisy feedback until round t, respectively. The posterior distri-
bution GPpµf

t p¨q, kft p¨, ¨qq updates at the beginning of round t

µf
t pxq “kft pxqT pV f

t pλqq´1r1:t (1)

kft px, x1q “kf px, x1q ´ kft pxqT pV f
t pλqq´1kft px1q, (2)

σf
t pxq “

b

kft px, xq, (3)

where Kf
t :“ rkf px, x1qsx,x1Ptx1,¨¨¨ ,xt´1u, V

f
t pλq :“ Kf

t ` λI, λ “ 1 ` 2{T , r1:t “ rr1, ¨ ¨ ¨ , rt´1s,

and kft pxq :“ rkf px1, xq, ¨ ¨ ¨ , kf pxt´1, xqsT . Similarly, we define a GP model for the constraint
function g to be GPpµg

t pxq, kgt px, x1qq with the mean µg
t pxq, covariance kgt px, x1q and standard

deviation σgpxq. The model for g updates the same as in (1)-(3). The kernel function is designed by

choice and one popular kernel is the square exponential (SE) kernel kSEpx, x1q “ e
´}x´x1}2

2u2 , where
u ą 0 is a positive hyper-parameter. We consider the SE kernel function in this paper and also use
it in our experiments in Section 6.

Further, we define the information gain at round t to be γft :“ maxAtPX :|At|“t´1
1
2 ln |I `

λ´1Kf
t | and γgt :“ maxAtPX :|At|“t´1

1
2 ln |I ` λ´1Kg

t |, which are important parameters in GP
bandits. They depend on the choice of the kernel function and the domain X , and would play a key
role in our following regret and violation analysis. For SE kernel function, we have γft and γgt are
Opplnptqqd`1q if X is compact and convex with dimension d.
Regret and cumulative constraint violation Given the complete knowledge of f and g, we define
the following offline optimization problem

max
xPX

fpxq s.t. gpxq ď 0. (4)

Let x˚ be the global optimal solution to (4). We define the regret and cumulative constraint violation

RpT q :“
T

ÿ

t“1

fpx˚q ´

T
ÿ

t“1

fpxtq, (5)

VpT q :“
T

ÿ

t“1

g`pxtq. (6)

The goal of the leaner is to develop algorithms to achieve sublinear regret and violation, i.e.,
limTÑ8 RpT q{T “ 0 and limTÑ8 VpT q{T “ 0 when f and g are modeled via Gaussian pro-
cesses.
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3. Rectified Pessimistic-Optimistic Learning Framework

In this section, we propose a general decision framework to tackle SCBwC with the metric of cumu-
lative violation, called rectified pessimistic-optimistic learning framework (RPOL). The framework
learns the reward function optimistically f̂tpxq and the constraint function pessimistically ǧtpxq by
a learning strategy M based on the model/parameters pΘf

t ,Θ
g
t q. For example, the learning strat-

egy could be the upper confidence bound learning of Gaussian process (GP-UCB), where Θf
t and

Θg
t can include pµf

t , σ
f
t , k

f
t q and pµg

t , σ
g
t , k

g
t q, respectively. By imposing the rectified operator on

the constraint ǧ`
t pxq, RPOL chooses the best decision to maximize a rectified surrogate function

f̂tpxq ´ Qtǧ
`
t pxq in (7). After observing the noisy (possibly delayed) bandit feedback (reward and

cost), we update the rectified penalty factor Qt`1 and the model pΘf
t`1,Θ

g
t`1q, according to the

learning strategy M.

RPOL Framework for SCBwC

Initialization: Q1 “ 1 and ηt “
?
t. Model Θf

1 and Θg
1.

For t “ 1, ¨ ¨ ¨ , T,

• Pessimistic-optimistic learning: estimate the reward function f̂tpxq and the cost function
ǧtpxq according to a learning strategy M with pΘf

t ,Θ
g
t q.

• Rectified penalty-based decision: choose xt such that

xt “ argmax
xPX

f̂tpxq ´ Qtǧ
`
t pxq (7)

• Feedback: noisy reward rtpxtq and cost ctpxtq.

• Rectified cumulative penalty update: Qt`1 “ max
`

Qt ` c`
t pxtq, ηt

˘

.

• Model update: Θf
t`1 “ MpΘf

t , txt, rt, ctuq, Θg
t`1 “ MpΘg

t , txt, rt, ctuq.

We explain the main intuition behind the RPOL framework. The Lagrange function of the offline
baseline problem in (4) is defined to be

Lpx, ϑq :“ fpxq ´ ϑgpxq,

where ϑ is a dual variable related to the constraint in (4). Since the reward and cost functions are
approximated via Gaussian Processes, we estimate fpxq with f̂tpxq optimistically and gpxq with
ǧtpxq pessimistically. We impose a rectified operator ǧ`

t pxq to associate it with the hard violation
g`
t pxq at round t. Moreover, we approximate ϑ with a “rectified” penalty factor Qt`1, where we

first rectify the cost ctpxtq with c`
t pxtq and add it to Qt such that the penalty increases when the

constraint violation occurs; and then we rectify Qt`1 with a minimum penalty price ηt. This design
adaptively controls the penalty to prevent the aggressive decision for each round. The rectified
decision in (7) and rectified penalty update in (3) are the key to minimize the cumulative constraint
řT

t“1 g
`
t pxq.

The “rectified” idea in this paper is motivated by Guo et al. (2022a) in constrained online con-
vex optimization. However, there exists a substantial difference due to the distinct feedback model:

5
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Guo et al. (2022a) observes the full-information feedback, imposes the rectifier on the previous con-
straint function, and introduces the smooth term to stabilize the learning process; this paper consid-
ers bandit feedback, learns the black-box functions (pessimistically and optimistically) directly and
imposes a rectifier on the pessimistic estimator of constraint function. The “rectified” design also
distinguishes our framework from the classical primal-dual approach in Zhou and Ji (2022). The
work in Zhou and Ji (2022) establishes the soft constraint violation (i.e.,

řT
t“1 gpxtq) by studying

the bound on the virtual queue/dual variable, which relies on the assumption of Slater’s condition
and the knowledge of slackness constant (the information is usually not available in practical appli-
cations). However, our framework establishes the cumulative violation (i.e.,

řT
t“1 g

`pxtq) directly
and does not require Slater’s condition.

Before presenting theoretical results for the RPOL framework, we introduce the following two
assumptions on reward function, constrained function, and noise.

Assumption 1 Let } ¨ }k denote the RKHS norm associated with a kernel k. For the reward function
f , we assume that }f}kf ď Bf and kf px, xq ď 1 for any x P X . For the constraint function g, we
assume }g}kg ď Bg and kgpx, xq ď 1 for any x P X .

Assumption 2 The noise δt is i.i.d. Rf -sub-Gaussian and the noise εt is i.i.d. Rg-sub-Gaussian.

To establish a unified analysis method for SCBwC with the cumulative violation, we introduce a
critical condition on the optimistic learning of reward function f̂ and the pessimistic learning of the
constraint function ǧ, respectively.

Condition 1 Let teft pp, xqu, tegt pp, xqu, and ρ be non-negative values. We have for any x P X and
all t P rT s

0 ď f̂tpxq ´ ρfpxq ď eft pp, xq,

0 ď ρgpxq ´ ǧtpxq ď egt pp, xq,

hold with probability 1 ´ p with p P p0, 1q.

Intuitively, a good learning strategy M should satisfy Condition 1 with small learning errors
eft pxq and egt pxq. These errors play important roles in regret and cumulative violation in Theorem 1.

Theorem 1 Let Assumptions 1 and 2 hold. Under Condition 1, RPOL framework have the following
regret and constraint violation

RpT q ď
1

ρ

T
ÿ

t“1

eft pxtq, VpT q ď
1

ρ

T
ÿ

t“1

egt pxtq `

T
ÿ

t“1

eft pxtq ` 4ρBf

?
T ,

hold with probability 1 ´ p with p P p0, 1q.

Remark 2 RPOL framework is flexible to incorporate the classical learning strategies in uncon-
strained GP bandit learning (e.g., GP-UCB/LCB) and achieves strong performance guarantee on
regret and cumulative violation for SCBwC in Theorem 1. Moreover, RPOL framework can be
readily combined with dedicated learning strategies for the variants of SCBwC and establish simi-
lar performance according to Theorem 1 as in the unconstrained counterparts.

In the following sections, we instantiate the learning strategies M in RPOL for SCBwC (and its
variants), and establish the theoretical results according to Theorem 1.
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4. Rectified Pessimistic-Optimistic Learning for SCBwC

In this section, we instantiate improved GP-UCB/LCB Chowdhury and Gopalan (2017) into RPOL
framework for estimating f̂pxq and ǧpxq, and establish a strong performance on regret and violation
according to Theorem 1.
GP-UCB/LCB The optimistic estimator of fpxq and the pessimistic estimator of gpxq at round t
are defined by

f̂tpxq “ µf
t pxq ` βf

t σ
f
t pxq,

ǧtpxq “ µg
t pxq ´ βg

t σ
g
t pxq,

which serves the upper confidence bound for the true fpxq and the lower confidence bound for
the true gpxq by carefully choosing βf

t ppq and βg
t ppq. We consider improved GP-UCB in Chowd-

hury and Gopalan (2017). Let βf
t ppq “ Bf ` Rf

b

2pγft ` 1 ` ln p2{pqq and βg
t ppq “ Bg `

Rg

a

2pγgt ` 1 ` ln p2{pqq with p P p0, 1q. To streamline the notation in the remaining sections of
this paper, we will employ βf

t and βg
t instead. The models/parameters in GP-UCB/LCB, includ-

ing pµf
t pxq, σf

t pxq, µg
t pxq, σg

t pxqq, update according to (1)-(3). The complete description of RPOL
with GP-UCB/LCB (RPOL-UCB) is provided in our technical report Guo et al. (2022b) due to the
limited space.

To analyze RPOL-UCB by Theorem 1, we verify Condition 1 and quantify the cumulative errors
for GP-UCB/LCB in Lemmas 3 and 4, respectively. The detailed proofs are in Guo et al. (2022b).

Lemma 3 Under Assumptions 1 and 2, the following inequalities hold for any x P X and all
t P rT s under RPOL-UCB

0 ď f̂tpxq ´ fpxq ď 2βf
t σ

f
t pxq,

0 ď gpxq ´ ǧtpxq ď 2βg
t σ

g
t pxq,

with probability at least 1 ´ p with p P p0, 1q.

Lemma 4 Let tx1, ¨ ¨ ¨ , xT u be the collection of decisions chosen by the algorithm. The cumulative
standard deviation can be bounded as follows:

T
ÿ

t“1

βf
t σ

f
t pxtq ď βf

T

b

4pT ` 2qγfT ,

T
ÿ

t“1

βg
t σ

g
t pxtq ď βg

T

b

4pT ` 2qγgT .

Based on Lemmas 3 and 4, we invoke Theorem 1 to establish the regret and violation of RPOL-UCB
in Theorem 5.

Theorem 5 RPOL-UCB achieves the following regret and constraint violation with a probability
at least 1 ´ p:

RpT q “ OpγT
?
T q,

VpT q “ OpγT
?
T q,

where γT “ maxpγfT , γ
g
T q.
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RPOL-UCB achieves a strictly stronger notation of cumulative violation compared to the soft vio-
lation in Shi and Eryilmaz (2022); Zhou and Ji (2022) and a similar performance compared to Xu
et al. (2022) but with an efficient penalty approach. With the rectified design, RPOL quantifies the
cumulative violation directly, which is different from the primal-dual optimization in Zhou and Ji
(2022) or the penalty-based technique in Shi and Eryilmaz (2022); Lu and Paulson (2022).

5. RPOL for SCBwC with Delayed Feedback

In the previous section, we assume rewards feedback and costs/constraints feedback are available
to the learner immediately. However, it might not happen in many real-world applications such as
recommendation systems, clinical trials, and hyper-parameter tuning in machine learning, where the
feedback is revealed to the learner after a random delay. Therefore, it motivates us to study SCBwC
with stochastic delayed feedback.

At each round t P rT s, the learner makes decision xt P X and observes the feedback rt “

fpxtq ` δt, ct “ gpxtq ` εt after stochastic delay dft and dgt , respectively. We assume the delay
dft and dgt are independent and generated from an unknown distribution D. To tackle the delayed
feedback, we introduce the idea of censored feedback as in Vernade et al. (2020); Verma et al.
(2022). The delayed feedback is censored by indicator functions Itdfs ď minpm, t ´ squ and
Itdgs ď minpm, t ´ squ, which indicate if reward or cost at round s are revealed by round t and
the delay is within m rounds. We define the censored feedback at round s by r̃s,t :“ rsItdfs ď

minpm, t ´ squ and c̃s,t :“ csItdgs ď minpm, t ´ squ and the sequence of censored feedback by
r̃1:t “ rr̃1,t´1, ¨ ¨ ¨ , r̃t´1,t´1sT ; and c̃1:t “ rc̃1,t´1, ¨ ¨ ¨ , c̃t´1,t´1sT . We further define ρfm “ Ptdfs ď

mu and ρgm “ Ptdgs ď mu, which denote the probabilities of observing delayed reward feedback
and cost feedback within m rounds, respectively.
Censored GP-UCB/LCB We utilize the censored feedback r̃1:t (instead of r1:t in the previous
section) when estimating the reward and constraint function

µf
t :“ kft pxqT pKf

t ` λIq´1r̃1:t,

µg
t :“ kft pxqT pKg

t ` λIq´1c̃1:t.

The kernel matrix and variance update exactly the same as in (2) and (3). Therefore, the optimistic
and pessimistic estimators of fpxq and gpxq at round t are

f̂tpxq “ µf
t pxq ` vft σ

f
t pxq,

ǧtpxq “ µg
t pxq ´ vgt σ

g
t pxq,

where vft “ Br
řt´1

s“t´m σf
t pxsq `βf

t , vgt “ Bc
řt´1

s“t´m σg
t pxsq `βg

t with Br “ Bf `Rf

?
2 log T

and Bc “ Bg ` Rg
?
2 log T denoting bounds for observations rt and ct with the probability at

least 1 ´ 2{T according Assumption 2. Let βf
t “ Bf ` pRf ` Brq

b

2pγft ` 1 ` ln p4{pqq and

βg
t “ Bg`pRg`Bcq

a

2pγgt ` 1 ` ln p4{pqq, where p P p0, 1q. We instantiate RPOL with Censored
GP-UCB/LCB (RPOL-CensoredUCB) and defer the complete description in Guo et al. (2022b).

Similar to Section 4, we verify Condition 1 and quantify the cumulative errors for censored
GP-UCB/LCB, and then invoke Theorem 1 to establish the following theorem.
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Theorem 6 RPOL with censored GP-UCB achieves the following regret and constraint violation
with probability at least 1 ´ p ´ 2{T with p P p0, 1 ´ 2{T q:

RpT q “ O

ˆ

γT
ρm

p
?
T ` mq ` mγT

˙

,

VpT q “ O

ˆ

γT
ρm

p
?
T ` mq ` mγT

˙

,

where γT “ maxpγfT , γ
g
T q and ρm “ minpρfm, ρgmq.

Theorem 6 shows that RPOL-CensoredUCB achieves sub-linear bounds for the regret and viola-
tion simultaneously in SCBwC with delayed feedback. The result matches the regret bound for
unconstrained counterparts with delayed feedback in Verma et al. (2022).

6. Experiments

In this section, we thoroughly evaluate the efficacy of the RPOL framework by conducting a series
of numerical experiments. To provide a comprehensive analysis, we compare our proposed algo-
rithms against the currently available baseline methods in both classical environment and delayed
environment. We generate graphical representations that display both the average regret and cumu-
lative violation, denoted as Rptq{t and Vptq{t respectively. To ensure the reliability and accuracy
of our findings, we calculate the results by averaging across 100 individual trials and present them
with a 95% confidence interval for added precision.

Classical SCBwC We consider the reward function fpxq “ ´ sinxp1q ´ xp2q and the constraint
function gpxq “ sinxp1q sinxp2q ` 0.95, and let X “ tx|0 ě x1 ě 6, 0 ě x2 ě 6u The constraint
set tx | gpxq ď 0u indicates a strict region and makes the problem challenging. The observations
are corrupted with Gaussian noise sampled from N p0, 0.05q, respectively. We test RPOL-UCB and
consider the baselines: CKB-UCB in Zhou and Ji (2022) and CONFIG in Xu et al. (2022). From
Figure 1, we show RPOL-UCB achieves the best performance w.r.t. both regret and cumulative
violation in SCBwC, where it converges to a low cumulative violation in a faster rate. The results in
Figure 1 justify that our rectified design can balance the regret and cumulative violation efficiently
and safely, and it is superior to handling the strict cumulative violation.

SCBwC with Delayed Feedback In this experiment, we extend the classical SCBwC problem
to incorporate stochastic delayed feedback. While retaining the reward function and constraint
function from the Classical SCBwC setting, we introduced stochastic delays dft and dgt at each time
slot. The delays of dft and dgt at round t are sampled from a Poisson distribution with a mean of
15, respectively. We test the performance of RPOL-CensoredUCB and compare it to the baselines
RPOL-UCB, CKB-UCB from Zhou and Ji (2022), and CONFIG from Xu et al. (2022). As shown
in Figure 2, RPOL-CensoredUCB outperforms all existing baselines in terms of both regret and
cumulative violation. Notably, RPOL-UCB also demonstrates strong performance compared with
other baselines. These results suggest that the RPOL framework can effectively balance regret
and cumulative violation, even in the presence of stochastic delayed feedback, providing a robust
performance guarantee.
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(a) Average Regret (b) Average Violation

Figure 1: Average Regret (Rptq{t) and Cumulative Violation (Vptq{t) in SCBwC.

(a) Average Regret (b) Average Violation

Figure 2: Average Regret (Rptq{t) and Cumulative Violation (Vptq{t) in SCBwC with delayed
feedback.

7. Conclusion

In this paper, we study constrained GP bandit optimization with the cumulative constraint violation.
We propose the RPOL framework and show it is flexible to be applied in variants of constrained GP
bandits by incorporating the dedicated exploration techniques. Our theoretical and experimental
results justify the superior of the RPOL framework.
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