
Proceedings of Machine Learning Research vol 211:1–13, 2023 5th Annual Conference on Learning for Dynamics and Control

Learning Locomotion Skills from MPC in Sensor Space

Majid Khadiv MKHADIV@TUEBINGEN.MPG.DE
Max-Planck Institute for Intelligent Systems, Tübingen, Germany

Avadesh Meduri AM9789@NYU.EDU
Tandon School of Engineering, New York University, USA

Huaijiang Zhu HZHU@NYU.EDU
Tandon School of Engineering, New York University, USA

Ludovic Righetti LUDOVIC.RIGHETTI@NYU.EDU
Tandon School of Engineering, New York University, USA

Bernhard Schölkopf BS@TUEBINGEN.MPG.DE

Max-Planck Institute for Intelligent Systems, Tübingen, Germany

Editors: N. Matni, M. Morari, G. J. Pappas

Abstract
Nonlinear model predictive control (NMPC) is one the most powerful tools for generating control
policies for legged locomotion. However, the large computation load required for solving optimal
control problem at each control cycle hinders its use for embedded control of legged robots. Fur-
thermore, the need for a high-quality state estimation module makes the application of NMPC in
real world very challenging, especially for highly agile maneuvers. In this paper, we propose to
use NMPC as an expert and learn control policies directly from proprioceptive sensory measure-
ments. We perform an extensive set of simulations on the quadruped robot Solo12 and show that
it is possible to learn different gaits using only proprioceptive sensory information and without any
camera or lidar which are normally used to avoid drift in state estimation. Interestingly, our sim-
ulation results show that with the same structure of the function approximators, learning estimator
and control policy separately outperforms end-to-end learning of dynamic gaits such as jump and
bound. A summary of simulation experiments can be found here.
Keywords: Agile locomotion, Control in sensor space, learning from MPC.

1. Introduction

Nonlinear model predictive control (NMPC) has recently shown great promise in generating agile
and robust locomotion skills Mastalli et al. (2022); Grandia et al. (2022); Meduri et al. (2023).
In this paradigm, an optimal control problem is solved at each control cycle, using the current
estimate of the states, to generate optimal control actions. Performing this online generation of
optimal policies comes at the cost of three main issues; 1) the online computation burden is very
large which makes it impractical for embedded systems, 2) the non-convexity of the underlying
optimization problem makes it always possible that the solutions converge to a poor local minima
which can be catastrophic on real hardware, 3) there is a need for a high-quality state estimation
module to provide drift-free estimate of the states. To circumvent these three main issues, in this
paper we aim at using NMPC as an expert and learning the optimal control policy directly from
proprioceptive sensory measurements.

© 2023 M. Khadiv, A. Meduri, H. Zhu, L. Righetti & B. Schölkopf.

https://www.youtube.com/watch?v=v_1tUgI24Jo

LEARNING LOCOMOTION SKILLS IN SENSOR SPACE

Thanks to the recent success in the use of reinforcement learning (RL) for controlling legged
robots in the real world Hwangbo et al. (2019); Xie et al. (2020), the past few years have witnessed
an explosion of the use of reinforcement learning for generating robust locomotion policies for
legged robots Siekmann et al. (2021); Li et al. (2021); Bogdanovic et al. (2022); Aractingi et al.
(2022). While earlier works relied on an extra state estimation module to provide the control pol-
icy with the states, the latest works have achieved impressive results with learning control policies
directly from sensory measurements Lee et al. (2020); Miki et al. (2022); Agarwal et al. (2022). In
these approaches, first a teacher policy is trained through RL using privileged information in the
simulation. Then a student policy is trained in a supervised fashion to mimic the latent space and
action of the teacher policy, relying only on a short history of the sensory measurements. However,
learning the teacher policy through reinforcement learning is highly time-consuming and without
making the policy output high-level abstract parameters such as stepping frequencies and foot posi-
tion residuals, these approaches need heavy reward shaping for each single task. This paper aims at
mainly replacing the training of the teacher policy with a more efficient approach which is imitation
learning from NMPC. The other difference of the presented work compared to those teacher-student
approaches is that our latent space is a set of interpretable physical states of the system.

Learning from NMPC and from sensory information has been done in Levine et al. (2016)
for manipulation. The main observation space in that work is vision and it is assumed that the
objects to be manipulated are fully observed, hence the system is fully observable. This is different
from the locomotion problem where the base position is not directly observable and need to be
inferred from noisy IMU measurements (base linear acceleration and angular velocity) and joint
encoder measurements. This is especially an issue when the robot has flight phase and experience
intermittent impacts with the environment. Most recent works that implemented these types of agile
locomotion behaviours on real robots fused proprioceptive measurements with camera or lidar to
avoid issues state estimation drift Mastalli et al. (2022); Dhédin et al. (2022). In this paper, we aim
at learning these skills by relying only on proprioceptive measurements.

Recently, Carius et al. (2020); Viereck et al. (2022) learned locomotion skills using demonstra-
tions from NMPC. Both approaches tried to keep the structure of the optimal control problem in
the form of learning control Hamiltonian and value function, respectively. However, this will add
a computation burden in the execution time to compute the actions from the learned components.
Compared to these approaches, in this work we would like to minimize the computation at run-time,
hence we investigate if it is feasible to learn a policy to output values that can be transferred to ac-
tion with minimum computation at run-time. Another difference of our work with respect to Carius
et al. (2020); Viereck et al. (2022) is that we learn different locomotion skills in the sensor space.

The main contributions of the paper are as follows:

• We show that it is possible to learn locomotion policies from NMPC without keeping any
structure of the optimal control problem and learn a wide range of gaits for a quadruped.

• We compare different formulations of action space and show that the policy that outputs set
points for a fixed PD controller outperforms other formulations including torque policy.

• We show that it is possible to learn highly dynamic gaits (jump and bound) with only pro-
prioceptive sensory measurements, i.e. IMU and joint encoders. This is in contrast with the
state-of-the-art NMPC implementations that need camera or lidar to have drift-free pose esti-
mates of the robot base (mainly height), which is crucial for the success of the controller in
dynamic locomotion tasks.

2

LEARNING LOCOMOTION SKILLS IN SENSOR SPACE

• We show that with the same structure of the neural networks, learning an estimator that ex-
plicitly infers the physical system states from sensor measurements and using those as the
policy input outperforms learning an end-to-end policy mapping from the sensor space to the
action space.

2. Nonlinear model predictive control

In this section, we briefly explain the NMPC formulation Meduri et al. (2023) we use in this paper
as our expert. For a given fixed gait, a desired reference motion velocity, and time of each phase,
a contact plan is automatically generated which specifies the location of the robot end-effectors at
each point in time. Our NMPC decomposes the whole body trajectory generation problem into a
kinematic and dynamic optimizer. In this setting, given a contact plan, the dynamic optimizer takes
into account the centroidal momentum dynamics and constructs a finite-horizon optimal control
problem to find a feasible set of contact forces and centroidal trajectories for the given contact plan

min.
Xt,Ft

T−1∑

t=0

ϕt(Xt,Ft) + ϕT (XT ,FT) (1a)

s.t. ct+1 = ct + ċt∆t (1b)

ċt+1 = ċt +

N∑

j=1

nj
t

fjt
m
∆t+ g∆t (1c)

kt+1 = kt +
N∑

j=1

nj
t ((p

j
t − ct)× f jt)∆t (1d)

∀t,j ,
√

(fjt,x)2 + (fjt,y)2 ≤ µfjt,z , fjt,z ≥ 0 (1e)

∀t,j , pj
tϵΨ, ∀ct ∈ Ω, c0, ċ0 = cinit, ċinit (1f)

where c represents the center of mass CoM location, k is the angular momentum around the CoM,
m is the robot mass, g is the gravity vector, nj is a binary integer that describes whether the end-
effector j is in contact, fj ,pj are the end-effector force and location respectively (assuming point-
contact end-effectors). ϕt(Xt,Ft) is the running cost, ϕT (XT ,FT) is the terminal cost, and Xt =
{ct, ċt,kt . . . }, Ft = {f jt,x, f jt,y, f jt,z . . . }. Furthermore, ∆t is the time discretization, µ is the friction
coefficient, Ψ is the set of all allowed stepping locations, Ω are kinematic constraint s written as
bounds on the CoM position, cinit, ċinit are the initial conditions for the CoM.

While (1d) is nonlinear and makes the whole optimization problem non-convex, our solver
Meduri et al. (2023) takes the bi-convex structure of the problem and solves it efficiently using
alternating direction method of multipliers (ADMM). Also the second order cone constraint in (1e)
is handled using a first order solver based on proximal operators Meduri et al. (2023). To track these
momentum trajectories, while penalizing contact constraints, we solve a whole-body kinematic
optimal control problem using DDP and solve it using the Crocoddyl Mastalli et al. (2020) to output

3

LEARNING LOCOMOTION SKILLS IN SENSOR SPACE

the desired whole-body trajectories. We formulate the problem as

min.
q,v,v̇

T∑

t=0

Φmom
t (l∗t ,k

∗
t) + ΦCoM

t (c∗t) + Φeff
t (qt,vt) + ||v̇||

s.t. qt+1 = qt ⊕ vt ∆t, vt+1 = vt + v̇t ∆t (2)

where, Φmom
t (l∗t ,k

∗
t) is a momentum cost that tracks the optimal linear and angular momentum

computed by the centroidal OCP (1), ΦCoM
t (c∗t) is the center of mass tracking cost with the optimal

CoM trajectory (c∗t) obtained from the centroidal OCP, Φeff
t (qt,vt) is the end-effector locations

and velocity cost, and ||v̇|| is a penalty on the control. Finally, ⊕ stands for summation of SE (3)
objects.

The kinematic and dynamic optimizers re-compute trajectories at 20 Hz and the joint torques
are computed at 1 kHz and are sent to the robot. The contact forces from the dynamics optimizer
and whole-body joint trajectories from kinematic optimizer are then used to compute feedforward
torques (τ ff) using full dynamics of the system. Finally, a low-impedance controller is added to the
feedforward torques of each joint to account for model errors and uncertainties

τt = τ fft + kp(q
d
t − qt) + kv(v

d
t − vt)︸ ︷︷ ︸

τfbt

(3)

where kp and kv are the position and velocity tracking gains for each joint which are fixed. The
superscript d stands for the desired trajectory that comes from the kinematic optimizer (2).

3. Learning

In this work, we consider the simplest form of imitation learning, i.e., behavioral cloning which
casts the learning problem from experts demonstrations as a supervised learning problem Pomerleau
(1988). Basically, we ignore the fact that the samples are generated from a Markov decision process
(MDP) and are not independently and identically distributed (i.i.d.). While this can be problematic
for some domains and urged the use of interactive demonstrations Ross et al. (2011); Levine and
Koltun (2013) or offline reinforcement learning without on-policy interactions Ernst et al. (2005);
Lange et al. (2012); Levine et al. (2020), for the locomotion gaits we considered in this paper and the
choice of action and state space we did not find a need for those algorithms. Hence for the learning
problem, we first generate datasets offline for different gaits and solve a supervised learning problem
to train control policies.

3.1. Policy structure

The ultimate goal in controlling a robot is to find a policy that maps sensor measurements to joint
torques. While our expert NMPC needs access to the states of the robot to compute actions (the
dynamics model needs access to the states), this is not the case when we learn the control policy
from it. To learn actions from sensor measurements, we consider two different approaches. In the
first approach, we learn two separate networks, one mapping measurements to states and the other
mapping states to actions. The second approach directly maps measurements to actions without a
need to encode measurements first to intermediate states (see Fig. 1).

4

LEARNING LOCOMOTION SKILLS IN SENSOR SPACE

Figure 1: Two different structures to learn control policies from sensor measurements. The first
approach is to learn an estimator (Estimator network) that maps measurements to states
and a policy (Policy network) to map states to the actions. The second approach is to map
directly measurements to actions (End-to-end network).

To compare these two approaches, we train an estimator network and use it together with a
separate trained policy network, and one end-to-end network that directly maps measurements to
actions (see Fig. 1). To make the comparison more meaningful, we consider the same number
of layers and neurons for the separate (estimator and policy) and end-to-end networks. We also
consider the same number of latent variables of the end-to-end network as the output of the estimator
network (which is input to the policy network).

3.2. Action space

To minimize the run-time computation, we limit our analysis to the case where the output of the
learned policy can be directly (or with a simple mapping) applied to the robot. In particular, we
do not consider those approaches that learn some components of the optimal control problem and
necessitate solving a smaller optimal control problem at run-time Carius et al. (2020); Viereck et al.
(2022). We thus consider three different action spaces: the first and most intuitive one is the joint
torques computed from (3) (called torque policy) Levine et al. (2016). The second action space is
a structured one where the policy outputs τ ff , qd, and vd at each time (called structured policy).
These values are then used to compute the torque applied to the joints at run-time using (3). The
third action space we consider is the desired set point for a fixed gain PD controller (called PD
policy)

τt = kp(q
d
t+1 − qt)− kvvt (4)

Here, qdt+1 sets a desired goal position for the joints to reach in the next time step. This value cannot
be queried as a by-product of the NMPC problem. However, given the measured joint position and
velocity and the applied torque at each time, the desired joint target is computed using

qdt+1 = qt + (τt + kvvt)/kp (5)

It is important to mention that, as opposed to the structured policy, the PD policy does not try to
track a desired planned trajectory. Instead, it sets a position goal at each cycle to be achieved by
the controller, together with a damping term. This action space is also used widely in reinforcement
learning for locomotion Peng and van de Panne (2017); Hwangbo et al. (2019); Bogdanovic et al.
(2022) and has been shown to be beneficial for sim-to-real transfer Bogdanovic et al. (2020).

5

LEARNING LOCOMOTION SKILLS IN SENSOR SPACE

3.3. State space

The complete state space includes the base and joints position and velocity. However, as the lo-
comotion skills are cyclic on unconstrained environment, we remove the base absolute horizontal
position from the state space. Instead, we add the position of all the feet with respect to the base in
horizontal directions to the state space. With this and without adding any information about contact
to the state space, we let the network figure out those information on its own. We also found it
crucial to add a phase variable (a scalar between zero and one) as input to the network. This phase
variable, starts with zero at the start of the gait cycle and increases with time until the end of the
cycle that reaches one. This phase variable encodes the cycling nature of the gaits.

3.4. Measurement space

We limit our measurement space to only the propriceptive sensors on the robot, without any camera,
lidar or external motion capture system. This includes IMU measurements (linear acceleration and
angular velocity) as well as the joint encoder measurements. Since this sensor space does not
provide us with the position (mainly height) and orientation of the robot base, the states of the
system are not directly observed from the measurements. We add realistic noise (based on the noise
characteristics of the sensors) in the simulation when collecting data.

3.5. Data collection

To collect a diverse dataset for the learning problem, we need to initialize the robot from a distri-
bution of initial conditions and then run the NMPC to collect data. We sample the initial condition
around a nominal trajectory of the robot for the given gait. To make sure that the perturbed trajec-
tory is consistent with the contact plan of the gait, we project the perturbations in the nullspace of
the contact constraints as follows

[
δqc

δvc

]
=

(
I −A†

cAc

)[
δq
δv

]
(6)

where δqc and δvc are the generalized coordinate and velocity perturbations that are consistent
with the contact constraints. I stands for the identity matrix and the superscript † stands for
pseudoinverse. The unconstrained perturbations are sampled from a Gaussian distribution, i. e.,
δq , δv ∼ N (µ, σ2). The null-space projection matrix Ac is defined as

Ac =

[
Jc 0

J̇c Jc

]
(7)

where Jc is the concatenation of Jacobians of the feet in contact. The constrained perturbation is
added to the trajectory at the current time, i. e., q⊕ δqc and v+ δvc. The NMPC is then rolled out
from this initial condition in the simulation environment. If the rollout is successful and the robot
does not fall down, we add the samples to the dataset. Otherwise, we simply ignore all the samples
of the rollout. The whole procedure of training the policies are summarized in Algorithm 1.

4. Results

We present our results for three different gaits (trot, jump, and bound) in simulation for the Solo12
quadruped robot Grimminger et al. (2020). We aim to answer three main questions. Which one of

6

LEARNING LOCOMOTION SKILLS IN SENSOR SPACE

Algorithm 1 Learning from NMPC

Given nominal trajectory

[
qnom

vnom

]
, number of rollouts N , failed states Sfailed.

for i = 1, ..., N do
δq, δv,∼ N (0, σ2) ▷ sample random perturbations[
δqc

δvc

]
=

(
I −A†

cAc

) [δq
δv

]
▷ contact-consistent perturbations

s0 =

[
qnom

vnom

]
+

[
δqc

δvc

]
▷ construct initial configuration

for t = 0, ..., T do
st+1 = fsim(st,ut) ▷ Roll out MPC in simulation
if st+1 ∈ Sfailed then ▷ Stop simulation if the robot fails

return infeasible and break (end inner for loop)

end if
Di

sa ← {st,ut}, Di
so ← {st,ot}, Di

oa ← {ot,ut} ▷ Add samples
end for
if feasible then ▷ Add feasible rollouts to the final dataset
Dsa ← Di

sa, Dso ← Di
so, Doa ← Di

oa

end if
end for
if state-policy then ▷ Perform supervised learning on each dataset

πθ = argmaxπθ
EDsa [log πθ(a|s)]

else if estimator then
Pϕ = argmaxPϕ

EDso
[logPϕ(s|o)]

else if end-to-end then
π′
θ = argmaxπ′

θ
EDoa

[log π′
θ(a|o)]

end if

1

the action spaces in Section 3.2 work better for learning the controller? Can we learn a wide range of
dynamic locomotion skills using only proprioceptive sensor measurements? How does end-to-end
learning of locomotion skills compare with learning the estimator and the policy separately?

We collect data for learning using the procedure presented in Section 3.5 and use Pybullet for
the simulation environment Coumans and Bai (2016). At each re-planning time of the NMPC, we
perturb the robot around its nominal state and roll out the NMPC in simulation. This provided us
with 264,450 samples for trot, 266,350 samples for jump, and 220,500 samples for bound. We note
that this number of samples is at least one order of magnitude less than the number of samples
acquired by a reinforcement algorithm to learn these gaits Bogdanovic et al. (2022). We used these
samples for all the presented results in the paper.

For all the gaits, We use a three layer neural network with 256 neurons for the policy and a two
layer network with 256 neurons for the estimator. We use Adam as the optimizer for training the
network. All the layers are batch normalized and we use L1 loss for training both the controller and
the estimator. We considered a batch size of 64 samples and 500 epochs for all the training. All the
simulations are done on a NVIDIA GeForce RTX 3050 Ti Laptop with Intel® Core™ i7-11800H
@ 2.30GHz × 16 processor, and 31.1 GiB memory.

4.1. Choice of action space

We consider three different action spaces we presented in Section 3.2, i.e., torque, structured, and
PD. To compare different action spaces, we test the three gaits giving the learned policy access to
the ground truth states from the simulation. While the torque policy can complete the trot gait, for

7

LEARNING LOCOMOTION SKILLS IN SENSOR SPACE

Figure 2: Velocity tracking performance analysis for different action spaces. While both structured
and PD policies are able to closely replicate the MPC behaviour, the tracking performance
of the structured policy degrades drastically for jump and bound.

both the jump and bound gaits which are more dynamic, it fails to achieve the desired behaviour
and the robot falls down a few moments after starting the gait (see the video). On the other hand,
both the PD and structured policies are able to control the robot for jump and bound for all the
gaits. However, as can be seen in Fig. 2 and the video, the structured policy has more undesired
oscillations especially for bound. As, we will show in the next subsection, these oscillations cause
instability when state estimation error is introduced.

To understand why the the PD policy outperforms the other two action spaces, we plot the test
loss of the three policies in Fig. 3. The structure of the neural networks for all the policies are the
same and they are trained with the same optimizer and loss terms. Furthermore, we have normalized
the outputs of the networks to make the comparison more meaningful. Interestingly, we can see that
even if the torque policy reaches lower test loss for jump, the policy fails to admit a stable gait. This
rules out the hypothesis that torque has a more complex function to learn compared to the other
action spaces such as PD. We believe the main reason that the PD policy outperforms the torque
policy is that it is more robust to the function approximation error. In other words, an error in the
set-point position of the PD controller causes less harm to the final performance of the system than
the same error in joint torque. This also means that the structured policy is a valid action space
and the main reason it functions slightly worst than PD action in practice is that it causes more
approximation error per joint due to its larger number of policy outputs.

8

https://youtu.be/v_1tUgI24Jo?t=6
https://youtu.be/v_1tUgI24Jo?t=6

LEARNING LOCOMOTION SKILLS IN SENSOR SPACE

Figure 3: Test loss of training policies with the same structure of the neural networks.

4.2. Learning from sensor measurements

Classically, NMPC is used with a model-based filter such as extended Kalman filter (EKF) Bloesch
et al. (2013); Camurri et al. (2020). However, without the use of camera or lidar, the base position
and yaw angle of the robot base drift quickly. While for locomotion on flat terrain the horizontal
position and yaw angle are not required for control, the base height is very important for control
of dynamic motions such as jump and bound. In such cases, it becomes necessary to fuse the
proprioceptive measurements with camera or lidar in standard state estimation settings Mastalli
et al. (2020); Dhédin et al. (2022). In this subsection, we investigate on the question if it is possible
to learn dynamic gaits such as jump and bound with only proprioceptive measurements, i.e., base
IMU and joint encoders.

To learn locomotion skills from proprioceptive measurements, we learned a separate estimators
for each gait that uses only IMU and encoder measurements and output the states required for the
policy. Then we used the same estimator for the three considered action spaces. With the error
of the torque policy fails to generate stable motions for all the gaits. Structured policy is able to
produce stable trot and jump policy, but it fails to generate stable bound. However, PD policy is
able to stabilize all the gaits in the presence of state estimation error (see the video). Not only are
all the gaits stable, but they are also robust to different types of disturbances. Figure 4 illustrated
the maximum amount of impulse in different directions that the robot could recover from.

In terms of computation time, the learned policy takes on average 0.5 ms to compute the actions
from the estimated state, while the NMPC takes around 35 ms to recompute the whole body trajec-
tory. While the effect of this computation time for NMPC on the real hardware can be mitigated
by evaluating trajectories from the point in time that they are available Meduri et al. (2023), on an
embedded system with very small computing budget this delay will be extremely larger which can
degrade drastically the performance of the NMPC. However, with the learned policy not only the
computation budget will not be a problem on the real hardware, but we also do not need to have
computationally very intensive state estimators that fuse camera or lidar with the properioceptive
sensors Mastalli et al. (2020); Dhédin et al. (2022) to provide drift-free estimate of the base states.

9

https://youtu.be/v_1tUgI24Jo?t=63

LEARNING LOCOMOTION SKILLS IN SENSOR SPACE

Figure 4: Push recovery performance of the learned policy together with estimator. The values are
the maximum impulse (N.s) in each direction that the robot could recover from.

4.3. End-to-end learning

An alternative to learning the estimator and policy separately is to learn a single end-to-end policy
that maps directly measurements to actions. To make the comparison more meaningful, we consid-
ered the structure of the network to have exactly the same as the estimator and policy in the previous
section. Basically, we consider the size of the latent space of this end-to-end network the same as
the size of the state space. The number of hidden layers and neurons before and after the latent layer
are the same as the ones of the estimator and state policy, respectively. While with the end-to-end
structure we were able to learn the trot motion, both the jump and bound motions failed (see the
video). Interestingly, Ji et al. (2022) have made a similar observation for trot gaits learned through
reinforcement learning. They showed that, for their problem, training an estimator that explicitly
outputs some physical states of the system performs better than an end-to-end framework with in-
ferred latent representation. While no concrete conclusion can be made based on these observations,
it would be very interesting to systematically study this problem.

5. Conclusions

In this paper, we investigated the problem of learning agile locomotion skills in sensor space using
NMPC as expert. We have shown that it is possible to learn a variety of agile gaits (trot, jump,
and bound) using simple supervised learning without any need to interactive demonstrations from
expert. Furthermore, we have shown that having the policy directly output joint torques fails to gen-
erate dynamic motions such as jump and bound. However, by adding a notion of joint position and
velocity feedback in the policy, we can learn those gaits without any need to keep the structure of the
optimal control problem. Furthermore, we have shown that it is possible to learn agile locomotion
skills using only propriceptive measurements. Finally, we have shown that with the same neural
network structure, learning the estimator and state policy separately outperform learning directly
from sensor measurements.

In the future, we are planning to implement the gaits on the real robot. Furthermore, we are
interested in combining the imitation learning problem from MPC with reinforcement such that we
can improve the performance of the learned policy.

10

https://youtu.be/v_1tUgI24Jo?t=78

LEARNING LOCOMOTION SKILLS IN SENSOR SPACE

Acknowledgement

This work was supported by the Max Planck Institute for Intelligent Systems.

References

Ananye Agarwal, Ashish Kumar, Jitendra Malik, and Deepak Pathak. Legged locomotion in chal-
lenging terrains using egocentric vision. arXiv preprint arXiv:2211.07638, 2022.

Michel Aractingi, Pierre-Alexandre Léziart, Thomas Flayols, Julien Perez, Tomi Silander, and
Philippe Souères. Controlling the solo12 quadruped robot with deep reinforcement learning.
2022.

Michael Bloesch, Marco Hutter, Mark A Hoepflinger, Stefan Leutenegger, Christian Gehring,
C David Remy, and Roland Siegwart. State estimation for legged robots-consistent fusion of
leg kinematics and imu. Robotics, 17:17–24, 2013.

Miroslav Bogdanovic, Majid Khadiv, and Ludovic Righetti. Learning variable impedance control
for contact sensitive tasks. IEEE Robotics and Automation Letters, 5(4):6129–6136, 2020.

Miroslav Bogdanovic, Majid Khadiv, and Ludovic Righetti. Model-free reinforcement learning for
robust locomotion using demonstrations from trajectory optimization. Frontiers in Robotics and
AI, 9, 2022.

Marco Camurri, Milad Ramezani, Simona Nobili, and Maurice Fallon. Pronto: A multi-sensor state
estimator for legged robots in real-world scenarios. Frontiers in Robotics and AI, 7:68, 2020.

Jan Carius, Farbod Farshidian, and Marco Hutter. Mpc-net: A first principles guided policy search.
IEEE Robotics and Automation Letters, 5(2):2897–2904, 2020.

Erwin Coumans and Yunfei Bai. Pybullet, a python module for physics simulation for games,
robotics and machine learning. GitHub repository, 2016.

Victor Dhédin, Haolong Li, Shahram Khorshidi, Lukas Mack, Adithya Kumar Chinnakkonda Ravi,
Avadesh Meduri, Paarth Shah, Felix Grimminger, Ludovic Righetti, Majid Khadiv, et al. Visual-
inertial and leg odometry fusion for dynamic locomotion. arXiv preprint arXiv:2210.02127,
2022.

Damien Ernst, Pierre Geurts, and Louis Wehenkel. Tree-based batch mode reinforcement learning.
Journal of Machine Learning Research, 6, 2005.

Ruben Grandia, Fabian Jenelten, Shaohui Yang, Farbod Farshidian, and Marco Hutter. Perceptive
locomotion through nonlinear model predictive control. arXiv preprint arXiv:2208.08373, 2022.

Felix Grimminger, Avadesh Meduri, Majid Khadiv, Julian Viereck, Manuel Wüthrich, Maximi-
lien Naveau, Vincent Berenz, Steve Heim, Felix Widmaier, Thomas Flayols, et al. An open
torque-controlled modular robot architecture for legged locomotion research. IEEE Robotics and
Automation Letters, 5(2):3650–3657, 2020.

11

LEARNING LOCOMOTION SKILLS IN SENSOR SPACE

Jemin Hwangbo, Joonho Lee, Alexey Dosovitskiy, Dario Bellicoso, Vassilios Tsounis, Vladlen
Koltun, and Marco Hutter. Learning agile and dynamic motor skills for legged robots. Science
Robotics, 4(26):eaau5872, 2019.

Gwanghyeon Ji, Juhyeok Mun, Hyeongjun Kim, and Jemin Hwangbo. Concurrent training of a
control policy and a state estimator for dynamic and robust legged locomotion. IEEE Robotics
and Automation Letters, 7(2):4630–4637, 2022.

Sascha Lange, Thomas Gabel, and Martin Riedmiller. Batch reinforcement learning. In Reinforce-
ment learning, pages 45–73. Springer, 2012.

Joonho Lee, Jemin Hwangbo, Lorenz Wellhausen, Vladlen Koltun, and Marco Hutter. Learning
quadrupedal locomotion over challenging terrain. Science robotics, 5(47):eabc5986, 2020.

Sergey Levine and Vladlen Koltun. Guided policy search. In International conference on machine
learning, pages 1–9. PMLR, 2013.

Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end training of deep visuo-
motor policies. The Journal of Machine Learning Research, 17(1):1334–1373, 2016.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tuto-
rial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Zhongyu Li, Xuxin Cheng, Xue Bin Peng, Pieter Abbeel, Sergey Levine, Glen Berseth, and Koushil
Sreenath. Reinforcement learning for robust parameterized locomotion control of bipedal robots.
In 2021 IEEE International Conference on Robotics and Automation (ICRA), pages 2811–2817.
IEEE, 2021.

Carlos Mastalli, Rohan Budhiraja, Wolfgang Merkt, Guilhem Saurel, Bilal Hammoud, Maximilien
Naveau, Justin Carpentier, Ludovic Righetti, Sethu Vijayakumar, and Nicolas Mansard. Crocod-
dyl: An efficient and versatile framework for multi-contact optimal control. In 2020 IEEE Inter-
national Conference on Robotics and Automation (ICRA), pages 2536–2542. IEEE, 2020.

Carlos Mastalli, Wolfgang Merkt, Guiyang Xin, Jaehyun Shim, Michael Mistry, Ioannis Havoutis,
and Sethu Vijayakumar. Agile maneuvers in legged robots: a predictive control approach. arXiv
preprint arXiv:2203.07554, 2022.

Avadesh Meduri, Paarth Shah, Julian Viereck, Majid Khadiv, Ioannis Havoutis, and Ludovic
Righetti. Biconmp: A nonlinear model predictive control framework for whole body motion
planning. IEEE Transactions on Robotics, 2023.

Takahiro Miki, Joonho Lee, Jemin Hwangbo, Lorenz Wellhausen, Vladlen Koltun, and Marco Hut-
ter. Learning robust perceptive locomotion for quadrupedal robots in the wild. Science Robotics,
7(62):eabk2822, 2022.

Xue Bin Peng and Michiel van de Panne. Learning locomotion skills using deeprl: Does the choice
of action space matter? In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on
Computer Animation, pages 1–13, 2017.

12

LEARNING LOCOMOTION SKILLS IN SENSOR SPACE

Dean A Pomerleau. Alvinn: An autonomous land vehicle in a neural network. Advances in neural
information processing systems, 1, 1988.

Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and struc-
tured prediction to no-regret online learning. In Proceedings of the fourteenth international con-
ference on artificial intelligence and statistics, pages 627–635. JMLR Workshop and Conference
Proceedings, 2011.

Jonah Siekmann, Kevin Green, John Warila, Alan Fern, and Jonathan Hurst. Blind bipedal stair
traversal via sim-to-real reinforcement learning. In Robotics: Science and Systems, 7 2021.

Julian Viereck, Avadesh Meduri, and Ludovic Righetti. Valuenetqp: Learned one-step optimal
control for legged locomotion. In Learning for Dynamics and Control Conference, pages 931–
942. PMLR, 2022.

Zhaoming Xie, Patrick Clary, Jeremy Dao, Pedro Morais, Jonanthan Hurst, and Michiel Panne.
Learning locomotion skills for cassie: Iterative design and sim-to-real. In Conference on Robot
Learning, pages 317–329. PMLR, 2020.

13

	Introduction
	Nonlinear model predictive control
	Learning
	Policy structure
	Action space
	State space
	Measurement space
	Data collection

	Results
	Choice of action space
	Learning from sensor measurements
	End-to-end learning

	Conclusions

