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Abstract
Reinforcement learning has emerged as a powerful paradigm to learn control policies while mak-
ing few assumptions about the environment. However, this lack of assumptions in popular RL
algorithms also leads to sample inefficiency. Furthermore, we often have access to a simulator
that can provide approximate gradients for the rewards and dynamics of the environment. Iterative
learning control (ILC) approaches have been shown to be very efficient at learning policies by us-
ing approximate simulator gradients to speed up optimization. However, they lack the generality
of reinforcement learning approaches. In this paper, we take inspiration from ILC and propose
an update equation for the value-function gradients (computed using the dynamics Jacobians and
reward gradient obtained from an approximate simulator) to speed up value-function and policy
optimization. We add this update to an off-the-shelf off-policy reinforcement learning algorithm
and demonstrate that using the value-gradient update leads to a significant improvement in sample
efficiency (and sometimes better performance) both when learning from scratch in a new environ-
ment and while fine-tuning a pre-trained policy in a new environment. Moreover, we observe that
policies pretrained in the simulator using the simulator jacobians obtain better zero-shot transfer
performance and adapt much faster in a new environment.
Keywords: Reinforcement Learning; Iterative Learning Control; Differentiable Simulators

1. Introduction
Deep reinforcement learning has been applied successfully in domains ranging from games (Silver
et al., 2017; Berner et al., 2019) to real-world robotics control tasks (Hwangbo et al., 2019; Xu
et al., 2019; Chen et al., 2022; Xie et al., 2018). However, widespread adoption in real-world
domains is hampered by sample inefficiency, as even simple tasks may need hundreds of thousands
to millions of samples. One contributing factor to the observed sample inefficiency is the use of
zeroth-order gradient estimates for the policy and value function updates, which frequently arise
from the presupposition that the training environments are not differentiable.

However, we often have access to an approximate simulator of the environment that can provide
approximate jacobians and gradients of the dynamics and reward function respectively (either ana-
lytically or through finite differences). In fact, another set of approaches to online adaptation, based
on iterative learning control (ILC), have been shown to be very sample-efficient by utilizing these
approximate jacobians to speed up policy optimization, albeit in very limited settings, involving
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repetitive tasks and systems with smooth dynamics (Moore, 1993; Arimoto et al., 1984; Schoellig
et al., 2012; Mueller et al., 2012).

In this work, we aim to build on the generality of reinforcement learning based approaches
while utilizing approximate jacobians from the simulator to speed up policy learning. Specifically,
we propose a simple update to the gradient of the value function by utilizing the simulator gradients,
which we call the value-gradient update. The update boils down to simply minimizing the residual
of the gradient of the Bellman error and can be added to any actor-critic reinforcement learning al-
gorithm (even off-policy algorithms!). We show that the value gradient update is in fact equivalent
to the multiplier (corresponding to the dynamics constraint) updates performed in optimal control
approaches such as (i)LQR (Kalman et al., 1960; Mayne, 1973). We further show that, the update
can be easily modified to accommodate approximate jacobians from a simulator by simply substi-
tuting the approximate jacobians evaluated along the rollouts (collected from the real environment)
in the value gradient update, just like ILC.

This update has several advantages: 1) The ability to use approximate jacobians makes it useful
even when we do not know the accurate model of the system; 2) By explicitly supervising the value
function gradients, we obtain more reliable value function gradients thereby speeding up policy
optimization; 3) It can be used to perform off-policy updates (especially important considering we
want to use past experiences for better sample efficiency) on the value function and policy; and 4)
It can handle non-smooth and discontinuous dynamics/losses by simply skipping or clipping the
gradient updates on transitions with such discontinuities.

The contributions of this work are as follows:
• We introduce the value gradient update, a general update that can be used with any value

function based RL algorithm given an (approximate) simulator. Unlike previous work, its
compatibility with SOTA off-policy algorithms and its ability to accommodate approximate
simulator jacobians makes it particularly appealing for applicability in real systems.

• We add the update to SAC, a popular off-policy RL algorithm, and demonstrate that adding
the value gradient update leads to up to 2-3x sample efficiency (and sometimes better perfor-
mance) across six tasks. In all the tasks, we assume access to a ’nominal’ model of the system
(often a simplified model with inaccurate parameters) and a more complicated, realistic model
of the system as a proxy for the real world. Interestingly, we also observe that policies/value
functions pretrained using the value-gradient update in the nominal model show better zero-
shot performance and adapt faster in the real system compared to the RL baseline, indicating
that using the simulator jacobians even for pre-training leads to more robust policies.

2. Related Work
Using differentiable simulators for policy optimization Trajectory Optimization (Bertsekas,
2012; Betts, 2001; Mayne, 1973) approaches have traditionally used differentiable models for opti-
mizing over a sequence of states and actions. However, most learning based approaches have relied
on reinforcement learning (Sutton and Barto, 2018; Kober et al., 2013; Bertsekas, 2019) (i.e not
assuming differentiability of the simulator) for optimizing policies despite the physics being analyt-
ically differentiable. Multiple works recently (Metz et al., 2021; Suh et al., 2022) have pointed out
issues with using first order estimates of the gradient for policy optimization. (Metz et al., 2021;
Parmas et al., 2018) shows that simulator gradients can often be chaotic and differentiating through
multiple simulation steps can result in vanishing and exploding gradients. (Suh et al., 2022) further
points out that first order estimates can also suffer from higher bias or variance in certain cases.

2



DEEP OFF-POLICY ITERATIVE LEARNING CONTROL

(Levine and Koltun, 2013; Mora et al., 2021) address these issues by computing optimal trajectories
using trajectory optimization and then performing imitation learning. (Xu et al., 2022) address the
exploding/vanishing gradient issue by only differentiating through a short horizon and using a value
function instead at the tail to amortize the value and gradient estimates. (Parag et al., 2022) learns
the value function using sobolev descent on optimal trajectories on smooth environments. However,
they assume access to accurate gradients from the simulator. Thus, neither of these methods are
suitable for learning in the real world using an approximate simulator as (Xu et al., 2022) is an on-
policy algorithm and requires multiple parallel runs for each update, and (Mora et al., 2021; Parag
et al., 2022) require optimal trajectories which are not easy to obtain from the real system.
Using approximate gradients from a simulator We often have access to an approximate differ-
entiable simulator even when trying to learn policies in the real world. One common approach to
use this approximate model is to perform model predictive control where we replan the trajectories
using the approximate model at each time step (Mayne, 2014). This is also common practice with
iterative learning control (Agarwal et al., 2021; Schöllig and D’Andrea, 2009; Moore, 2012; Vem-
ula et al., 2022) based approaches where the jacobians from the simulator are evaluated along the
sampled trajectory and used to find the updated actions for some repetitive task. ILC has also been
extended to update the model (Abbeel et al., 2006; Jackson et al., 2022) where the model is then
used to perform policy optimization or trajectory optimization assuming the learnt model is accu-
rate. (Heess et al., 2015) further extend it by using the real samples and the approximate gradients
from the learned model to compute policy gradients. However, they use importance sampled esti-
mates of these policy gradients to compute off-policy updates which is hard to scale and unstable
due to the higher variance(Liu et al., 2020; Glynn, 1994).

In this work, we take inspiration from these approaches and propose an update to the value
function, using the approximate jacobians from a differentiable simulator, that can be used with any
value function based RL algorithm. The suitability of this update for off-policy RL methods makes
it particularly appealing compared to most prior work in this area.

3. Preliminaries and Background
3.1. Notation
We address policy and value function learning in continuous action spaces using approximate sim-
ulators with differentiable dynamics and reward functions. We will consider Markov decision pro-
cesses (MDPs) with infinite horizon, but most of the proposed modifications can easily be extended
to finite horizon as well. The MDP state transitions are modelled as a function f : S ×A → S and
the reward using a bounded reward function r : S × A → [rmin, rmax]. We also assume access to
a simulator g : S × A → S which approximately models the transition dynamics f . The simulator
g and the reward function r are assumed differentiable in most regions of the state action space.

3.2. Q-learning based Actor Critic Methods
Q-learning based actor critic methods such as DDPG (Lillicrap et al., 2015) and SAC (Haarnoja
et al., 2018) learn a Q-function by performing Bellman backups over the transitions (s, a, s′, r)
sampled from the MDP as follows :

Q(s, a) := r(s, a) + γQ(s′, a′(s′))|s′=f(s,a), (1)

where, a′(s′) can be obtained by using the current policy estimate πθ(s′) or by solving : maxa′Q(s′, a′).
For methods such as DDPG and SAC, we further learn a policy by optimizing

max
θ

Jπ(θ) = max
θ

E(s∼D,a∼πθ(.|s))[Q(s, a) + αR(πθ(a|s))], (2)
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Here, we actually care more about the gradient of the value function than the exact value function
itself since the gradient of policy objective only consists of ∇aQ(s, a) :

∇θJπ(θ) = Es∼D,ϵ∼N [∇aQ(s, a)∇θaθ(s, ϵ) + α∇θR(πθ(aθ(s, ϵ)|s)], (3)

where R(πθ(a|s)) here is a regularizer and aθ(s, ϵ) is the policy output.

3.3. Iterative Learning Control
For repetitive tasks involving taking the same sequence of actions repeatedly, iterative learning
control (ILC) offers a very sample efficient approach to adapt policies using real world rollouts. In
this paper, we focus on the recent optimization based reformulations of the ILC problem (Schöllig
and D’Andrea, 2009; Agarwal et al., 2021; Vemula et al., 2022) where we evaluate the control
inputs by performing rollouts in the true system while computing updates to the controls using the
approximate model. In an LQR like setup, this update can be computed by linearizing the dynamics
and quadraticizing the cost around the observed trajectory and then computing the LQR updates:

min
∆a,∆s

J(∆s,∆a) =
N∑
t=0

(st +∆st)
TQ(st +∆st) +

N−1∑
t=0

(at +∆at)
TR(at +∆at)

s.t ∆st+1 = Âg
t∆st + B̂g

t∆at

(4)

where s0:N is the trajectory observed when the controls a0:N−1 are rolled out in the true system
f , and Âg

t , B̂g
t are obtained by linearizing the approximate model g along the observed trajectory.‘

4. Method

Figure 1: Diagram illustrating the value gradient update with an ap-
proximate simulator. The dotted lines indicate the gradient flow and
the solid lines indicate the forward pass. The left diagram shows
the value gradients directly computed from the Q function whereas
the right diagram shows the value gradients computed using a single
step rollout with the approximate jacobians ∇s,ag(s, a) computed
using the simulator. Note that the rollout is still computed in the true
environment f(s, a). The value gradient update uses the rolled out
estimate to supervise the amortized gradients on the left.

In this section, we introduce the value
gradient update. We show that it com-
plements the TD update and can be in-
troduced directly into existing reinforce-
ment learning algorithms. We then point
out its relationship with the LQR dual
update. We will also discuss how to
adapt it to settings when we have access
to only approximate jacobians from an
imperfect simulator. Finally, we add the
value gradient update to SAC as an ex-
ample of an off-policy RL algorithm in-
corporating the update.

4.1. Value gradient update
The value gradient update can be derived as a straightforward extension of the TD update presented
above by differentiating Eq. 1 with respect to the inputs :

∇s,aQ(s, a) := ∇s,ar(s, a) + γ∇s,aQ(s′, a′(s′))|s′=f(s,a), (5)

where the R.H.S can be further expanded by applying chain rule,

∇s,aQ(s, a) := ∇s,ar(s, a) + γ
(
∇s′Q(s′, a′(s′)) +∇a′Q(s′, a′)∇s′a

′(s′)
)
∇s,af(s, a). (6)
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where, a′(s′) is the action taken at s′ (which could be expressed as πθ(s′), or argmaxuQ(s′, u), or
simply as a constant a′). Figure 1 shows the updates and the corresponding computation graph dia-
gramatically. Note that the R.H.S in Eq 6 can be obtained simply using matrix vector products and
doesn’t require explicit computation/storage of the jacobians. Thus, one could potentially compute
the R.H.S using any auto-diff package by simply computing the target Q values (i.e., R.H.S in Eq.
1) and auto-diff it w.r.t the input (s,a) pair. This is useful especially for on-policy methods where
each sample is used for a single or a few updates. Alternatively, for off-policy methods, where the
samples are re-used multiple times for update computation, we can explicitly compute and store the
jacobians in the buffer. The R.H.S can then be computed by simply plugging in the jacobians in Eq.
6 explicitly while computing the update.

As with most deep RL methods, instead of directly performing the updates in Eq. 5, we parame-
terize the Q function using a function approximator (say a neural network) and minimize the square
of the residual in Eq. 5.

min
ϕ

E(s,a,s′,r)∼D

[(
∇s,aQϕ(s, a)− (∇s,ar(s, a) + γ∇s,aQϕ̄(s

′, a′(s′))⊥
)2] (7)

where, ⊥ is the stop gradient operator denoted to mean that the terms within the corresponding
parenthesis wouldn’t affect the gradient of the loss. We call this the value gradient objective. In
practice, we just minimize a weighted combination of the Bellman residual and the above loss
together. We can also derive a similar update rule for methods with state value function, V (s), by
simply computing the gradient of the corresponding Bellman update and minimizing the gradient
residual similar to Eq 7. In the case of actor critic methods, we can simultaneously update the policy
using the current value function estimate. For example, with algorithms like DDPG, the policy is
updated by taking a gradient step on the optimization problem : maxθ Q(s, aθ(s)).

4.2. Relationship with Optimal control

The optimal control formulation for the above problem can be expressed as follows:

max
st,at

N∑
t=0

r(st, at)

s.t st+1 = f(st, at)

(8)

Solving the above problem using iLQR yields the following update to the co-states (multiplier vari-
ables corresponding to each dynamics constraint), λV

t , at each iteration

λV
t = (∇stf(st, at))

TλV
t+1 +∇str(st, at). (9)

Interestingly, the co-states are also the gradients of the value function, ∇stV (st) and the update we
get in Eq. 9 are indeed the value gradient updates we proposed in section 4.1 corresponding to V .
Likewise, to obtain the value gradient update in Eq. 6 corresponding to the Q-function, we simply
need to add the following constraint to the optimization problem above at each time step:

at+1 = a′(f(st, at)) (10)

The corresponding co-state/multiplier updates for the concatenated constraints can be written as :

λQ
t =

[
∇st,atf(st, at)

∇s′a
′(s′)∇st,atf(st, at)|s′=f(st,at)

]T
λQ
t+1 +∇st,atr(st, at) (11)
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which is the same update as Eq. 6 where λQ
t corresponds to ∇st,atQ(st, at). This suggests that the

update we proposed above actually just solves an amortized version of the iLQR problem where the
value function and its gradients are instead represented using a function approximator (say a neural
network).

4.3. Gradient update with approximate jacobians

The update introduced above assumes access to exact jacobians from the simulator. However, in
a lot of scenarios, although we can collect experiences from the true environment (say the real
world), we only have access to jacobians evaluated using an approximate simulator. However,
taking inspiration from the ILC setup, we observe that we can simply use the approximate jacobians
obtained from the simulator and substitute it in Eq 6 to obtain:

∇s,aQ(s, a) := ∇s,ar(s, a) + γ
(
∇s′Q(s′, a′(s)) +∇a′Q(s′, a′)∇s′a

′(s)
)
∇s,ag(s, a). (12)

Note that the sample (s, a, r, s′) is still obtained from a rollout in the true environment. We simply
evaluate the state and action jacobians ∇s,ag(s, a) using the simulator g at these samples and use it
in Eq 12. These jacobians could be computed analytically if the simulator is differentiable or using
finite differences when the simulator is non-differentiable.

In practice, as mentioned in section 4.1, we represent the value function and policy as neural
nets and minimize a loss comprising a weighted combination of the residual of Eq. 12 and the
Bellman residual.

4.4. Practical Implementations

As we discussed in section 4.1, the value gradient update can be used with most existing reinforce-
ment learning approaches based on Bellman residual minimization. In this section, we describe one
such algorithmic implementations we use in the paper, built on top of an off-policy reinforcement
learning algorithm called soft actor-critic (SAC) (Haarnoja et al., 2018).

We simply modify the critic objective in SAC to include the value gradient objective:

Lq(ϕ) = E(s,a,s′,r)∼D

[(
Qϕ(s, a)−

(
r(s, a) + γ

(
Qϕ(s

′, πθ(s
′))− α log(πθ(a

′|s′)
))

⊥

)2]
(13)

Ls(ϕ) = E(s,a,s′)∼D

[(
∇sQϕ(s, a)−

(
∇sr(s, a) + γ∇s′

(
Qϕ̄(s

′, a′)− α log(πθ(a
′|s′)

)
∇sg(s, a)

)
⊥

)2]
(14)

La(ϕ) = E(s,a,s′)∼D

[(
∇aQϕ(s, a)−

(
∇ar(s, a) + γ∇s′

(
Qϕ̄(s

′, a′)− α log(πθ(a
′|s′)

)
∇ag(s, a)

)
⊥

)2]
(15)

min
ϕ

Lq(ϕ) + βsLs(ϕ) + βaLa(ϕ) (16)

where Lq(ϕ) is the original Bellman error, Ls(ϕ) is the value gradient error for the state and La(ϕ)
is the value gradient error for the action, with βs and βa being the corresponding coefficients.

Other than the value gradient update, we keep the rest of the pipeline the same, i.e, we use the
same actor objective,

minLπ(θ) = Est∼D

[
Eat∼πθ(.|st)[α log(πθ(at|st))−Qϕ(st, at)]

]
, (17)

and perform alternating updates on the actor and the critic as in SAC.
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Handling non-smooth dynamics and contact : For systems with non-smooth dynamics, the
jacobians in Eq. 14 and 15 are ill-conditioned leading to very high variance in the updates as
pointed out in (Suh et al., 2022). Thus, we instead express the losses in 14 and 15 using a hinge
loss with a hinge at the moving average of the median of the loss. This reduces the sensitivity to
high magnitude gradients thereby reducing the overall variance of the objective. This is one of the
key advantages of our approach compared to analytic policy gradient or other on-policy alternatives
where such solutions are not possible leading exploding and vanishing gradient issues.

5. Experiments
We present experimental evidence to show that adding the value gradient update leads to better
sample efficiency both when training the policies from scratch in the true environment and while
transferring policies trained in the approximate simulator to the true environment. For the experi-
ments in this paper, we will refer to the approximate simulator as the nominal model and is modelled
with a simplified model with perturbed parameters. It’s also assumed differentiable unless other-
wise specified. We refer to the true environment as the real model representing the full model of the
system. We aim to learn policies for the real model with as few samples from it as possible.

5.1. Tasks

Cartpole The task here is a simple swing-up task on a cartpole system. In the real model, we
include viscous damping on all joints, coulomb friction at contact points (i.e the floor and cart), and
a deadband in the control. None of these were modelled in the nominal model. Further, the mass of
the cart and pole in the real system are 2x and 3x the masses in the nominal model respectively.
Acrobot The task here is the swing-up task with the acrobot model from (Gillen et al., 2020). We
use the same model for both the nominal and the real model except that the first link in the real
model is 20% longer and has 20% higher mass.
Quadrotor We use the Quadrotor model from (Jackson et al., 2022). The task here is to get the
quadrotor from a randomly initialized point to the origin. The real model additionally models the
aerodynamic drag terms which are not modelled in the nominal model. The nominal model also has
a parametric error of 10% on the system parameters (e.g. mass, rotor arm length, etc.).
Airplane We use the high fidelity airplane model constructed from wind-tunnel data (Manchester
et al., 2017). Similar to the quadrotor task, the task here is for the airplane to get to the origin
from a distribution of randomly initialized initial positions. The real model uses the full model
of the system whereas the nominal model uses a simple flat-plate wing model with linear lift and
quadratic drag coefficient approximations.
HalfCheetah We use the halfcheetah model and reward functions from the Dflex simulator (Xu
et al., 2022). We use the original simulator as the nominal model. For the real model, we reduce
damping and friction by 30% and increase the contact stiffness and contact damping coefficient 5x.
Hopper We use the hopper model and reward functions from the Dflex simulator (Xu et al., 2022).
We use the original simulator as the nominal model. For the real model, we reduce damping and
friction by 20% and increase the contact stiffness and contact damping coefficient by 5 times.

5.2. Algorithm details

We use the SAC implementation from (Tandon) as the baseline RL algorithm with the policies and
value functions represented as 2 hidden layer multi-layer perceptrons with relu and tanh nonlinearity
respectively. We use the same architecture and hyperparameters for both the finetuning and training
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from scratch experiments. For the gradient terms, we observed that the value gradient losses lead to
more stable updates when expressed as a hinge loss instead of quadratic loss as pointed out in 4.4.
Further, the value gradient loss coefficients βs and βa in Eq 4.4 are computed online to keep the
ratio of gradient contributions of the different loss terms roughly constant.

βs = ζs
∇ϕLq

∇ϕLs
, βa = ζa

∇ϕLq

∇ϕLa
, (18)

where ζs and ζa are constant hyperparameters. This heuristic has interesting connections with treat-
ing these coefficients as lagrange multipliers. We find that this also stabilizes training. These updates
can however be expensive if performed at each iteration. Thus, we perform the updates every 20
iterations for most experiments except the HalfCheetah finetuning experiments (where we update
them every 2 iterations).
Hyperparameters For most hyperparameters, we stick to the defaults used in (Tandon). We use
the entropy coefficient α = 0.2 for all experiments, critic hidden size of 512 for all experiments
other than cartpole and an actor hidden size of 256 for all experiments. We perform a single gradient
update on the policy/value function using samples drawn from the buffer for each step taken in
the environment. We use a constant value for the value gradient loss coefficients ζs = 0.5 and
ζa = 0.5 for all experiments except the halfcheetah finetuning experiments where we use ζs = 0
and ζa = 0.5.

Figure 2: Comparison of methods using the value gradient objective (VG-SAC) v/s RL baselines (SAC) on training from
scratch in the real model. SAC is a policy/value function trained from scratch in the real model using Soft actor-critic.
VG-SAC is a policy/value function trained from scratch using the value gradient objective. All the plots have been
evaluated using 3 random seeds.
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5.3. Training from scratch

In the first set of experiments, we compare the sample efficiency gains obtained from using the value
gradient update when training from scratch in the real-model for all the tasks in 5.1. Specifically,
we use a baseline SAC implementation as the RL algorithm and use the approximate dynamics
jacobian and reward gradients obtained from the nominal model to compute the value gradient
losses in Eq 4.4. Figure 2 shows the training plots comparing the two methods. SAC (Blue) in
all the plots represents the RL baseline and VG-SAC (Green) represents our modification which
additionally uses the value gradient losses. We observe that across all the environments, using the
value gradient objective leads to much faster convergence and in some environments (Airplane,
Acrobot and Hopper) leads to superior performance.

Finite Difference Jacobians : We adapt VG-SAC to use finite difference jacobians (we call this
model VG-SAC-FD) from non-differentiable approximate dynamics models. We compare it with
SAC on 2 representative systems in Figure 3. Note that the DMCHalfCheetah model here (unlike

Figure 3: Value gradient update with finite difference jacobians

experiments in Figure 2) is using the Mu-
joco model from DM control (Tunya-
suvunakool et al., 2020) which is non-
differentiable and needs to use finite dif-
ference jacobians. We observe that VG-
SAC-FD obtains similar improvements in
sample efficiency to the full jacobian ver-
sion, despite using finite difference ja-
cobians from the approximate simulator.
This suggests that the value gradient up-
date is effective even when the simulator
is not differentiable.

5.4. Finetuning

In this section, we experiment with pre-training the policy and value function using the nominal
model and then fine-tuning with the real model. Figure 4 shows the training plots for fine-tuning the
pre-trained policies/value functions in the real model. In all the environments, we experiment with
pre-training using SAC with and without the value gradient updates. We call them RLpretrain and
VGpretrain respectively. Note that, while pre-training using the value gradient objective, we use the
accurate gradients since we are pre-training on the nominal model. We pre-train the RL variants
for longer to obtain maximum possible performance for both pre-trained policies. The pre-trained
policies on Cartpole, Quadrotor, Hopper and Halfcheetah obtain similar returns of approximately
86, 650, 5300 and 4300 respectively in the nominal models for both the RL and the VG variants.
However, the pre-trained RL variants in Acrobot and Airplane saturate at lower maximum returns
of 84 and 296 as opposed to 109 and 304 for the value gradient variant on the nominal models.

We observe that for both sets of pre-trained networks, using the value gradient objective for fine-
tuning leads to significant speedups for fine-tuning on Cartpole, Quadrotor, Airplane and Hopper
tasks. However, on Acrobot, all variants struggle to improve during fine-tuning (probably due to
exploration related issues). On Half-cheetah, the both fine-tuning methods perform similarly on the
VG pretrained networks but VG fine-tuning outperforms the RL fine-tuning on the RL pretrained
network.
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Figure 4: Comparison of methods using value gradient objective v/s the RL baselines (SAC) while transfering a pre-
trained policy to a real model. RLpretrain indicates the networks were pretrained in the nominal model using SAC.
VGpretrain indicates the networks were pretrained in the nominal model using the value gradient objective. Likewise,
RLfinetune and VGfinetune indicate the networks were fine tuned on the real model using SAC and the value gradient
objective respectively. All the plots have been evaluated using 5 random seeds.

Choice of pre-training algorithm Further, we observe that across all tasks, the networks pre-
trained with the value gradient objective are easier to transfer, i.e, they often start with higher re-
wards and converge with fewer samples. Specifically, comparing RLpretrain-RLfinetune vs VGpretrain-
RLfinetune in Figure 4, we observe that although both variants are fine-tuned using the same algo-
rithm, VGpretrain-RLfinetune consistently converges faster and starts off from a higher return than
RLpretrain-RLfinetune across most environments (except hopper). The same is true when compar-
ing RLpretrain-VGfinetune and VGpretrain-VGfinetune for most environments (except HalfChee-
tah where they are comparable). This indicates that using the value gradient objective even for
pre-training can significantly boost transfer performance.
6. Discussions and Conclusion
We introduce the value gradient update and demonstrate that it can be easily incorporated into any
actor critic RL algorithm by using the dynamics jacobians and reward gradients obtained from an
(approximate) simulator. We demonstrated the benefits of incorporating the value gradient update in
a standard off-policy RL algorithm called soft actor-critic on various sim2sim tasks. We show that
adding the value gradient update leads to much better sample efficiency both while training policies
from scratch or fine-tuning a policy pre-trained in a perturbed environment. Moreover, we show
that policies pre-trained using the value gradient update transfer faster in the new environments
showing that it offers benefits for both pre-training and fine-tuning. In the future, we believe these
methods need to be validated on hardware to demonstrate that the observed improvements transfer
to a sim2real setting.
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Amit Parag, Sébastien Kleff, Léo Saci, Nicolas Mansard, and Olivier Stasse. Value learning from
trajectory optimization and sobolev descent: A step toward reinforcement learning with superlin-
ear convergence properties. In International Conference on Robotics and Automation, 2022.

Paavo Parmas, Carl Edward Rasmussen, Jan Peters, and Kenji Doya. Pipps: Flexible model-based
policy search robust to the curse of chaos. In International Conference on Machine Learning,
pages 4065–4074. PMLR, 2018.

Angela P Schoellig, Fabian L Mueller, and Raffaello D’andrea. Optimization-based iterative learn-
ing for precise quadrocopter trajectory tracking. Autonomous Robots, 33(1):103–127, 2012.
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