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Abstract
Existing settings of decentralized learning either require players to have full information or the
system to have certain special structure that may be hard to check and hinder their applicability
to practical systems. To overcome this, we identify a structure that is simple to check for linear
dynamical system, where each player learns in a fully decentralized fashion to minimize its cost.
We first establish the existence of pure strategy Nash equilibria in the resulting noncooperative
game. We then conjecture that the Nash equilibrium is unique provided that the system satisfies
an additional requirement on its structure. We also introduce a decentralized mechanism based on
projected gradient descent to have agents learn the Nash equilibrium. Simulations on a 5-player
game validate our results.
Keywords: Decentralized control, multi-agent learning, Nash equilibrium, noncooperative game.

1. Introduction

Many real world systems are too large and complex for decisions to be made in a centralized
fashion. Instead, there are a multitude of decision makers (or players), interacting over a system,
each possessing limited knowledge and observations. Thus, the study of decentralized decision
making has been a topic of interest for several decades (see, e.g., Tsitsiklis (1984); Olfati-Saber
et al. (2007); and the references within). Recently, the advancement of machine learning in multi-
agent setting has attracted significant attention from the control and learning communities, which
gives rise to successful application of multi-agent decision learning across multiple fields, includ-
ing power system operations (Yang et al., 2018; Cui et al., 2022), traffic control (Bazzan, 2009),
communication networks (Han et al., 2012), and others (Li et al., 2022).

A foundational question in decentralized decision making and learning is whether the players
would reach some type of equilibria. One setting that has been extensively studied is that of linear
quadratic (LQ) games (Zhang et al., 2019; Mazumdar et al., 2020), which generalize the well-
known linear quadratic regulator (LQR) problems. Unlike LQR problems, which can be considered
to have a single agent (Fazel et al., 2018), LQ games have multiple players that interact over a
linear system and all try to minimize their individual regulation and control costs. This complexity
makes LQ games not enjoy guarantees of convergence to Nash equilibria, a property enjoyed by
the LQR problem with policy-gradient methods. Moreover, although a player is limited in its input
channels (Başar and Olsder, 1998; Engwerda, 2005; Li et al., 2022), it typically has full information
(access to the full state). This assumption of the availability of full information makes it difficult to
apply related results to many practical systems.
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For systems where the players are limited both in input and information, several properties
have been discovered to guarantee that good decentralized controllers can be found in a tractable
manner. These include quadratic invariance (Rotkowitz and Lall, 2002; Lessard and Lall, 2014),
spatial invariance (Bamieh et al., 2002), partially nestedness (Shah and Parrilo, 2013), and posi-
tiveness (Rantzer, 2015). These conditions, however, can be challenging to check in practice. In
addition, they often require the players to have nested information, which may not hold in practice.

It is important to note that some structure of the system is necessary for decentralized learning
to be analytically tractable. Even for linear systems, finding the optimal controllers is NP-hard in
general (Blondel and Tsitsiklis, 2000). Even if restricted to linear controllers, the feasible set of the
stabilizing controllers can have an exponential number of connected pieces (Feng and Lavaei, 2019),
and understanding the equilibria or convergence of the learned controllers becomes very difficult.

In this paper, we identify a new structure for a class of systems where the behavior of decen-
tralized learning can be explicitly characterized. In particular, we study a game over a linear and
symmetric dynamical system with each player being modeled as a part of the state, where the action
of the players is to choose a linear feedback control gain that minimizes quadratic costs on its own
state regulation and control effort. Notably, compared to existing LQ games in the literature (Fazel
et al., 2018; Zhang et al., 2019; Mazumdar et al., 2020), we adopt a fully decentralized setting, in
the sense that each player only knows its own information and takes an action directly affecting
its own state, which can be naturally characterized as a noncooperative game. This captures the
fact that, in many settings, the edge devices are becoming increasingly intelligent and capable of
making sophisticated decisions, but they still do not have access to regular real-time communication
with other devices. We show that there exists at least one pure strategy Nash Equilibrium in such a
noncooperative game by establishing that, in contrast to existing results, the stabilizing controllers
lie in a convex region and the cost functions are convex in the control gains. This, in turn, provides
a simple way for players to estimate the gradients of the cost functions in a completely decentral-
ized way and converge to the Nash equilibrium through gradient play. We conjecture that the pure
strategy Nash equilibria is in fact unique, where partial and numerical results for this conjecture are
provided.

The key property used in our analysis is the symmetry of the dynamical system. That is, the
state matrix is symmetric. This condition is distinct from existing ones and has the benefit that it is
simple to check. The symmetry of the system is satisfied by many practical systems. For example, in
power distribution systems with angle droop control (Zhang and Xie, 2016; Huang et al., 2020), the
system is always symmetric since the matrix comes from the Laplacian of the underlying network.

The rest of this paper is organized as follows. Section 2 formulates the decentralized learning
problem in a symmetric linear dynamical system as a n-player noncooperative game. Section 3
shows the existence of pure strategy Nash equilibria in such a game and further conjectures its
uniqueness under additional conditions on the system structure. Section 4 introduces a decentral-
ized learning mechanism based on projected gradient descent and discusses how to implement it.
Section 5 presents our conclusion and ideas for future work.

2. Problem Setup

We consider a networked system with n players (or agents), whose dynamics is given by

ẋ(t) = Ax(t) + u(t) , (1)
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where x(t) := (xi(t), i ∈ [n]) ∈ Rn is the state vector, u(t) := (ui(t), i ∈ [n]) ∈ Rn is the control
input, and A ∈ Rn×n is the state matrix.1 We make the following assumption:

Assumption 1 (Structure assumption) The state matrix A is symmetric and negative definite.

Remark 1 (Structure interpretations and extensions) The symmetry of the state matrix is key to
our developments since most of results in this paper critically rely on this assumption. The negative
definiteness can be relaxed as discussed later in Remark 2. Assumption 1 reflects the graph structure
of the system found in many applications. For example, in microgrid control (Huang et al., 2020;
Cui and Zhang, 2022), A is related to a Laplacian matrix that captures the active power flow. □

To model a fully decentralized setting, we assume that each controller ui can only depend on
the state of the ith player. Namely, each player chooses an action ki ∈

[
0, ki

]
, with ki > 0 being

some upper bound, such that the ith component of the control input is determined by

ui(t) = −kixi(t) . (2)

Let K := diag(ki, i ∈ [n]) ∈ Rn×n. Then the closed-loop system of (1) under (2) becomes

ẋ(t) = (A−K)x(t) . (3)

Remark 2 (Hurwitz closed-loop system matrix) Note that, with Assumption 1 on A and the re-
strictions that ki ≥ 0, the closed-loop system (3) is always stable since A−K ≺ 0. However, if A
is symmetric but not negative definite, the set of controller gains that make the closed-loop system
(3) stable is a convex set determined by A−K ≺ 0. In this case, it is easy to find a lower bound ki
such that A−K ≺ 0 if ki > ki, ∀i ∈ [n]. □

The goal of the ith player is to minimize its own expected cost Ji(ki, k−i) on state deviations
and control effort along the trajectories of the system (3), given the actions of other players k−i :=
{k1, . . . , ki−1, ki+1, . . . , kn}. Formally, we define the cost of the ith player as

Ji(ki, k−i) := E
[∫ ∞

0

(
x2i (t) + ρiu

2
i (t)

)
dt

]
, ∀i ∈ [n] , (4)

where ρi ≥ 0 is the coefficient for tradeoff between the two components (state deviation and control
effort). Note that the expectation E [·] is taken with respect to random initial conditions x(0), where
we make the common assumption (e.g., see Mendel and Gieseking (1971)) that E

[
x(0)x(0)T

]
=

In, that is, the components of x(0) are independent and identically distributed (i.i.d.).

Remark 3 (Infinite time-horizon) We take an infinite time-horizon in (4) for several reasons. First,
it makes the analysis cleaner and thus is adopted in many settings (e.g., see Fazel et al. (2018); Dean
et al. (2020); Bu et al. (2019); and references within). Second, for stable systems, finite trajectory
costs are well approximated by an infinite trajectory cost if the number of time steps in a trajectory
is not too small. Third, this cost is equivalent to the expected average cost in systems with persistent
white noise (Mendel and Gieseking, 1971; Kwon and Han, 2006; Weitenberg et al., 2019). □

1. Throughout the paper, vectors are denoted in bold lower case and matrices are denoted in bold upper case, while
scalars are unbolded.
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The setting above defines a noncooperative game, where each player has action space ki ∈
[0, ki] and cost Ji(ki, k−i). A pure strategy Nash equilibrium of the game is defined as an action
profile of the players where no single player i can obtain a lower cost by choosing a different
action, given that the actions of other players are fixed. That is, (k∗1, . . . , k

∗
n) is a pure strategy Nash

equilibrium if, ∀i ∈ [n], Ji(k∗i , k
∗
−i) ≤ Ji(k

′
i, k

∗
−i), ∀k′i ∈ [0, ki]. It is well known that not all games

have a pure strategy Nash equilibrium (Başar and Olsder, 1998), especially when the actions of the
players are not explicitly reflected in the cost functions (Marden and Shamma, 2015). We study in
Section 3 the existence of pure strategy Nash equilibria for this game and describe in Section 4 how
the players update their actions to find them.

3. Pure Strategy Nash Equilibria

In this section, we study the existence and uniqueness of pure strategy Nash equilibria for the
n-player noncooperative game introduced in Section 2.

3.1. Existence of Nash Equilibrium

Notice that each player has an action space
[
0, ki

]
that is a closed, bounded, and convex subset

of R. Therefore, based on the well-known result (Başar and Olsder, 1998, Theorem 4.3), in order
to show the existence of pure strategy Nash equilibria, it suffices to show that the cost function
Ji(ki, k−i) is jointly continuous in all its arguments and strictly convex in ki, for every k−i. In this
subsection, we proceed by presenting a sequence of results that eventually enable us to prove the
following main result.

Theorem 1 (Existence of pure strategy Nash equilibria) The n-player noncooperative game ad-
mits a pure strategy Nash equilibrium.

We start by investigating an explicit expression for the cost function Ji(ki, k−i). Clearly, ki
does not explicitly show up in the definition of Ji(ki, k−i) given in (4), which hinders our analysis.
The next result addresses this by providing an explicit expression of Ji(ki, k−i) in terms of ki.

Lemma 1 (Individual cost functions) The cost function of the ith player, ∀i ∈ [n], is given by

Ji(ki, k−i) =

(
1 + ρik

2
i

)
2

fi(ki, k−i) , with fi(ki, k−i) := eTi (K −A)−1 ei , (5)

where ei ∈ Rn is the ith standard basis vector.

Proof First, substituting (2) to (4) yields

Ji(ki, k−i) =
(
1 + ρik

2
i

)
E
[∫ ∞

0
x2i (t) dt

]
=

(
1 + ρik

2
i

)
E
[∫ ∞

0
x(t)Teie

T
i x(t) dt

]
, (6)

where the second equality uses xi(t) = eTi x(t). Note that x(t) in (6) still implicitly depends on ki.
Therefore, we need to get an explicit expression of x(t) in terms of ki to perform further analysis.

Since the solution to the closed-loop system (3) is x(t) = e(A−K)tx(0), (6) becomes:

Ji(ki, k−i)
1
=

(
1 + ρik

2
i

)
E
[∫ ∞

0
x(0)T e(A−K)teie

T
i e

(A−K)tx(0) dt

]
4
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=
(
1 + ρik

2
i

)
E
[
x(0)T

∫ ∞

0
e(A−K)teie

T
i e

(A−K)t dt x(0)

]
=
(
1 + ρik

2
i

)
E
[
tr

(
x(0)T

∫ ∞

0
e(A−K)teie

T
i e

(A−K)t dt x(0)

)]
2
=

(
1 + ρik

2
i

)
E
[
tr

(∫ ∞

0
e(A−K)teie

T
i e

(A−K)t dt x(0)x(0)T
)]

=
(
1 + ρik

2
i

)
tr

(∫ ∞

0
e(A−K)teie

T
i e

(A−K)t dt E
[
x(0)x(0)T

])
3
=

(
1 + ρik

2
i

)
tr

(∫ ∞

0
e(A−K)teie

T
i e

(A−K)t dt

)
4
=

(
1 + ρik

2
i

)
tr

(∫ ∞

0
eTi e

2(A−K)tei dt

)
=
(
1 + ρik

2
i

)
tr

(
eTi

∫ ∞

0
e2(A−K)t dtei

)
=

(
1 + ρik

2
i

)
eTi

∫ ∞

0
e2(A−K)t dt ei , (7)

where 1 uses the closed-loop solution, 2 and 4 use the cyclic property of the trace, and 3 uses
E
[
x(0)x(0)T

]
= In. Note that the integral

∫∞
0 e2(A−K)t dt is a common integral (see, e.g.,

Hespanha (2018)) given by ∫ ∞

0
e2(A−K)t dt =

(K−A)−1

2
. (8)

Therefore, substituting (8) into (7) yields (5).

Lemma 1 provides an explicit expression of the cost function Ji(ki, k−i) in terms of the ac-
tion ki. This allows us next to characterize the convex properties of the cost function.

Lemma 2 (Strict convexity of cost functions) The cost function Ji(ki, k−i), ∀i ∈ [n], is strictly
convex in ki for each k−i ∈

∏
j∈[n]\{i}

[
0, kj

]
.

Proof Note that the action space
[
0, ki

]
of each player is convex. By the second-order condition for

convexity (Boyd and Vandenberghe, 2004, Chapter 3.1.4), in order to establish the strict convexity
of Ji(ki, k−i) in ki, it suffices to show that

∂2Ji(ki, k−i)

∂k2i
> 0 , ∀i ∈ [n] . (9)

We start by taking the partial derivative of Ji(ki, k−i) with respect to ki. Direct calculations on (5)
show that

∂Ji(ki, k−i)

∂ki
= ρikifi(ki, k−i) +

(
1 + ρik

2
i

)
2

∂fi(ki, k−i)

∂ki
. (10)

Next, we take the partial derivative of (10) with respect to ki to obtain

∂2Ji(ki, k−i)

∂k2i
= ρifi(ki, k−i) + 2ρiki

∂fi(ki, k−i)

∂ki
+

(
1 + ρik

2
i

)
2

∂2fi(ki, k−i)

∂k2i
. (11)
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To obtain the partial derivative of fi(ki, k−i), we use (5) to get

∂fi(ki, k−i)

∂ki
= eTi

∂
[
(K −A)−1

]
∂ki

ei
1
= −eTi (K −A)−1 ∂ (K −A)

∂ki
(K −A)−1 ei

=− eTi (K −A)−1 eie
T
i (K −A)−1 ei

2
= −f2

i (ki, k−i) , (12)

where 1 uses the formula for the derivative of an inverse matrix (Petersen and Pedersen, 2012,
Chapter 2.2) and 2 uses the definition of fi(ki, k−i) in (5) twice. Further taking the partial deriva-
tive of (12) with respect to ki yields

∂2fi(ki, k−i)

∂k2i
= −2fi(ki, k−i)

∂fi(ki, k−i)

∂ki
= 2f3

i (ki, k−i) , (13)

where the second equality uses (12). Now, substituting (12) and (13) into (11) yields

∂2Ji(ki, k−i)

∂k2i
= ρifi(ki, k−i)− 2ρikif

2
i (ki, k−i) +

(
1 + ρik

2
i

)
f3
i (ki, k−i)

= fi(ki, k−i)
[
ρi (1− kifi(ki, k−i))

2 + f2
i (ki, k−i)

]
. (14)

Clearly, the sign of (14) only depends on the sign of fi(ki, k−i), since ρi ≥ 0 and the terms inside
the square brackets are squared. It follows from Remark 2 that (K −A)−1 ≻ 0, which further
implies that fi(ki, k−i) > 0 by its definition in (5). Hence, it follows directly from (14) that (9)
holds, concluding the proof of strict convexity.

We now have the core element required to establish the existence of pure strategy Nash equilibria
stated in Theorem 1.
Proof of Theorem 1. Recall that, by (Başar and Olsder, 1998, Theorem 4.3), since the action space[
0, ki

]
of each player is a closed, bounded, and convex subset of R, the n-player noncooperative

game in question admits a pure strategy Nash equilibrium if the cost function Ji(ki, k−i) is jointly
continuous in all its arguments and strictly convex in ki for every k−i. By Lemma 2, Ji(ki, k−i) is
strictly convex in ki for every k−i. Thus, it remains to show that Ji(ki, k−i) is jointly continuous
in all its arguments. This can be seen clearly when one notices that Ji(ki, k−i) in (5) is eventually
a quotient of two multivariable polynomial functions in kj , ∀j ∈ [n]. First, since the multivariable
polynomial functions can be considered as a sum of products of polynomial functions, their joint
continuity directly follows from the fact that polynomial functions are continuous everywhere and
a product or sum of continuous functions is continuous as well (Rudin, 2013, Theorem 4.9). Then,
a quotient of such two continuous functions is also continuous everywhere except perhaps at the
points which make the denominator zero (Rudin, 2013, Theorem 4.9). Yet, no such points exist in
the action space since K −A ≻ 0 by Remark 2. Hence, Ji(ki, k−i) is jointly continuous in all its
arguments, concluding the proof.

3.2. Uniqueness of Nash Equilibrium

Having shown the existence of pure strategy Nash Equilibria in the n-player noncooperative
game, here we analyze its uniqueness. A well-established condition to guarantee uniqueness is
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proposed by Rosen (Rosen, 1965, Theorem 6) and states that the game in question admits a unique
Nash equilibrium if, ∀k := (ki, i ∈ [n]) ∈

∏
i∈[n]

[
0, ki

]
,

G(k) +GT (k) ≻ 0 , (15)

where G(k) ∈ Rn×n is the Jacobian of the so-called pseudogradient defined as the stacked vector
of partial derivatives of the cost function Ji(ki, k−i) with respect to the action ki, i.e.,

g(k) :=

(
∂Ji(ki, k−i)

∂ki
, i ∈ [n]

)
∈ Rn and Gij(k) :=

∂gi(k)

∂kj
. (16)

In general, the condition (15) does not hold for the game in question. Yet, after performing extensive
numerical tests, we have found that, if the state matrix A is symmetric strictly diagonally dominant
with negative diagonal entries, (15) always holds. Thus, we formulate the conjecture below.

Conjecture 1 (Unique Nash equilibrium) If A is symmetric strictly diagonally dominant with
negative diagonal entries, then the n-player noncooperative game has a unique Nash equilibrium.

We prove the conjecture for the 2-player case. For simplicity, we assume ρ1 = ρ2 = 0.
Proof 2-players In this case, K −A can be parameterized as

K −A =

[
k1 − a11 −a12
−a12 k2 − a22

]
and (K −A)−1 =

1

ν

[
k2 − a22 a12

a12 k1 − a11

]
, (17)

with a11 < −|a12|, a22 < −|a12|, k1 ∈
[
0, k1

]
, k2 ∈

[
0, k2

]
, and ν := (k1 − a11) (k2 − a22)−a212.

Note that this parameterization ensures that

k1 − a11 > |a12| ≥ 0 and k2 − a22 > |a12| ≥ 0 . (18)

We next write the pseudogradient g(k) defined in (16). Observe from (10) and (12) in the proof of
Lemma 2 that, when ρi = 0, we have ∂Ji(ki, k−i)/∂ki = −f2

i (ki, k−i)/2, ∀i ∈ [n], which together
with the definition of fi(ki, k−i) in (5) and the expression of (K −A)−1 in (17) yields

g(k) = − 1

2ν2

[
(k2 − a22)

2

(k1 − a11)
2

]
. (19)

Through standard calculus, we can get

G(k) +GT (k) =
1

ν3

[
2 (k2 − a22)

3 a212 (k1 − a11 + k2 − a22)

a212 (k1 − a11 + k2 − a22) 2 (k1 − a11)
3

]
.

By Sylvester’s criterion, to show G(k) +GT (k) ≻ 0, it suffices to show

µ := 4 (k1 − a11)
3 (k2 − a22)

3 − a412 (k1 − a11 + k2 − a22)
2 > 0 , (20)

since ν > 0 and k2 − a22 > 0 due to (18). To see why (20) holds, we can expand µ as

µ = 4 (k1 − a11)
3 (k2 − a22)

3 − a412 (k1 − a11)
2 − a412 (k2 − a22)

2 − 2a412 (k1 − a11) (k2 − a22)

= (k1 − a11)
2
[
(k1 − a11) (k2 − a22)

3 − a412

]
+ (k2 − a22)

2
[
(k1 − a11)

3 (k2 − a22)− a412

]
+ 2 (k1 − a11) (k2 − a22)

[
(k1 − a11)

2 (k2 − a22)
2 − a412

]
> 0 ,

where the inequality is due to (18).

The proof of Conjecture 1 for the general n-player game is a direction of future research.
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4. Decentralized Learning of Nash Equilibrium via Projected Gradient Descent

In this section, we present a mechanism for the players to reach the Nash equilibrium of the
game. Since the goal of each player is to selfishly minimize its own cost Ji(ki, k−i) in (4), an
intuitive choice for each player as the game proceeds is to update its action ki by modifying it
in the direction where the cost Ji(ki, k−i) descends the fastest. More specifically, after a random
initialization of the action ki, denoted as k(0)i , such that k(0)i ∈

[
0, ki

]
, each player updates its action

k
(l)
i at the lth stage of the game along a projected direction of cost descent, i.e.,

k
(l)
i =

k(l−1)
i − ∂Ji(ki, k−i)

∂ki

∣∣∣∣∣
(k

(l−1)
i ,k

(l−1)
−i )

ki

0

, ∀l = 1, 2, . . . , (21)

where the projection [·]ba := min(max(·, a), b) ∈ [a, b] ensures that k(l)i ∈
[
0, ki

]
, ∀l = 1, 2, . . . . If

the Nash equilibrium is unique, then the gradient update converges to it (Rosen, 1965). Using the
results in (Ratliff et al., 2013), it is not hard to show that each of Nash equilibria are locally stable.
Hence if k is initialized close to an equilibrium, it would converge to it (we skip the details here
because of length constraints).

4.1. Implementation of the Action Updating Rule

To implement the action updating rule (21), each player has to compute the partial derivative of
its cost function Ji(ki, k−i) with respect to its action ki at the current stage. In general, this marginal
cost is not explicitly available. Here, we describe our approach to tackle this. The following result
provides an explicit expression of the partial derivative in terms of the cost itself.

Proposition 1 (Estimation of marginal cost) The marginal cost function of the ith player is

∂Ji(ki, k−i)

∂ki
=

2Ji(ki, k−i)

1 + ρik2i
(ρiki − Ji(ki, k−i)) , ∀i ∈ [n] . (22)

Proof We use the expressions of the partial derivatives of Ji(ki, k−i) and fi(ki, k−i) with respect
to ki in (10) and (12), respectively, to express the marginal cost in terms of ki and fi(ki, k−i).
Substituting (12) into (10) yields

∂Ji(ki, k−i)

∂ki
= ρikifi(ki, k−i)−

(
1 + ρik

2
i

)
2

f2
i (ki, k−i) . (23)

Now, by Lemma 1, we have

fi(ki, k−i) =
2Ji(ki, k−i)

1 + ρik2i
. (24)

Substituting (24) into (23), we get

∂Ji(ki, k−i)

∂ki
= ρiki

2Ji(ki, k−i)

1 + ρik2i
− 1 + ρik

2
i

2

(
2Ji(ki, k−i)

1 + ρik2i

)2

=
2Ji(ki, k−i)

1 + ρik2i
(ρiki − Ji(ki, k−i)) ,

concluding the proof.
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Proposition 1 indicates that the marginal cost for a given action ki is computable through (22)
as long as each player knows the values of its own cost Ji(ki, k−i) for that action at the current
stage. A way to do this becomes clear when recalling the original definition of Ji(ki, k−i) in (4)
as a selfish expected cost-to-go on state deviations and control efforts over an infinite time-horizon.
It readily follows that each player can estimate Ji(ki, k−i) by averaging its own cost-to-go along a
batch of sampled trajectories over a finite time-horizon. Specifically, ∀l = 1, 2, . . . , at the lth stage
of the game, each player can estimate Ji(k

(l−1)
i , k

(l−1)
−i ) via

Ji(k
(l−1)
i , k

(l−1)
−i ) ≈ 1

|B|

|B|∑
b=1

[∫ Ts

0

(
x2i (t) + ρiu

2
i (t)

)
dt

]⟨b⟩∣∣∣∣∣
(k

(l−1)
i ,k

(l−1)
−i )

, ∀i ∈ [n] , (25)

where |B| is the batch size, Ts is the sampling time-horizon, and, with an abuse of notation, we
simply introduce a superscript ⟨b⟩ to denote the cost along the bth trajectory in the batch rather
than accurately distinguishing xi(t) and ui(t) along different trajectories to avoid complicating the
notation. As |B| → ∞, the error in using (25) goes to zero (law of large numbers). The rate can be
bounded if we assume more information on the distribution of x(0). For example, if it has bounded
moments, then the error in gradient estimate goes to zero exponentially fast (Van der Vaart, 2000).

Note that all trajectories in (25) are generated by the system (1) given that control input from
each player is ui(t) = −k

(l−1)
i xi(t), with the initial condition x(0) being randomly drawn from n

uniform i.i.d. on (−
√
12/2,

√
12/2) that have 0 as mean and 1 as variance such that the assumption

E
[
x(0)x(0)T

]
= In holds. Once Ji(k

(l−1)
i , k

(l−1)
−i ) has been estimated by (25), the marginal cost

can be calculated through (22) as

∂Ji(ki, k−i)

∂ki

∣∣∣∣∣
(k

(l−1)
i ,k

(l−1)
−i )

=
2Ji(k

(l−1)
i , k

(l−1)
−i )

1 + ρi

(
k
(l−1)
i

)2

(
ρik

(l−1)
i − Ji(k

(l−1)
i , k

(l−1)
−i )

)
. (26)

Equipped with this, each player can update its action k
(l)
i at the lth stage via (21).

Remark 4 (Decentralized action update) The implementation of the action updating rule (21)
through (25) and (26) is a repeated procedure that includes two phases in each stage, where in the
first phase each player collects its own trajectories to evaluate (25) and (26) for the given actions,
and in the second phase all players execute (21). This procedure is decentralized in the sense that
each player only needs to estimate its own marginal cost by observing its own sampled trajectories,
without knowing the actions of its opponents, although the evolution of the trajectories depends on
the actions taken by all players. □

4.2. Experiments of the Action Updating Rule in Noncooperative Game

With the implementation of the action updating rule (21) being made explicit, we test its per-
formance in the noncooperative game. For a test involving 5 players, we randomly generate a
symmetric strictly diagonally dominant matrix A ∈ R5×5 with negative diagonal entries as

A =


−0.0342 −0.0111 0.0095 −0.0012 0.0118
−0.0111 −0.0627 0.0098 0.0155 0.0254
0.0095 0.0098 −0.0341 −0.0065 −0.0081

−0.0012 0.0155 −0.0065 −0.0323 −0.0081
0.0118 0.0254 −0.0081 −0.0081 −0.1086

 .
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Figure 1: Evolution of individual actions (left), costs (center), and gradients (right) under the up-
dating rule (21) with different initializations. The trajectories for different initializations
are distinguished by solid and dashed lines.

Table 1: Comparison Between Two Rounds of the Game

Action
Player

1 2 3 4 5

k
(0)
i

Round 1 0.69 4.41 3.69 2.39 4.24

Round 2 1.15 0.53 2.82 1.59 0.54

k
(250)
i

Round 1 1.31 1.89 1.46 3.85 1.03

Round 2 1.29 1.88 1.49 3.85 1.03

The tradeoff coefficient ρi of each player is also generated randomly from (0, 1) as: ρ1 = 0.5542,
ρ2 = 0.2642, ρ3 = 0.4526, ρ4 = 0.0664, and ρ5 = 0.7990. As the game kicks off, each player
randomly initializes a positive action k

(0)
i and updates its action k

(l)
i , ∀l = 1, 2, . . . , based on (21)

with batch size |B| = 500 and sampling time-horizon Ts = 200 s. The upper bound ki on action
is set to be sufficiently large such that it is never activated. Fig. 1 plots the evolution of individual
actions, costs, and gradients in two different rounds of the aforementioned game, which shows that,
although each player initializes its action differently, the same equilibrium is always reached where
individual gradients all converge to zero. Table 1 confirms this observation by showing numerically
that the final actions k(250)i of each player are practically the same while their initial values k(0)i are
different in each round.

5. Conclusions and Outlook

We have formulated a fully decentralized learning problem for a symmetric linear dynamical
system as a noncooperative game. We have shown the existence of pure strategy Nash equilibrium
and conjectured its uniqueness under additional conditions on the state matrix. We have used pro-
jected gradient descent to have agents learn, in a fully decentralized way, the Nash equilibrium.
Simulations in a 5-player game confirm our conjecture on the uniqueness of Nash equilibrium. Fu-
ture work will explore the uniqueness of Nash equilibria in the general case, the analysis of the
noncooperative game when the distribution of the initial states is not white, the formal character-
ization of the robustness of the proposed action updating rule, and the extension of the results to
time-varying topologies.
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