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Abstract
For many network control problems, there exist natural spatial structures and temporal repetition
in the network that can be exploited so that controller synthesis does not spend unnecessary time
and energy redundantly computing control laws. One notable example of this is vehicle traffic flow
over metropolitan intersection networks: spatial symmetries of the network arise from the grid-like
structure, while temporal symmetries arise from both the structure and from human routine. In this
paper, we propose a controller architecture based on pattern-learning with memory and prediction
(PLMP), which exploits these natural symmetries to perform congestion control without redundant
computation of light signal sequences. Memory is implemented to store any patterns (intersection
snapshots) that have occurred in the past “frequently enough”, and redundancy is reduced with an
extension of the state-of-the-art episodic control method which builds equivalence classes to group
together patterns that can be controlled using the same traffic light. Prediction is implemented to
estimate future occurrence times of patterns by predicting vehicle arrivals at subsequent intersec-
tions; that way, we schedule light signal sequences in advance. We compare periodic baselines
to various implementations of our controller model, including a version of PLMP with prediction
excluded called pattern-learning with memory (PLM), by evaluating their performance according
to three congestion metrics on two traffic datasets with varying arrival characteristics.
Keywords: Control design, Pattern analysis, Road traffic control, Networked control systems

1. Introduction

In our previous work Han et al. (2023), we introduced the concept of pattern-learning for prediction
(PLP): considering repeating jump patterns in the behavior of jump stochastic systems allows for
more efficient controller design by eliminating computation time and redundancy by preserving
past patterns into memory and predicting the future occurrence of patterns. In the context of traffic
networks, patterns can be defined according to the temporal repetition and structural symmetry that
arises naturally in a variety of ways. For example, many metropolitan road networks are typically
arranged like a rectangular grid; in America, T-junctions and X-junctions (4-way intersections)
are highly common. These kinds of repeated topological structures fundamentally impact the travel
behavior of vehicles and consequently, congestion level (Xie and Levinson, 2007). Repetition can be
observed in the traffic density over time not only due to the grid structure of the network, but also due
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to human routine: rush hours during the weekdays are a notable example of this. Even for special
events that do not occur regularly (e.g., traffic jams near the venue of a music concert), a certain level
of congestion can be predicted if this special event was planned beforehand (Kwoczek et al., 2014).
Additional predictions can also be made by understanding the nature of the planned event: for a
music concert that lasts three hours, a second wave of congestion would be expected approximately
three hours after the first wave due to people leaving the venue. These natural spatial and temporal
structures in most urban vehicle traffic flow problems suggest that a congestion control mechanism
designed around some suitable choice of ‘’pattern” can improve the time and computation efficiency
at which light signal sequences are designed.

Related Work One of the most common methods of modeling vehicle traffic flow is via queueing
theory (Miller, 1961; Lioris et al., 2017; Muralidharan et al., 2015). While queuing-based results
are very useful for benchmarking performance, they often rely on assumptions that are not reflective
of real-world traffic (e.g., Poisson arrivals). Another class of models encompass discrete-time ODE
dynamics (Coogan et al., 2015), which allow for the explicit formulaic construction of control laws,
but sometimes rely on the knowledge of parameters (e.g., turning proportion) whose values may be
difficult to obtain in practice. Recently, data-driven architectures such as neural networks are gaining
traction as suitable methods for vehicle congestion control due to their ability to accommodate
realistic traffic characteristics and complex network topologies. For example, Zhang and Taylor
(2006) developed a framework for automated incident detection based on Bayesian networks, with
an emphasis on being able to flexibly incorporate domain-specific knowledge into an otherwise
all-data-driven approach. More recently, works such as Yu et al. (2018) and Li et al. (2018) have
considered variations on GNN architectures to predict the spatiotemporal behavior of traffic spread
across complex networks. However, many of these neural network architectures are designed to
account for general topologies, and may be less efficient when considering environments where
structural symmetry could be leveraged. To take advantage of environment repetition, methods
based on explicit rule-based construction have also emerged (Lu et al., 2014; Dion and Hellinga,
2002). For vehicle routing, reinforcement learning methods are especially suitable (Rivière and
Chung, 2022), and for repetitive environments like urban grid intersection networks, experience
replay approaches can be used. One such approach is called episodic control (Lengyel and Dayan,
2007; Blundell et al., 2016; Pritzel et al., 2017), which incorporates episodic memory (Botvinick
et al., 2019) into traditional learning techniques with the goal of speeding up training by recalling
specific instances of highly rewarding experiences.

Contributions Our paper proposes a learning-based controller architecture for vehicle traffic con-
gestion control by implementing pattern-learning with memory and prediction (PLMP), which is
an extension of the PLP architecture from Han et al. (2023) via the explicit implementation of a
memory component. Here, the “patterns” at each intersection are the intersection’s snapshots, e.g.,
traffic camera photos which display the distribution of vehicles present in each lane and direction. In
contrast to the neural network architectures described in the related works above, PLMP is designed
to explicitly leverage the natural spatial and temporal symmetries of a given traffic network, e.g.,
the rectangular grids often found in metropolitan cities. Congestion control via PLMP employs two
ways to eliminate unnecessary time and energy spent redundantly computing light signal sequences.
First, memory is implemented in the form of a table that maps patterns and light signal sequences to
rewards; our architecture employs an approach which extends the state-of-the-art episodic control
methods (e.g., Blundell et al. (2016)) by building equivalence classes to group patterns that can
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be controlled using the same sequence of light signals. Second, prediction is implemented with
a one-timestep lookahead that augments, to the original pattern, the distribution of vehicles in the
adjacent links of the intersection and schedules future light signal sequences in advance. In addition
to the extension with equivalence classes, our PLMP method differs from pure episodic control by
the inclusion of this prediction component. We apply our model to two synthetic datasets, one syn-
thesized from scratch and one synthesized from real-world data, and compare two periodic baseline
light signals to variations of our PLMP controller, including a version without prediction called
pattern-learning with memory (PLM). We evaluate the performance of each controller on a vari-
ety of traffic scenarios according to three different congestion metrics: 1) average waiting time per
vehicle, 2) average time deviation away from the optimal travel duration, and 3) the number of
vehicles that have not yet reached the end of their routes. We find that, on average, PLM outper-
forms the periodic baselines while PLMP outperforms PLM with mild variation among the different
implementations.

2. System Setup and MDP Formulation

2.1. The Grid Network of Signalized Intersections

A H ×L rectangular grid network of 4-way intersections is represented by a graph G=(I,N , E),
with set of intersections I, nodesN , and directed edges E that connect between two nodes. Each in-
tersection is denoted with a tuple I := (h, i)∈I marking its location in the grid, h∈{0, · · · , H − 1}
and i∈{0, · · · , L− 1}. Each node is represented as a tuple (I,D, χ, f)∈N , where I is the inter-
section ID, D is one of the four directions {E,N,W,S}, χ∈{1, 0} indicates whether vehicles are
incoming (1) or outgoing (0) at the node. The variable f ∈{0, 1} indicates whether the node is
located at the fringes of the network or not; we partition the set of nodes N into the set NF of
fringe nodes and the setNI :=N/NF of intermediate nodes. Each intersection I is controlled by a
traffic light signal; let m∈M be the mode of the traffic light andM be the set of possible modes.
We assume there are |M|=8 possible modes each signal can take: 1) E-W forward green, 2) E-W
left-turn green, 3) N-S forward green, 4) N-S left-turn green, 5) E forward and left, 6) N forward and
left, 7) W forward and left, 8) S forward and left. Right-turns are permitted whenever.

2.2. Vehicle Arrival Processes

Let VA[t] represent the time-varying set of vehicle arrivals from the fringes of the network, i.e.,
VA[t] =∅ if no vehicles entered the grid at time t and VA[t] = {v1, · · · , vK} if some numberK ∈N
vehicles v1 to vK have entered at time t. Note that V[t] := ∪ts=0VA[t] is the total number of vehicles
that are in the grid network by time t. Let VD[t]⊆V[t] be the set of departed vehicles (i.e., vehicles
that have reached their destination) and let VC [t] :=V[t]\VD[t] be the set of circulating vehicles.
For all sets of the form V∗[t], we use V∗[t] = |V∗[t]| to represent its cardinality.

All vehicles are identical with some length and travel at a constant speed, meaning they travel
to and across each intersection at a constant amount of time. Let ∆tL be the time it takes a single
vehicle to travel an uncongested link between intersections, and let ∆tI be the time it takes to
cross an intersection. Define R(H,L) to be the entire combinatorial set of all routes from fringe
to fringe of a grid network with dimensions H ×L. We assume each v ∈V[t] is traversing the grid
network according to a pre-determined route rv ∈R(H,L) that starts at a node of entry ev ∈NF

and ends at a node of departure dv ∈NF . We represent rv as an alternating sequence of nodes and
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Figure 1: Grid network visualization of intersec-
tion graph G for H =L=3. Nodes are distin-
guished by incoming (χ=1, light gray dots) or
outgoing (χ=0, dark gray dots). Sample routes
for five vehicles are also shown as an alternating
sequence of nodes (black dots) and links (black
lines). In this snapshot (e.g., traffic camera pho-
tos which display the distribution of each inter-
section in the grid), forward-going E/W traffic are
allowed to pass through each intersection (red and
green line segments); over time, and as the vehi-
cles trace their respective routes, these traffic light
colors would change.

links rv = [ev, ℓ
(e)
v , n1, ℓ1, · · · , nk−1, ℓk−1, nk, ℓ

(d)
v , dv], where k∈N is the route length, ni ∈NI

for i∈{1, · · · , k}, and ℓ(e)v , ℓ
(d)
v , ℓi ∈E for i∈{1, · · · , k− 1}. We distinguish ℓ(e)v and ℓ(d)v from

the other links ℓi as the fringe links of the route, i.e., links that connect to or from a fringe node
(I,D, χ, 1). To keep the paper focused, we defer the treatment of heterogeneous traffic and route
optimization to future work. A sample visualization of G with vehicle routes and light signals is
in Figure 1.

Definition 1 (Vehicle Quantities) Let Tsim ∈N be the time duration of the experiment. Each vehi-
cle v ∈V[Tsim] locally keeps track of two congestion quantities. First, Wv[t]∈N is its cumulative
waiting time by time t∈ [0, Tsim], which increments by 1 for each timestep it waits at an intersection
on a red light. Second, if v ∈VD[Tsim], Dv ∈N is the total time it took to travel its entire route.

2.3. The Vehicle MDP (VMDP) Formulation

States: The state space S :=SN ×SL is composed of two distinct parts. First, SN ⊆ (Z≥0)12HL de-
notes the number of vehicles at each incoming intermediate node {(I,D, 1, 0) : D ∈ {E,N,W,S}},
partitioned by direction and turn (right, left, or forward); the elements of each st,N ∈SN are or-
dered [E-rt,E-lft,E-fwd,N-rt, · · · ,W-rt, · · · ,S-rt,S-lft,S-fwd] where rt, lft, and fwd are shorthand
for right, left, and forward, respectively. Second, SL⊆ (Z≥0)3(4HL−2H−2L) represents the number
of vehicles that are present in each link, partitioned again by turn, and each st,L ∈SL is ordered in
the same way as st,N . The full state vector is concatenated as st= [st,N

⊤, st,L
⊤]⊤ ∈S.

Actions: The action space A :=MHL describes the mode of each light signal at each intersection.

Transition Function: The transition function T (st+1|st,at) for two states st, st+1 ∈S and action
at ∈A is defined by the constraints of vehicle movement along the grid (i.e., to get from intersection
(0, 0)→ (1, 1), take either (0, 0)→ (0, 1)→ (1, 1) or (0, 0)→ (1, 0)→ (1, 1)). We assume the time
spent in each link is directly proportional to the level of congestion: if a vehicle enters a link with
X ∈ (Z≥0) vehicles inside, it takes (X +1)∆tL timesteps to travel it if the link is between two
intersections and (X +1)∆tI timesteps if the link is across an intersection. For simplicity, we let
v∗ ∈N be the maximum number of vehicles per turn that can cross an intersection in one timestep.
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Rewards: The reward function R(st,at, st+1) :=1⊤(st+1,N − st,N ) is the rate of intersection
clearance, which computes the total number of vehicles that are removed from each intersection
through an action at that drives st to st+1. Here, 1∈ (Z≥0)12HL is the vector of all ones.

Definition 2 (Congestion Metrics) Let Tsim ∈N be the time duration of the experiment, and define
D∗

v ≤Dv to be the optimal travel time of each vehicle v ∈VD[Tsim] (i.e., the time taken to reach
its destination assuming an empty network and all-green light signals). With the vehicle quantities
described in Definition 1, we use the following metrics to evaluate the performance of our controller.
First, define the average cumulative waiting time to be W := (1/VD[Tsim])

∑
v∈VD[Tsim]

Wv[Tsim].
Second, define the average travel deviation to be D := (1/VD[Tsim])

∑
v∈VD[Tsim]

(Dv −D∗
v). Third,

we keep track of VC [t], the number of vehicles that did not reach their destinations by t∈ [0, Tsim].

3. Pattern-Learning with Memory and Prediction

We now describe the controller architecture based on pattern-learning with memory and prediction
(PLMP) for the VMDP by describing the specific implementation of the memory and prediction
components. With I := (h, i), let the set ΨI [t] = {ψ1, · · · ,ψK[t]} be the collection of patterns for
intersection I at time t, where K[t]∈N is the number of patterns currently recorded and each ψk

represents a pattern. Note that for any 0<s< t, ΨI [s]⊆ΨI [t]. In our VMDP, the “patterns” of
intersection I correspond to the distribution of vehicles in its local snapshot; for concreteness, we
choose ψk ∈ (Z≥0)8 to be a projection of a state st,N ∈SN down to left and forward turns per
direction; since we allowed vehicles to turn right whenever, they are not considered in the pattern.

3.1. Learning from Spatial Patterns

The VMDP implements the memory part of the PLMP controller architecture by storing any patterns
that have frequently occurred in the past. This is motivated by the spatiotemporal symmetries that
are likely to be prevalent throughout the rectangular grid, e.g., an intersection snapshot containing
X number of vehicles in the North-South lanes and no vehicles in the East-West lanes is likely to
occur again later in time. As opposed to “softer” methods of constraining these symmetries by
adding inductive biases to the learning method, this implementation focuses on “harder” methods
which hard-code a separate memory buffer to recall specific experiences and their rewards. This
concept was inspired by episodic memory in the human brain (Lengyel and Dayan, 2007); some
common implementations of episodic memory for control are Blundell et al. (2016), and Pritzel
et al. (2017).

In our VMDP, episodic memory is implemented for each intersection I with a memory ta-
ble QI :Z≥0×Eq(ΨI [t])×M→R, which maps patterns and light signal modes to best rewards.
Compared to previous episodic memory approaches, each memory table in our VMDP also uses
equivalence classes so that its size does not grow linearly with each new pattern. The original pat-
tern collection ΨI [t] is divided into multiple classes such that all patterns in a class are assigned the
same optimal traffic light. We define Eq(ΨI [t])⊆ΨI [t] to be the unique keys of the equivalence
classes for ΨI [t]. Each entry QI(t,ψ,m)= r means that as of time t, the best reward of r can be
obtained by applying mode m to intersection I if the given pattern is ψ.

For each intersection I , equivalence classes are constructed in the following simple way. For
the first pattern ψ1 ∈ΨI [0], ψ1 is placed inside Eq(ΨI [t]) and its associated equivalence class is
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Mode 1

4 2 0 0 0 00 2 0
lft rt lft rt lft rt lft rt

Mode 8
. . .

2 1 0 0 0 00 1 0
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Figure 2: Example memory tableQI for intersection I := (1, 1) with current patternψ= [4, 2, 0, 0, 0, 0, 2, 0]
(blue), v∗ =2, and k=3 nearest neighbors. Entries in Eq(ΨI [t]) are marked with white circles. For mode
1, ψ does not exist in QI , so the 3 nearest patterns (large red ball) are used during lookup; one example of a
“near” pattern is in green, where the left-turn lane in the East direction has three less vehicles. For mode 8,
an entry for ψ already exists because it is equivalent to the red pattern, which is ψ/2.

constructed as Eq(ψ1)=Eq0(ψ1), where

Eq0(ψj) :=

{v ·ψj , v ∈{2, · · · , v∗}} ∪ {[v1 + ψj,1, · · · , v8 + ψj,8], [v1, · · · , v8]∈{0, · · · , v∗}8\0} (1)

where · denotes multiplication by a scalar, v∗ is from Section 2.3, and 0∈R8 is the all-zeros vector.
This means Eq0(ψj) contains the following two types of elements: 1) every elementwise multiple
of ψj up to a factor of v∗, 2) every nonzero additive variation of the entries of ψj up to v∗.

For each time t+1 when a new pattern ψk /∈Eq(ΨI [t]) is observed at intersection I , its equiv-
alence class is constructed iteratively as:

Eq(ψk) :=

{
∅ if ∃ ψj ∈Eq(ΨI [t]) s.t. ψk ∈Eq(ψj)

f(Eq0(ψk), {Eq(ψj)}
K[t]
j=1 ,Eq(ΨI [t])) else

(2)

where Eq0 is defined in (1). The function f is designed to check if every ψ ∈Eq0(ψk) is already
in the pattern collection, whether as a unique key or an equivalence class member:

f(Eq0(ψk), {Eq(ψj)}
K[t]
j=1 ,Eq(ΨI [t]))

:=
{
ψ ∈Eq0(ψk) :∄ψj ∈ Eq0(ψk) s.t.

(
ψ = ψj ∧ψ ∈ Eq(ψj)

)}
(3)

This construction allows all elements of ΨI [t] to be partitioned into its unique keys and disjoint
equivalence classes for all time t, i.e., ΨI [t] =Eq(ΨI [t]) ∪ Eq(ψ1)∪ · · · ∪Eq(ψK[t]). Looking up
Q-values then amounts to looking through only Eq(ΨI [t]) instead of the entire collection ΨI [t],
which reduces memory compared to other episodic control approaches. The update method of each
intersection’s memory table follows similarly to episodic control. At specific intersection I , suppose
ψ is the current pattern snapshot observed at time t. If ψ ̸∈ΨI [t], the Q-value is approximated with
Q̂I , which averages the Q-values of the k-nearest-neighbor (kNN) patterns in Eq(ΨI [t]):

Q̂I(t,ψ,m) :=


1
k

k∑
j=1
QI(t, ψ̂j ,m) if ψ ̸∈ ΨI [t]

QI(t,ψ,m) else
(4)
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where {ψ̂j}kj=1⊆Eq(ΨI [t]) are the k unique keys with the nearest distance to ψ at time t. Here,
“nearest” is measured with ℓ1-norm difference, modulus the structure of the equivalence classes:
d(ψk,ψj) :=

∥∥({ψk}∪Eq(ψk))− ({ψj}∪Eq(ψj))
∥∥
1

where we briefly abuse notation to denote
∥B1 − B2∥1 := min{∥b1− b2∥1 , b1 ∈B1, b2 ∈B2}. During training, the Q-values of the memory
table are updated by comparing the existing value with the Bellman update. Denote ψ ∈SN to
be the expansion of ψ where zeros are placed in the positions of right-turning vehicles. Suppose
the pair (ψ,m) at time t transitions to the pattern ψ∗ via transition function TI(ψ

∗|ψ,m) and
yields reward RI(ψ,m,ψ

∗
), where TI and RI are dimension-reduced versions of T and R (from

Section 2.3) for individual intersections. Then define:

r∗ := (1− α)Q̂I(t,ψ,m) + α(RI(ψ,m,ψ
∗
) + γQ̂I(t,ψ

∗,m∗)) (5)

Here, Q̂I is the estimated Q-value computed through (4), α∈ [0, 1] is the learning rate, and γ ∈ [0, 1]
is the reward discount rate. Mode m∗ is the optimal light signal mode from pattern ψ∗ (and varies
by algorithm, e.g., Q-learning, SARSA). The update for entry (ψ,m) is performed as follows:

QI(t+ 1,ψ,m)←

{
max{QI(t,ψ,m), r∗} if (t,ψ,m) ∈ QI

r∗ else
(6)

The action at ∈A is then constructed by putting together all the optimal modesm∗ of each intersec-
tion into a single vector. The PLMP algorithm with only memory implemented (without prediction)
will henceforth be called pattern-learning with memory (PLM); note that it differs from episodic
control by implementation of the equivalence classes. For concreteness and variety, we consider
two different ways of choosing the optimal mode m given pattern ψ. First, greedy exploitation uses
transition function TI to approximate the next ψ∗ and chooses the mode m that maximizes the im-
mediate reward RI(ψ,m,ψ

∗
). Second, episodic control (EC) exploitation chooses the action m∗

which maximizes (4). We also enable exploration with some probability ϵ∈ [0, 1).

3.2. Learning from Temporal Patterns

The VMDP implements the prediction part of the PLMP controller architecture by approximating
future occurrences of patterns so that future light signal sequences can be scheduled in advance.
Because the objective is to demonstrate the advantage of enabling prediction, we use a simple
one-timestep lookahead assuming that all predictions are accurate due to sensors being abundantly
placed throughout the grid; we defer the treatment of noisy predictions to future work.

1

0 5 10

2

3
 1
 1
 1
 1
 1


+1


+1


0
 0
 0
 0
 0


+1


Figure 3: Sample prediction procedure for
intersection (0, 0) and its neighbors (0, 1)
and (1, 0). Here, ∆tL =2 and ∆tI =1.
There are a total of three vehicles at (0, 0) at
time 0: two vehicles (one right-turning, one
forward-going) at direction S are given the
green light to pass at time 0 while one ve-
hicle (forward-going) at direction W is given
the green light to pass at time 6. Here,
there are no other vehicles in the system, so
each vehicle takes ∆tI +∆tL =3 timesteps
to reach their next intersection.
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We employ an augmented pattern representation ϕk = [ψ⊤
k , ζ

⊤
k ]

⊤ ∈ (Z≥0)16 associated with
each original pattern ψk ∈ΨI [t]. The eight additional entries ζk ∈ (Z≥0)8 contains the counts of
incoming vehicles in its adjacent links, and can be viewed as a projection of state st,L ∈SL down
to left and forward turns per direction. Define P : (Z≥0)16→ (Z≥0)8 to be a projection mapping
such that P(ϕk) is equal to the pattern which will occur in the next timestep. Because a vehicle’s
transition time from a link to an incoming node depends on the number of other vehicles that are
currently present on the link, we do not write the explicit form of P; essentially, we achieve accurate
predictions by enabling one-timestep lookahead using the augmented pattern. For example, when
∆tL=1 and there are no other vehicles in the left-turn lane of the link to the East of intersection I ,
we get P([0⊤, e⊤1 ]⊤)= e⊤1 , where e1 is the first standard basis vector of (Z≥0)8.

We conclude this section with a side-by-side comparison of the algorithm pseudocode for vehi-
cle traffic congestion control with PLM and PLMP. We emphasize that many design choices made in
this section were chosen for concrete comparison between architectures with and without learning
patterns; optimizing these design choices is a topic of future work.

Algorithm 1 Congestion Control via PLM
1: Initialize VMDP.
2: Initialize pattern tables {ΨI [0]}.
3: Create next pattern ψ.
4: Create next traffic light from ψ.
5: for t=1 :Tsim do
6: Propagate 1 step.
7: Add any new vehicle arrivals.
8: Update VMDP state.
9: Update pattern tables {ΨI [t]}.

10: Create next pattern ψ.
11: Create next traffic light from ψ.
12: end for

Algorithm 2 Congestion Control via PLMP
1: Initialize VMDP.
2: Initialize pattern tables {ΨI [0]}.
3: Predict next pattern ψ∗ =P(ϕ).
4: Create next traffic light from ψ∗.
5: for t=1 :Tsim do
6: Propagate 1 step.
7: Add any new vehicle arrivals.
8: Update VMDP state.
9: Update pattern tables {ΨI [t]}.

10: Predict next pattern ψ∗ =P(ϕ).
11: Create next traffic light from ψ∗.
12: end for

4. Numerical Simulations

We demonstrate the performance of various implementations of Algorithms 1 and 2. We compare
the two ways from Section 3.1 in which actions are chosen: exploration with probability ϵ together
with greedy or EC exploitation. We distinguish the way in which each intersection updates its
memory table by varying the learning rate α: an episodic control (EC) update computes the new
potential Q-value as in (5) with 0<α< 1 (specifically chosen α=0.9), while a greedy update uses
α=0. We also consider a periodic baseline controller, where the light at each intersection cycles
through the modes repeatedly with some cycle duration C ∈N.

4.1. Dataset Preprocessing

We apply each variation of our proposed architecture to the following two datasets.

Pure Synthetic The number VA[t] of vehicles arriving into the network from the fringes as a func-
tion of time t is described as follows. Vehicles enter into the fringe intersections as platoons. Let
Tn be the time of arrival for the nth platoon. Interarrival times Tn−Tn−1 are generated indepen-
dently from a Geometric distribution with a time-varying parameter p[t]∈ (0, 1). At each arrival
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Strategy Description
Periodic16 Periodic with C =16.
Periodic8 Periodic with C =8.

EC(0) PLM with EC exploitation,
ϵ=0 exploration, EC update

PLM(0,1,1) PLM with greedy exploitation
ϵ=0 exploration, greedy update

PLM(5e-3,1,0) PLM with greedy exploitation
ϵ= 5e-3 exploration, EC update

PLMP(0,0,0) PLMP with EC exploitation
ϵ=0 exploration, EC update

PLMP(0,1,1) PLMP with greedy exploitation
ϵ=0 exploration, greedy update

PLMP(5e-3,1,0) PLMP with greedy exploitation
ϵ= 5e-3 exploration, EC update

Table 1: The eight different controller implementa-
tions compared in the experiment: two periodic base-
lines and six different versions of Algorithms 1 and 2.
PLM(0, 0, 0) is equivalent to episodic control (EC),
but with equivalence classes implemented.

Figure 4: Congestion metric VC [t] from Definition 2
plotted over time until t=100 for four strategies
from Table 1, applied to the pure synthetic dataset.
The cumulative number of vehicles in the system over
time, V [t], is shown in solid blue.

time Tn, the size of each platoon is a random nonzero integer generated between some minimum
and maximum size. We choose experiment duration Tsim =200, p[t]∈ [0.1, 0.25], and each platoon
generated has some size between 30 to 50 vehicles.

Intersections in Hangzhou, China We use real-world data of traffic flowing through several
single intersections in Hangzhou, China (provided in TSCC (2019)). For our grid network setting,
we assign the behavior of one intersection to each of the four fringes of the grid: intersections on the
East fringe of the grid behave according to the kn-hz intersection, the North fringe is according to
the qc-yn intersection, West to sb-sx, and South to tms-xy. Each intersection in the original
dataset consists of two one-hour arrivals of vehicles; we add the two arrival processes together and
discretize arrivals into 5-second bins, i.e., Tsim =3600/5=720. The original vehicle routes are also
modified to respect the constraints of being a fringe intersection, e.g., traffic emerging from the East
side of sb-sx are rerouted to emerge from the West side (because sb-sx corresponds to fringe
intersections of the form (0, i) for i∈{0, · · · , L− 1}).

4.2. Results

We evaluate eight different controller implementations, using the congestion metrics from Defini-
tion 2, on a grid network with dimensions H =L=5. Each implementation is described in Table 1.
Our results for v∗=2, ∆tL=2, ∆tI =1, k=3 nearest neighbors, and γ=0.1 averaged over 20
Monte-Carlo trials, are demonstrated in Table 2 for the synthetic dataset (left subtable) and the
Hangzhou dataset (right subtable). A sample plot of one trial of VC [t] (the number of circulating
vehicles metric from Definition 2) for the synthetic dataset until t=100 timesteps is shown in Fig-
ure 4; the figure for the Hangzhou dataset yielded a similar trend, but with smaller values because
the arrival process is much thinner than the synthetic dataset despite being over longer time interval.

The basic trend for both datasets is that PLMP does better on average than PLM and PLM does
better on average than the periodic baseline. In Figure 4, all four controllers experience at least
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Strategy W D

Periodic16 12.21145 44.37445
Periodic8 20.25 58.79762

EC(0) 1.2622 24.27622
PLM(0,1,1) 1.10247 23.75265

PLM(5e-3,1,0) 4.62031 30.0

PLMP(0,0,0) 0.41584 22.19802
PLMP(0,1,1) 0.38158 21.92434

PLMP(5e-3,1,0) 2.42907 28.37716

Strategy W D

Periodic16 12.13208 38.20283
Periodic8 6.87660 26.78723

EC(0) 0.89105 14.80156
PLM(0,1,1) 0.89412 14.93334

PLM(5e-3,1,0) 0.90551 14.79528

PLMP(0,0,0) 0.22509 9.98524
PLMP(0,1,1) 0.23443 9.17216

PLMP(5e-3,1,0) 0.25368 9.49632

Table 2: The average cumulative waiting time W and the average travel deviation D (from Definition 2) for
each of the two datasets. [Left] Pure synthetic. [Right] Hangzhou.

a 15-timestep delay after time 0 from which vehicles begin to reach their respective destinations;
thus, each line follows the cumulative number of vehicles in the system (blue line) precisely until
timestep 15. Afterwards, however, PLMP consistently begins to drop first, followed by PLM, then
finally the periodic baseline, indicating that PLMP enables vehicles to reach their destination the
fastest on average and periodic enables the slowest. This is also consistent with the magnitude
of the measurements in Table 2. For the periodic baselines applied to the synthetic dataset (heavier
traffic), the left subtable in Table 2 shows that a smaller period (i.e., faster light signal switching) can
cause more congestion than relief. For PLM and PLMP, the average waiting time per vehicle (W )
and average travel deviation (D) are mostly consistent to how they increase or decrease in value
together. Adding exploration causes both PLM and PLMP to perform worse, which is expected
because traffic in a structured, predictable setting like a rectangular grid leaves very little chance
that choosing a random mode will perform better than pure exploitation.

5. Conclusion

This paper presented new controller architectures based on pattern-learning with memory and pre-
diction (PLMP) and pattern-learning with memory (PLM) for vehicle traffic congestion control over
a metropolitan grid of signalized intersections. The architectures exploited the natural spatial sym-
metries and temporal repetition in the traffic network to perform control without redundant compu-
tation of light signal sequences. In particular, the memory component used an extension of episodic
memory which builds equivalence classes to group together patterns that are controlled using the
same light signals. In addition, accurate predictions are incorporated with a one-timestep lookahead
that augments vehicle counts in the adjacent links of the intersection and schedules light signals in
advance. We demonstrated the performance of multiple implementations of PLM and PLMP with
respect to three congestion metrics over two different traffic scenarios, and found that on average,
PLM outperforms the periodic baselines while PLMP outperforms PLM with mild variation among
the different implementations. Future work includes noisy predictions, predictions over longer hori-
zons, and comparing with other traffic optimization architectures (e.g., GNNs, rule-based).
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