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Abstract
The deployment of robots in uncontrolled environments requires them to operate robustly under
previously unseen scenarios, like irregular terrain and wind conditions. Unfortunately, while rig-
orous safety frameworks from robust optimal control theory scale poorly to high-dimensional non-
linear dynamics, control policies computed by more tractable “deep” methods lack guarantees and
tend to exhibit little robustness to uncertain operating conditions. This work introduces a novel
approach enabling scalable synthesis of robust safety-preserving controllers for robotic systems
with general nonlinear dynamics subject to bounded modeling error, by combining game-theoretic
safety analysis with adversarial reinforcement learning in simulation. Following a soft actor-critic
scheme, a safety-seeking fallback policy is co-trained with an adversarial “disturbance” agent that
aims to invoke the worst-case realization of model error and training-to-deployment discrepancy
allowed by the designer’s uncertainty. While the learned control policy does not intrinsically guar-
antee safety, it is used to construct a real-time safety filter with robust safety guarantees based on
forward reachability rollouts. This safety filter can be used in conjunction with a safety-agnostic
control policy, precluding any task-driven actions that could result in loss of safety. We evaluate
our learning-based safety approach in a 5D race car simulator, compare the learned safety policy to
the numerically obtained optimal solution, and empirically validate the robust safety guarantee of
our proposed safety filter against worst-case model discrepancy.
Keywords: Adversarial Reinforcement Learning, Model Predictive Safety Filter, Hamilton Jacobi
Reachability Analysis

1. Introduction

Recent years have seen a rapid increase in the deployment of robotic systems beyond their tradi-
tional industrial settings, with emerging applications including home robots, autonomous driving,
and a range of drone services. These new opportunities are tied to open, uncontrolled environments,
where safe robot operation is at once critical and hard to ensure. Safety guarantees in these open-
world settings face the coupled challenges of scalability and robustness. Many modern robotic
systems present high-order nonlinear dynamics, making safety analysis computationally demand-
ing. Even when the analysis is tractable (usually for lower-fidelity models), discrepancies between
the modeled and physical system can result in degraded performance and even catastrophic failures.

To ensure safe autonomous operation, a range of engineering efforts seek to automatically filter
robots’ task-oriented control policies to preclude unsafe actions. One important family of methods is
built on Hamilton-Jacobi (HJ) reachability analysis, formulating a zero-sum dynamic game where
the robot’s controller aims to keep the state away from all known failure conditions despite the
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Figure 1: ISAACS is a game-theoretic reinforcement learning scheme whose best-effort learned
safety policy can be converted into effective robust safety-certified strategies at runtime.
Offline Safety Synthesis: adversarial reinforcement learning approximately solves the ro-
bust safety problem, jointly training the safety policy πu and worst-case disturbance πd.
Online Safety Certification: the learned safety policy is rolled out under all disturbance re-
alizations. Here, the forward-reachable sets (orange) are safe if their footprint-augmented
counterparts (green) remain collision-free. Robust Safety Filter: control actions proposed
by an arbitrary task policy πtask are allowed if a subsequent safety policy rollout (“fall-
back”) is certified safe; otherwise, the (already certified) fallback tracking policy is used.

adversarial inputs of a bounded disturbance representing unknown model error and exogenous per-
turbations (Mitchell et al., 2005). While powerful, HJ methods become computationally prohibitive
beyond 5 state dimensions (Bansal et al., 2017). Recent research with neural representations shows
promise in scaling safety analysis to high-dimensional systems (Fisac et al., 2019; Bansal and Tom-
lin, 2021; Hsu et al., 2023). Unfortunately, the learned policy and value function may not be accurate
everywhere, and therefore carry a risk of catastrophic outcomes if directly relied upon for safety.

This paper introduces Iterative Soft Adversarial Actor-Critic for Safety (ISAACS), a novel
game-theoretic reinforcement learning (RL) scheme for approximate safety analysis, whose out-
puts can be efficiently converted at runtime into robust safety-certified control strategies (Figure 1).
ISAACS is first used in an offline synthesis stage that jointly trains a best-effort safety controller
and a worst-case failure-seeking disturbance through many iterations of simulated zero-sum game-
play (Silver et al., 2017; Pinto et al., 2017). The learned control policy can then be treated as an
“untrusted oracle” and used in online safety certification by guiding a robust predictive rollout that
accounts for all admissible realizations of model uncertainty. This “rollout check” enables a recur-
sively safe runtime control filter that preemptively overrides any candidate control action that could
otherwise drive the state into an unrecoverable configuration.

We demonstrate this framework on a dynamical system at the boundary of computability for nu-
merical dynamic programming (Bui et al., 2022), namely a 5-dimensional race car simulator. Rather
than substantiating scalability (already established in prior work, cf. Haarnoja et al. (2018); Fisac
et al. (2019)), we focus on showing the framework’s ability to synthesize provably correct robust
safety filters using deep reinforcement learning, and use the still-tractable numerical 5-D solution as
a reference oracle. In our experiments, the ISAACS robust rollout safety filter maintained a perfect
(zero violation) safety rate under the oracle worst-case disturbance, with moderate conservativeness
relative to the optimal Hamilton-Jacobi solution. Using the ISAACS model directly performed well
for the most part, but it lacked theoretical guarantees and the safety rate was indeed nonzero.1

1. See https://saferobotics.princeton.edu/research/isaacs/ for supplementary material.
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1.1. Related Work

Safety guarantees in robotics have their origins in robust control. Robust “tube” model predictive
control (MPC) approaches (Langson et al., 2004) allow enforcing state constraints like collision
avoidance in the presence of bounded uncertainty. Hamilton-Jacobi-Isaacs (HJI) theory handles
general nonlinear dynamics and control objectives by posing the problem as a two-player zero-sum
differential game between the controller and an adversarial disturbance (Isaacs, 1954; Mitchell et al.,
2005; Bansal et al., 2017). Similar approaches pose the game in temporal logic form using formal
methods (Mattila et al., 2015; Alpern and Schneider, 1985). While these techniques enjoy strong
theoretical properties, their use in robotics is limited by their poor computational scalability.

Control barrier function (CBF) approaches aim to circumvent numerical intractability by find-
ing a smaller (more conservative) invariant set that can be encoded in closed form (e.g., sum-of-
squares) (Ames et al., 2014, 2019); unfortunately there are no systematic constructive methods,
so system-specific hand design is often needed (Nguyen and Sreenath, 2016; Squires et al., 2018).
Further, CBF guarantees have limited robustness to disturbances (Xu et al., 2015) and may be lost
entirely if the robot reaches its actuation limits (Zeng et al., 2021; Choi et al., 2021).

Finally, deep self-supervised learning (Bansal and Tomlin, 2021) and reinforcement learn-
ing (Fisac et al., 2019; Bharadhwaj et al., 2021; Thananjeyan et al., 2021; Hsu et al., 2021) can
synthesize approximate control policies and value functions (“safety critics”), but offer no intrinsic
safety guarantees, and robustness to modeling and learning error is not yet well understood. Do-
main randomization (DR) approaches (Tobin et al., 2017; Mehta et al., 2020) conduct training under
a family of environments with randomly sampled parameter values, targeting expected performance
over the hypothesized parameter distribution, whereas adversarial training approaches formulate a
zero-sum game and jointly train the control policy and the worst-case environment realization via
simulated gameplay (Pinto et al., 2017). While most closely aligned with Fisac et al. (2019); Hsu
et al. (2021), our work introduces robustness through an adversarial reinforcement learning scheme
grounded in the game-theoretic HJI formulation and further recovers robust guarantees by rolling
out the learned policies in an online receding horizon framework.

2. Preliminaries

2.1. Hamilton-Jacobi-Isaacs Reachability Analysis and Safety Filters

We consider fully observable robotic system governed by discrete-time dynamics with unknown but
bounded model error:

xt+1 = f(xt, ut, dt) , (1)

where, at each time step t ∈ N, xt ∈ X ⊆ Rnx is the state, ut ∈ U ⊂ Rnu is the controller input, and
dt ∈ D ⊂ Rnd is the disturbance input, unknown a priori. We assume we are given a specification
of the failure set F ⊆ X that the system must be prevented from entering. By convention, we
assume F to be open. Safety analysis seeks to determine the safe set Ω ⊆ X , consisting of all initial
states from which there exists a control policy that can keep the system away from the failure set at
all times for any realization of the uncertainty:

Ω :=
{
x ∈ X | ∃πu : X → U , ∀πd : X → D, ∀t > 0, xπ

u,πd

x (t) /∈ F
}
, (2)

where xπ
u,πd

x : N → X denotes the trajectory starting from state x0 = x following dynamics (1)
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under control policy πu and disturbance policy πd. Note that the order of quantifiers in (2) is crucial:
there must be one (same) control policy πu that maintains safety under all disturbance policies πd.

Hamilton-Jacobi-Isaacs (HJI) reachability analysis formulates the robust safety problem as a
zero-sum game between the controller and the disturbance, introducing a Lipschitz continuous
safety margin g : X → R, g(x) < 0 ⇐⇒ x ∈ F to further transform the safety “game of kind” with
a binary outcome (whether the system enters F) into a “game of degree” with continuous payoff

Jπ
u,πd

(x) := min
t∈N

g
(
xπ

u,πd

x (t)
)
. (3)

Consistent with the order of quantifiers in (2), which gives the disturbance the instantaneous in-
formational advantage (Isaacs, 1954), we define the lower value function of the safety game as
V (x) := maxπu minπd Jπ

u,πd
(x), which encodes the minimal safety margin g that our controller

can maintain at all times under the worst-case disturbance. This value V (x) satisfies the two-player
dynamic programming Isaacs equation

V (x) = max
u

min
d

min
{
g(x), V

(
f(x, u, d)

)}
. (4)

If the value function can be computed, the safe set (2) can be obtained by V (x) ≥ 0 ⇐⇒ x ∈ Ω,
and the optimal policies πu∗(x), πd∗(x) are given by the optimizers of (4) at each state x. We can
then filter an arbitrary task-oriented policy πtask through the least-restrictive law (Fisac et al., 2019):

ϕ(x;πtask) =

{
πtask(x), V (x) ≥ ϵ

πu∗(x), otherwise
(5)

where ϵ ≥ 0 is the value threshold, typically chosen slightly larger than zero to account for numer-
ical errors and control delays. The safety filter ϕ enforces an important invariance property: from
any state in the safe set Ω the system is guaranteed to remain in the safe set perpetually.

2.2. Reachability Analysis through Reinforcement Learning

Level-set methods solve for the HJI value function in (4) with vanishing approximation error as the
grid resolution increases. However, the memory and computation complexity grows exponentially
with the state dimension, which limits practical applicability to dynamical systems with at most
6 continuous state dimensions (Bui et al., 2022). Fisac et al. (2019) use reinforcement learning
algorithms to more tractably find approximate solutions to high-dimensional reachability problems
(demonstrated on up to 18 state dimensions) by replacing the usual reinforcement learning Bellman
equation for a cumulative reward with the time-discounted (single-player) counterpart of (4):

Vω(x) = (1− γ)g(x) + γmin
{
g(x), max

u∈U
Qω(x, u)

}
, Qω(x, u) := Vω

(
f̄(x, u)

)
, (6)

where the nominal dynamics f̄ : X ×U → X , which can be seen as a special case of f in (1) assum-
ing no modeling error (d = 0); γ ∈ (0, 1) is the time discount rate for future safety margins; and
Qω is the state-action safety value function, parameterized by ω.2 An analogous safety filter to (5)
can then be constructed by replacing V with the learned Vω and πu∗(x) with argmaxu∈U Qω(x, u).
Unfortunately, due to the approximate nature of Qω and Vω, this is only a best-effort safety filter:
unlike (5), it comes with no invariance guarantees and it cannot generally prevent safety violations.

2. In the deep reinforcement learning literature, ω are neural network weights and Qω is called a Q-network or critic.

4



ISAACS: ITERATIVE SOFT ADVERSARIAL ACTOR-CRITIC FOR SAFETY

3. ISAACS: Iterative Soft Adversarial Actor-Critic for Safety

To harness the scalability of neural representations without renouncing the robust safety guarantees
of model-based analysis, we propose Iterative Soft Adversarial Actor-Critic for Safety (ISAACS), a
game-theoretic reinforcement learning scheme that approximates the HJI solution to a reachability
game and learns a safety policy that can be used to construct a provably safe runtime control strategy.
ISAACS uses repeated rounds of simulated zero-sum gameplay to jointly train a safety control pol-
icy and a failure-seeking disturbance policy, consistent with the Isaacs equation (4). Once trained,
the ISAACS safety policy can be used as the receding-horizon reference for a robust fallback con-
trol strategy, defining a compact forward-reachable set that can be checked for safety violations.
This results in a recursive safety filter with an equivalent invariance property to the accurate but less
scalable counterpart (5) enabled by numerical HJI methods.

3.1. Adversarial Actor-Critic Reinforcement Learning for Safety Policy Synthesis

Analogous to the single-player reachability reinforcement learning formulation of Fisac et al. (2019),
we consider a time-discounted counterpart of the reachability payoff (3). In this case, however, we
have a zero-sum game whose value function is characterized by a two-player Isaacs equation (rather
than a Bellman equation). In the space of soft actor-critic policies, the Isaacs equation can be writ-
ten

V (x) = (1−γ)g(x)+γmax
πu

min
πd

E
u,d

min
{
g(x), Q(x, u, d)

}
, Q(x, u, d) := V

(
f(x, u, d)

)
(7)

where πu, πd are stochastic controller and disturbance policies, and u ∼ πu(· | x), d ∼ πd(· | x).
Note that as the time discount factor γ ∈ [0, 1) goes to 1, we recover the undiscounted problem (4).

The ISAACS offline synthesis scheme solves the Isaacs equation (7) approximately by training
three neural networks, with parameters ω, θ, ϕ, that encode a critic, a control policy, and a distur-
bance policy, respectively. The learning scheme updates the critic and disturbance policy τ ∈ N
more often than the control policy. This effectively makes the disturbance policy a follower to the
control policy (Zrnic et al., 2021)—thereby maintaining the disturbance’s informational advantage

Algorithm 1 ISAACS: Iterative Soft Adversarial Actor-Critic for Safety (Offline Safety Synthesis)
1: for each tournament round do
2: for each episode do
3: x0 ∼ P0, π̃

d ∼ PΠd ▷ Sample initial state and disturbance policy for this episode
4: for each time step do
5: ut ∼ πu

θ (·|xt), dt ∼ π̃d(·|xt) ▷ Sample control and disturbance from policies
6: xt+1 = f(xt, ut, dt) ▷ Get transition from the environment
7: B ← B ∪

{(
xt, ut, dt, xt+1, g(xt+1)

)}
▷ Store the transition in the replay buffer

8: for each gradient step do
9: ω ← ω − λω∇ωL(ω) ▷ Update critic parameters

10: ω′ ← λω′ω + (1− λω′)ω′ ▷ Update target critic parameters
11: ϕ← λϕ∇ϕL(ϕ) ▷ Update disturbance policy parameters
12: if gradient step is a multiple of τ then
13: θ ← λθ∇θL(θ) ▷ Update safety policy parameters at a slower rate
14: Update leaderboard Πu ⋃

{πu
θ } vs. Πd ⋃{πd

ϕ} and keep best ku in Πu, best kd in Πd

15: m← (m1, · · · ,m|Πd|) ▷ mi is the total win rate of πd
i across all π̃u ∈ Πu

16: PΠd ← softmax(m) ▷ Update disturbance policy distribution

5
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from (2) and (7)—and has the advantage of optimizing against a static target within each update
epoch of the controller’s policy.

We additionally maintain a finite leaderboard of controller and disturbance policies from past
stages of training, Πj = {πj1, ...π

j
kj
}, j ∈ {u, d}. At the start of each episode, ISAACS samples an

initial state from a preset distribution P0 and selects a disturbance policy π̃d from Πd and simulates
the gameplay between πuθ and the sampled π̃d, which discourages the control policy updates from
overfitting to a single disturbance policy (Vinitsky et al., 2020). Periodically during training, the
leaderboard is updated by incorporating the current controller and disturbance policies into Πu,Πd

and simulating multiple gameplay episodes for each new pair of controller-disturbance policies,
recording the fraction of episodes that result in safety failures. Policies in Πu are ranked based on
their overall win rate against all opponent policies in Πd, and vice versa, and the worst-performing
one is dropped from each leaderboard (if the total count exceeds the preset capacity ku,kd).

We update all neural networks based on Soft Actor-Critic (SAC) (Haarnoja et al., 2018). At
every time step we store the transition (x, u, d, x′, g′) in the replay buffer B, with x′ = f(x, u, d)
and g′ = g(x′). We update the critic to reduce the deviation from the Isaacs target (7),3

L(ω) := E
(x,u,d,x′,g′)∼B

[
(Qω(x, u, d)− y)2

]
, y = (1−γ)g′+γmin{g′, Qω′(x′, u′, d′)} , (8a)

with u′ ∼ πuθ (· | x′), d′ ∼ πdϕ(· | x′). We update both policies following the policy gradient induced
by the critic and entropy loss terms:

L(θ) := E
(x,d)∼B

[
−Qω(x, ũ, d)+αu log πuθ (ũ|x)

]
, L(ϕ) := E

(x,u)∼B

[
Qω(x, u, d̃)+αd log π

d
ϕ(d̃|x)

]
,

(8b)
where ũ ∼ πuθ (· | x), d̃ ∼ πdϕ(· | x), and αu, αd are hyperparameters encouraging higher entropy in
the stochastic policies (more exploration), which decay gradually in magnitude through the ISAACS
training. We summarize the ISAACS scheme in Algorithm 1 (where λω, λω′ , λθ, λϕ are the learning
rate hyperparameters for ω, ω′, θ, ϕ).

3.2. Runtime Safety Filter through Robust Policy Rollout

It may seem tempting to use the value and policies computed by ISAACS directly in an online safety
solution. While a learned value-based safety filter in the form of (5) can work well in practice (Hsu
et al., 2023), it comes without guarantees, and it may not always prevent catastrophic failures. A
similar issue arises when directly rolling out the learned controller and disturbance policies at run-
time and checking the resulting trajectory for future collisions: while a suboptimal controller policy
would merely result in a more conservative filter, a suboptimal disturbance policy may lead us to
erroneously conclude that a state is safe, when in reality there exists a different uncertainty realiza-
tion that could drive the state to the failure set. To obtain a robust safety guarantee under possibly
suboptimal ISAACS learning, we therefore treat the controller and the disturbance differently. The
learned controller policy is used as a best-effort “untrusted oracle” to obtain a reference rollout tra-
jectory; conversely, for the disturbance, we consider all possible inputs within the bounded set D,
which induce a forward-reachable set (FRS) containing a continuum of possible futures.

3. Deep RL usually trains an auxiliary target critic Qω′ , whose parameters ω′ change slowly to match the critic param-
eters ω to stabilize the regression (a fixed target in a short period of time).
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At each control cycle, given a proposed control from the task policy, we start by rolling out a
nominal reference trajectory with zero disturbance input. Similar to other model predictive safety
filtering approaches Bastani and Li (2021), we simulate a single step using the proposed control and
subsequently switch to the trained safety policy for the remaining H steps:

xτ+1|t = f(xτ |t, uτ |t, 0), uτ |t =

{
πtask

(
xτ |t

)
, τ = 0

πuθ
(
xτ |t

)
, τ ∈ {1, . . . ,H},

x0|t = xt, (9)

where (·)τ |t denotes variables at step τ of a plan computed at time t. The blue polyline in Figure 1
(right) shows the nominal trajectory. Since the neural network safety policy is not guaranteed to be
stabilizing, we utilize the time-varying linear quadratic regulator (LQR) approach to derive (local)
linear tracking policies for the time horizon H .

To compute the tracking policy, we first linearize the dynamics around the nominal trajectory
δxτ+1 = fx,τδxτ + fu,τδuτ + fd,τdt+τ + eτ , at each τ ∈ {0, . . . ,H}, where δxτ := xt+τ − xτ |t,
δuτ := ut+τ − uτ |t, and fx,τ , fu,τ , fd,τ are the Jacobians of the dynamics evaluated at prediction
step τ , with eτ denoting the associated linear approximation error (“Taylor remainder”) at that time.
Using time-varying LQR, we compute the fallback tracking policy δuτ = Kτ |tδxτ , τ ∈ {1, . . . ,H},
which aims to efficiently track the nominal rollout trajectory from (9). The closed-loop linear error
dynamics under this policy (with the unknown disturbance as the only exogenous input) are

δxτ+1 = Aτδxτ +Bτdt+τ + eτ , τ ∈ {1, . . . ,H}, (10)

where Aτ := fx,τ + fu,τKτ |t and Bτ := fd,τ . Similarly letting B0 := fd,0, the forward-reachable
set containing all possible (under D) tracking errors δxτ at each step τ can be computed by

Rτ+1 = AτRτ ⊕BτD ⊕ Eτ , τ ∈ {1, . . . ,H}, R1 = B0D, (11)

where Eτ is the bounding box for the Taylor remainder at time step τ , and ⊕ denotes the Minkowski
sum of two sets. The orange polytopes in Figure 1 (right) show the computed forward-reachable
sets, and the green polytopes show their footprint-augmented counterparts.

Using the tracking error bounds Rτ , we define the robust rollout-based safety filter criterion:

∆R(xt, π
task, H) := 1

{
{xτ+1|t} ⊕Rτ+1 ∩ F = ∅ ∧ {uτ |t} ⊕KτRτ ⊆ U ,∀τ ∈ {0, · · · , H}

}
.

(12)
Precisely, ∆R(xt, π

task, H) = 1 means that after applying the proposed control from the task policy,
the tracking policy (Kτ |t)

H
τ=1 can maintain safety for the H subsequent steps under all possible

uncertainty realizations, i.e. for any disturbance sequence satisfying dt+τ ∈ D, without exceeding
the control bound U .4 In other words, a robust safety fallback strategy is available after applying
the proposed control. The corresponding safety filter can be constructed as follows:

ϕ(xt+τ ; ∆R, t) =


πtask(xt+τ ), ∆R(xt+τ , π

task, H) = 1

Kτ |t(xt+τ − xτ |t), ∆R(xt+τ , π
task, H) = 0 ∧ τ ∈ {1, · · · , H}

πuθ (xt+τ ), otherwise,

(13)

where t is the last time step that the safety filter criterion holds, i.e., ∆R(xt, π
task, H) = 1. We then

have the following finite-horizon safety theorem, which is recursively enforceable by applying the
safety filter with robust rollout-based criterion in (12).

4. In practice, the control condition in (12) can be enforced during the rollout ofRτ by scaling down Kτ |t as needed.
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Theorem 1 (Finite-Horizon Safety) If the initial state xt satisfies ∆R(xt, π
u
θ , H) = 1, the safety filter

ϕ(·; ∆R, t) in (13) keeps the feedback system safe under the disturbance set D for at least H + 1 steps, i.e.,
xt+τ+1 = f(xt+τ , ϕ(xt+τ ; ∆R, t), dt+τ ) /∈ F ,∀dt+τ ∈ D,∀τ ∈ {0, · · · , H} .

Proof Whenever ∆R(xt, π
task, H) = 1, a robustH-step fallback tracking policy is constructed and found to

keep {xτ |t} ⊕ Rτ disjoint from F for τ ∈ {1, . . . ,H + 1}. By construction, after applying πtask(xt), ∀dt ∈
D, xt+1 ∈ {x1|t} ⊕ R1. Suppose that all subsequent checks fail: ∆R(xt+τ , π

task, H) = 0,∀τ ≥ 1, then
the filter (13) applies the fallback policy, ensuring ∀dt+τ ∈ D, xt+τ+1 ∈ {xτ+1|t} ⊕ Rτ+1 up until the last
computed set RH+1. Therefore, xt+1, . . . , xt+H+1 ̸∈ F . If at any time τ ≤ t+H+1, ∆R(xτ , π

task, H) = 1,
a new fallback tracking policy is computed and the guarantee resets for another H + 1 steps.

Remark 2 If we further assume a robust controlled-invariant set T ⊆ X , T ∩ F = ∅ under policy
πT , the guarantee can be extended to the infinite horizon, by adding an additional condition that the
system robustly reach T within the rollout horizon, i.e., Rτ⊕{xτ |t} ⊆ T for some τ ≤ H+1. After
this, the controller can always continue to apply πT to remain in T and thus out of F . Alternatively,
more sophisticated robust certification methods (Wabersich and Zeilinger, 2018) may be used.

4. Experimental Evaluation

4.1. Implementation Details

Environment We demonstrate our framework in a straight-road environment. We consider the
uncertain dynamics of a small robot car modified from a 5D kinematic bicycle model as

ẋ = [ṗx, ṗy, v̇, ψ̇, δ̇] =
[
v cosψ + dx, v sinψ + dy, a+ dv,

v

L
tan δ + dψ, ω + dδ

]
, (14)

where (px, py) is the car’s position, v is the forward speed, ψ is the heading, δ is the steering angle,
L = 0.5 m is the wheelbase, a ∈ [−3.5, 3.5] m/s2 is the acceleration control, ω ∈ [−5, 5] rad/s
is the steering angular velocity control, d ∈ D := {d̃ ∈ R5 : ∥d̃∥∞ ≤ dmax}, and dmax is the dis-
turbance bound. The discrete-time dynamics from (14) are computed by fourth-order Runge-Kutta
(RK4) with time step 0.1 s and implemented in JAX (Bradbury et al., 2018). The footprint of the
car is represented by a box B = [0., 0.5] × [−0.1, 0.1] m, rotated by the car’s heading angle and
translated by its position: B(x) := RψB ⊕ {(px, py)}. We consider three constraints: heading
angle, road boundary, and obstacles. The safety margin function is defined as

g(x) = min {gψ(x), groad(x), gobs(x)} , gψ(x) =
π
2 − |ψ|,

groad(x) = min
p∈B(x)

0.6− |py|, gobs(x) = min
i∈[5]

min
p∈B(x)

sBi(p),

where sP : R2 → R is the signed distance function to a nonempty set P and Bi := B ⊕ {pi} are
box obstacles at different locations. A bird’s-eye view of the environment can be seen in Figure 2.

ISAACS and Baselines We initialize the control policy of ISAACS and SAC-DR by training a
standard SAC in the absence of a disturbance. Then, we initialize ISAACS’ disturbance policy by
training another SAC to attack the fixed initial control policy. The length of the rollout episode is 200
steps (20 seconds) for all RL algorithms. All policy networks have three fully-connected (FC) layers
with 256 neurons, and the critic networks have three FC layers with 128 neurons. This amounts to
69,634 parameters or 284 KB of storage. In SAC-DR we sample the disturbance uniformly from
the set D, while in ISAACS we sample it from the (stochastic) disturbance policy. Finally, we
use resolution-complete finite-difference methods (Bui et al., 2022) to solve the HJI equation (4)
numerically on a multi-dimensional grid, which we refer to as the “oracle” in this section. The
value function is represented as a grid with about 91 million scalar values, taking 0.7 GB.

8



ISAACS: ITERATIVE SOFT ADVERSARIAL ACTOR-CRITIC FOR SAFETY

Figure 2: Left: Comparison of safety controllers’ robustness to disturbances. As the disturbance
bound increases, controllers trained without disturbance or with DR rapidly degrade. The
ISAACS controller trained against the largest adversarial disturbance suffers the least
safety degradation, nearing the optimal (oracle) policy. Right: “Confusion plots” of val-
ues and rollout outcomes for 2-D slices of the state space, with v = 1, ψ = 0, δ = 0.03.
Top: learned safety critic can wrongly predict some rollout outcomes, leading to inaccu-
racies in the estimated safe set boundary. Middle: learned ISAACS safety policy achieves
near-optimal success but is occasionally suboptimal near the safe set boundary. Bottom:
direct policy rollout using the learned disturbance can lead to over-optimistic predictions.

Safety Filters We implement our robust rollout safety filter with a modified zonotope-based FRS
scheme (Bak, 2020)5. We also implement a direct rollout safety filter that checks gameplay trajec-
tories: ∆ro(xt, π

task, πd, H) := 1{xτ |t /∈ F ,∀τ ∈ {1, · · · , H + 1}}, where the zero disturbance
in (9) is replaced by disturbances from ISAACS πd = πdϕ or the oracle πd = πd∗. The safety filter
is constructed by replacing V (x) ≥ ϵ with ∆ro(x, π

task, πd, H) = 1 and πu∗(x) with πuθ (x) in (5).

Evaluation We evaluate 400 rollouts with initial states sampled uniformly from the state space
X = {x ∈ R5 | px∈ [0, 20], py∈ [−0.6, 0.6], v∈ [0.4, 2.0], ψ∈ [−0.5π, 0.5π], δ∈ [−0.35, 0.35]}.
We compute the safe rate as the fraction of trajectories that avoid the failure set for the full horizon.
To more closely benchmark the predictions and performance of ISAACS against the oracle solution,
we evaluate the critic and roll out the policies from each of the 91 million cells in the oracle’s grid.
To evaluate different safety filters, we use iterative LQR (Li and Todorov, 2004) as the task policy,
with a barrier penalty to discourage violations, and use the oracle disturbance policy with bound
dmax = 0.1 to attack the controller. We select 395 initial states from which the trained ISAACS
safety policy can maintain safety against oracle disturbance, but the task policy results in constraint
violations. In addition to the safe rate, we also compute the filter frequency, which is the fraction of
time steps at which the safety filter was triggered, averaged across all trajectories.

4.2. Results

Offline Adversarial RL We first evaluate the ISAACS controller’s robustness. Figure 2 (left)
shows the average safe rate of ISAACS and other safety policies under different disturbance bounds
over three random seeds with the shaded region for one standard deviation. ISAACS’ robustness
improves as the bound used in the training increases, indicating that the learned disturbance policy
approximates the worst-case uncertainty realization. Further, ISAACS outperforms single-agent RL

5. We use zonotopes since the computation of their Minkowski sum is light. We refer readers to (Althoff et al., 2021)
for other representations for FRSs.
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(even with DR) by a large margin. DR optimizes against the average among all possible disturbances
and is less robust to worst-case realizations. Finally, when trained with the highest disturbance
bound, ISAACS presents comparable robustness to the oracle safety policy.

Figure 2 (right) shows confusion matrix color plots of value and rollout predictions across 2-D
slices of the state space when v = 1, ψ = 0, δ = 0.03. The ISAACS critic (top plot) achieves
1.4% false-safe rate (red region), which is remarkable given that it uses over 1, 000× fewer param-
eters than the numerical HJI oracle. This contrasts with a more conservative 20.4% false-unsafe
rate (green region). When pitted against the oracle worst-case disturbance, the learned ISAACS
controller (middle plot) loses safety from 10.4% of true safe states, where the oracle controller suc-
ceeds. If we replace the oracle disturbance with the learned one (bottom plot), 12% of states where
the ISAACS controller fails in the true worst case are mispredicted as safe by the ISAACS gameplay
rollout. This fallibility motivates the use of a robust rollout of the learned ISAACS controller under
all d ∈ D rather than relying on a direct rollout of the ISAACS controller and disturbance.

Figure 3: Safe rate and conservativeness of different safety
filters. A robust rollout-based safety filter with
horizon H = 50 achieves zero-violation safety.

Online Robust Rollout Safety Filter
To account for linearization error, we
expand the disturbance bound in each
dimension by 5% for the purposes
of computing the zonotopic forward-
reachable set. Figure 3 shows the av-
erage safe rate and filter frequency
over three random seeds with shaded
regions for one standard deviation.
Our proposed robust rollout-based
safety filter achieves a perfect 100%
safety rate for a long enough looka-
head horizon (50 time steps), in contrast with the 99% safe rate obtained through a direct gameplay
rollout safety filter and the 94% obtained by naively filtering with the sign of the learned safety
critic. The value-based safety filter can be improved by introducing a small threshold ϵ = 0.05
to mitigate approximation errors, even achieving perfect (empirical) safety. Yet, the value-based
filter lacks theoretical guarantees, and its threshold needs manual tuning, difficult before real de-
ployment. Despite its lack of guarantees, the direct gameplay rollout filter performs remarkably
well, approaching the oracle in both safe rate and filter frequency. The robust rollout-based safety
filter has a more conservative activation frequency, similar to the one achieved by the manually
thresholded value-based safety filter. Importantly, the robust rollout filter provides strong, clear-cut
guarantees, which are of practical importance for the safe deployment of autonomous systems.

5. Conclusion

We propose ISAACS, an adversarial reinforcement learning method for offline safety policy synthe-
sis, whose learned policies can be used to build robust safety-certified control strategies at runtime.
We prove safety guarantees for an ISAACS-based safety filter using robust policy rollouts under
bounded uncertainty. We demonstrate experimentally that our proposed offline training has compa-
rable performance to numerical methods in a 5-D race car simulator, and the runtime safety filter
achieves a perfect zero-violation safe rate with moderate added conservativeness. These results open
a promising research avenue for scalable synthesis of robust safety strategies using neural networks.
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